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Abstract. The goal of this paper is to generalise the invariant called Kho-
vanov homology in the sense of a categorification of the generalized Kauffman

bracket for knots in the thickened torus. Namely, passage to an appropriate
Euler characteristic gives the corresponding polynomial invariant. In this pa-
per, we deal with the generalization of Kauffman bracket taking values only
in polynomials in the variables a and x, since we take into account only the

numbers of trivial and nontrivial curves, i.e. we do not take into consideration
the homotopy types of nontrivial curves, and associate each nontrivial curve
with the same variable x. As a result of taking into account the type of curve
(trivial or nontrivial), in order to construct Khovanov homology, we use an

additional grading. The paper describes a construction of a chain complex
for a knot diagram on the torus, and proves its correctness and invariance.

Introduction

One of the main problems of the knot theory is to distinguish the objects under
study. This approach involves the problem to construct and compute knot invari-
ants and see if some of them are helpful in the considered particular situation. For
example, the generalized Kauffman bracket turned out to be enough to distinguish
all knots in the thickened torus having diagrams with at most 4 crossings [1].

Despite the fact that the generalized Kauffman bracket allows to distinguish all
the constructed knots in the thickened torus T×I [1], we consider the construction
of a stronger invariant, the need for which may arise during further tabulation or to
solve other problems connected with knots in the thickened torus T×I. In compu-
tation of Khovanov homology, we take into account not only the number of curves
obtained by resolving the diagram according to the given state, as in the Kauff-
man bracket, but also their interaction during the transition between neighboring
states. Obviously, Khovanov homology retains more information about a knot
diagram than the Kauffman bracket, and therefore is a stronger invariant. The
considered homology theory is called a categorification of polynomial invariant,
because passage to an appropriate Euler characteristic gives the corresponding
polynomial invariant. Namely, we consider a categorification of the generalized
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Kauffman bracket [1], i.e. the transition from abstract polynomials to a category
whose objects are Abelian groups, while morphisms are homomorphisms.

For the first time, Khovanov homology was proposed in [2] for classical knots,
i.e. knots in the 3-dimensional sphere. Note also the papers [3], [4], and [5], which
give perfect description of Khovanov homology for classical knots.

Note the papers [6] and [7], where Khovanov homology are constructed for some
other generalizations of the Kauffman bracket of links, which include links in the
thickened torus as a particular case.

Namely, the paper [6] constructs Khovanov homology as a categorification of the
generalized Kauffman bracket [8] for twisted links, i.e. oriented links in orientable
three-manifolds that are orientated I-bundles over closed but not necessarily ori-
entable surfaces. The generalization of the Kauffman bracket [8] can be considered
for knots in the thickened torus (as a particular case of twisted links) and takes
into account the numbers of orienting and non-orienting curves. In this paper, we
deal with the generalized Kauffman bracket [1] taking into account the numbers
of trivial and nontrivial curves.

In its turn, the paper [7] constructs Khovanov homology as a categorification of
another generalized Kauffman bracket for links in I-bundles over surfaces. Namely,
the proposed generalized Kauffman bracket can be considered as the set of nontriv-
ial curves endowed with coefficients taking values in polynomials in the variable A.
Therefore, such a generalization can be identified with a polynomial only for knots
in the thickened 2-dimensional disk or the thickened 2-dimensional sphere. In this
paper, we deal with the generalization of Kauffman bracket [1] taking values only
in polynomials in the variables a and x. Therefore, we always have a polynomial
instead of the set of curves endowed with coefficients, since we do not take into ac-
count the homotopy types of nontrivial curves, and associate each nontrivial curve
with the same variable x. As a result, in order to construct Khovanov homology,
we use an additional grading.

The paper is organized as follows. Section 1 gives the necessary definitions of
knots in the thickened torus and the generalized Kauffman bracket [1]. In Section 2,
we describe a construction of a chain complex for a knot diagram on the torus. To
this end, we construct Abelian groups Cn and homomorphisms dn. In Section 3,
we show the correctness of the constructed chain complex. Then, in Section 4, we
prove the invariance of the proposed construction. In Section 5, we formulate and
prove the main theorem that the proposed construction is a categorification of the
generalized Kauffman bracket [1].

1. Definitions

1.1. Knots in the Thickened Torus. Consider a two-dimensional torus
T = S1 × S1 and an interval I = [0, 1]. By a thickened torus we mean a 3-
dimensional manifold homeomorphic to the direct product T × I. A smooth
embedding of a curve in Int(T × I) is called a knot in T × I and denoted by
K ⊂ T × I.

As in the classical case, knots in the thickened torus can be given by their
diagrams. A diagram D ⊂ T of a knot K ⊂ T × I is defined by analogy with
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KHOVANOV HOMOLOGY FOR KNOTS IN THE THICKENED TORUS 3

the diagram of the classical knot except that a knot is projected into the torus T
instead of the plane.

1.2. The Generalized Kauffman Bracket. Let us recall the definition of the
generalized Kauffman bracket [1]. In contrast to the usual Kauffman bracket of
classical knots [9] (see also [10] for the original version of the Kauffman bracket
called the Jones polynomial), the considered generalized version takes into account
types of curves on the torus (trivial, i.e. bounded a 2-disk, and nontrivial).

Let D be a diagram of a knot in the thickened torus. Endow each angle of each
crossing of D with the marker A or B according to the rule given in the center of
Fig. 1.2. Each state s of the diagram D is defined by a combination of ways to
smooth each crossing of D such as to join together either two angles endowed with
the marker A, or two angles endowed with the marker B, see Fig. 1.2 on the left
and right, respectively. Obviously, if the diagram D has n crossings, then there
exist exactly 2n states of D.

Figure 1. A- and B-smoothings of a crossing

By the writhe of an oriented classical knot diagram D with n crossings we mean
the sum over all crossings of D

ω(D) =
n∑

r=1

ε(r), (1.1)

where ε(r) is the sign of the r-th crossing ofD defined by the rules given in Fig. 1.2.

Figure 2. Rules to define the sign ε(r) of the r-th crossing

The exact formula of the generalized Kauffman bracket [1] is as follows:

X (a, x)D = (−a)−3ω(D)
∑
s

aα(s)−β(s)(−a2 − a−2)γ(s)xδ(s). (1.2)

Here α(s) and β(s) are the numbers of markers A and B in the given state s, and
γ(s), δ(s) are the numbers of trivial and nontrivial curves in the torus obtained
by smoothing of all crossings according to the state s, and ω(D) is the writhe of
D. The sum is taken over all 2n states of D.
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2. Construction of the chain complex C

According to [3], we consider a chain complex C to be an infinity sequence of
Abelian groups Cn and homomorphisms dn

. . . −→ Cn−1 dn−1

−−−→ Cn dn

−−→ Cn+1 −→ . . . (2.1)

under the condition dndn+1 = 0 for any n.
Associate each knot diagram on the torus T with a chain complex of graded

vector spaces such that the cohomology of the chain complex is the discussed
invariant. Nevertheless, following historically established terminology, when con-
structing Khovanov construction, we talk about homology, not cohomology.

2.1. Construction of the Abelian groups Cn. Consider two vector spaces
V = {v+, v−} and W = {w+, w−} over the field R, which are generated by the
elements with degrees

deg(w+) = deg(v+) = +1,

deg(w−) = deg(v−) = −1.

Let

V ⊗γ = V ⊗ V ⊗ ...⊗ V︸ ︷︷ ︸
γ

be the vector space, which is the tensor product of γ copies of the vector space V .
Denote the basic elements of the vector space V ⊗γ by

v⊗γ = v1 ⊗ ...⊗ vγ ,

where vp ∈ {v+, v−} for all p ∈ {1, ..., γ}.
Define the degree of the basic element v⊗γ ∈ V ⊗γ as the sum of the degrees of

the tensor factors in this element. In other words,

deg(v⊗γ) = ♯v+ − ♯v−,

where ♯v+ (respectively, ♯v−) is the number of elements v+ (respectively, v−)
among all elements v1, ..., vγ included in the tensor product that forms the element
v⊗γ .

Recall that the choice of division of a vector space into a direct sum of its
subspaces is called a grading on the space. Define the grading on the vector space
V ⊗γ as the values of the degrees of the basic elements, i.e.

V ⊗γ = V 1 ⊕ V 2 ⊕ ...⊕ V γ−1 ⊕ V γ = ⊕pV
p,

where V p is the subspace generated by the basic elements v⊗γ of the degree p:

V p = ⟨v⊗γ |deg(v⊗γ) = p⟩.

Similarly, the grading on the vector space W⊗δ can be defined as

W⊗δ = W 1 ⊕W 2 ⊕ ...⊕W δ−1 ⊕W δ = ⊕qW
q,

where W q is the subspace generated by the basic elements w⊗δ of the degree q:

W q = ⟨w⊗δ|deg(w⊗δ) = q⟩,
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where w⊗δ = w1 ⊗ ...⊗ wδ, wq ∈ {w+, w−} for all q ∈ {1, ..., δ}, and
deg(w⊗δ) = ♯w+ − ♯w−.

A vector space endowed with a grading is called a graded vector space.
Let s be a state of the given diagram D, and Ds be the set of curves on the

torus T obtained by resolving the diagram D according to the state s. Associate
each trivial and nontrivial curve of Ds with a vector space V and W , respectively.
As above, γ(s) and δ(s) are the numbers of trivial and nontrivial curves on the
torus in Ds. Then associate each state s of the diagram D with the vector space

Vs = V ⊗γ(s) ⊗W⊗δ(s),

which is the tensor product of γ(s) copies of the vector space V and δ(s) copies of
the vector space W . The basic elements νs of the space Vs have the form

νs = v⊗γ(s) ⊗ w⊗δ(s).

On the constructed vector space Vs, introduce the three gradings (homological
i(νs), quantum j(νs), and additional k(νs)) as follows:

i(νs) =
ω(D)−σ(s)

2 (homological),

j(νs) =
3ω(D)−σ(s)+2τ(νs)

2 (quantum),

k(νs) = ϕ(νs) (additional), where

σ(s) = α(s)− β(s),

τ(νs) = ♯v+ − ♯v−, (2.2)

ϕ(νs) = ♯w+ − ♯w−.

Recall that the smoothing numbers of types A and B in the given state s are
denoted by α(s) and β(s), respectively.

Remark 2.1. It follows from (2.2) that the value of the homological grading i(νs)
depends only on the state s and does not depend on the tensor factors by which
the element νs = v⊗γ(s)⊗w⊗δ(s) is generated. Therefore, it is more correct to talk
about the homological grading i(s). Nevertheless, for reasons of uniformity of the
notation for gradings, we write i(νs).

Divide the space Vs into the direct sum of the subspaces: Vs = ⊕i,j,kVi,j,k,
where Vi,j,k is the subspace generated by the basic elements νs ∈ Vs, for which
the values of each of the gradings are i, j, and k, respectively.

Define the Abelian group Cn of the chain complex as the direct sum of the
vector spaces Vs such that i(νs) = n for all νs ∈ Vs. Therefore,

Cn = ⊕s:i(νs)=nVs.

2.2. Construction of the Homomorphisms dn. Two states, sA and sB, of the
given diagram D are called neighboring states, if all the corresponding crossings
are smoothed in the same way with the exclusion of the unique crossing, which is
smoothed by type A in the state sA and by type B in the state sB .

As above, Ds is a set of curves on the torus T obtained by resolving the diagram
D with n crossings according to the state s, and Vs is a vector space corresponding
to the state s. Associate each vertex of the unit n−dimensional cube with a triple
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(s, Ds, Vs) such that each edge of the cube connects the vertices corresponding to
triples of neighboring states: (sA, DsA , VsA) and (sB, DsB , VsB ). Note that the
edges of the cube are oriented: the beginning of each edge is the vertex corre-
sponding to the triple (sA, DsA , VsA).

Let us consider the passage along the edge of the unit n−dimensional cube as
a linear map of vector spaces corresponding to neighboring states:

f : VsA → VsB .

This map f acts identically on all curves in the set DsA , with the exception of one
or two curves. Namely, as a result of switching the type of smoothing of a crossing
from A to B, we have one of the following possibilities:
a curve maps to a curve
η : W 7→ W ;

two curves combine into a curve
m1 : V ⊗ V 7→ V , m2 : V ⊗W 7→ W , m3 : W ⊗W 7→ V ;

a curve splits into two curves
∆1 : V 7→ V ⊗ V , ∆2 : W 7→ V ⊗W , ∆3 : V 7→ W ⊗W .

It is easy to see that there are no other combinations of the map of trivial and
nontrivial curves on the torus, i.e. f ∈ {η,mt,∆t} and t = 1, 2, 3. Note the linear
map η, which appears only in the case of knots in the thickened torus T × I and
has no analogies in the case of classical knots, where only two linear maps, m1 and
∆1, are possible.

In order to define these maps, we use the following conditions. As a result of
applying any map, the homological grading i(νs) increases by 1, while the other
two, the quantum grading j(νs) and the additional grading k(νs), remain the same:

i(νsB ) = i(νsA) + 1, j(νsB ) = j(νsA), k(νsB ) = k(νsA). (2.3)

Conditions (2.3) are used to prove Theorem 5.1, since under these conditions the
degree of the constructed differential di is 0, see [4]: di(Ci,j,k) ⊂ Ci+1,j,k ∀i, j, k ∈
Z .

According to formulas (2.2), condition (2.3) implies the following conditions on
the ratio of the degrees of generators in the elements νsA ∈ VsA and νsB ∈ VsB ,
which correspond to the trivial

τ(νsB ) = τ(νsA)− 1 (2.4)

and non-trivial

ϕ(νsB ) = ϕ(νsA) (2.5)

curves. Indeed, j(νsB ) = j(νsA) implies (2.4), and k(νsB ) = k(νsA) implies (2.5).
Using conditions (2.4) and (2.5), it is easy to see that the actions of the linear
maps on basic elements of the spaces are defined by the following rules.

η(w−) = η(w+) = 0
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m1(v
− ⊗ v−) = 0

m1(v
− ⊗ v+) = v−

m1(v
+ ⊗ v−) = v−

m1(v
+ ⊗ v+) = v+

m2(v
− ⊗ w−) = 0

m2(v
− ⊗ w+) = 0

m2(v
+ ⊗ w−) = w−

m2(v
+ ⊗ w+) = w+

m3(w
− ⊗ w−) = 0

m3(w
− ⊗ w+) = v−

m3(w
+ ⊗ w−) = v−

m3(w
+ ⊗ w+) = 0

∆1(v
−) = v− ⊗ v−

∆2(w
−) = v− ⊗ w−

∆3(v
−) = 0

∆1(v
+) = v+ ⊗ v− + v− ⊗ v+

∆2(w
+) = v− ⊗ w+

∆3(v
+) = w+ ⊗ w− + w− ⊗ w+

Therefore, the linear maps η, ∆t, and mt, t = 1, 2, 3, are given by the following
matrices, where columns and rows correspond to the basic elements of preimage
and image, respectively.

η w− w+

w− 0 0
w+ 0 0

m1 v− ⊗ v− v− ⊗ v+ v+ ⊗ v− v+ ⊗ v+

v− 0 1 1 0
v+ 0 0 0 1

m2 v− ⊗ w− v− ⊗ w+ v+ ⊗ w− v+ ⊗ w+

w− 0 0 1 0
w+ 0 0 0 1

(2.6)

m3 w− ⊗ w− w− ⊗ w+ w+ ⊗ w− w+ ⊗ w+

v− 0 1 1 0
v+ 0 0 0 0

∆1 v− v+

v− ⊗ v− 1 0
v− ⊗ v+ 0 1
v+ ⊗ v− 0 1
v+ ⊗ v+ 0 0

∆2 w− w+

v− ⊗ w− 1 0
v− ⊗ w+ 0 1
v+ ⊗ w− 0 0
v+ ⊗ w+ 0 0

∆3 v− v+

w− ⊗ w− 0 0
w− ⊗ w+ 0 1
w+ ⊗ w− 0 1
w+ ⊗ w+ 0 0

Associate each edge of the unit n−dimensional cube with the linear map η, mt

or ∆t, t = 1, 2, 3, taking with a sign determined by the following rule. Let r1 be
a number of the crossing, where the type of smoothing is switched from A to B
when we go along the edge. Associate each crossing having the number r2 < r1
with a number

ξr2 =

{
1, if the crossing with the number r2 is smoothed by the type B,
0, if the crossing with the number r2 is smoothed by the type A.

Then we endow the map corresponding to this edge with the sign

(−1)
∑

r2<r1
ξr2 . (2.7)
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Recall that Abelian group of the constructed chain complex is Cn = ⊕s:i(νs)=nVs.
Fix n and consider all states s such that i(νs) = n, where νs ∈ Vs. Then for each
state s̃, which is neighboring with some state s, we have i(νs̃) = n + 1, where
νs̃ ∈ Vs̃. Define the deferential dn : Cn → Cn+1 as a sum of all linear maps
corresponding to edges that connect the vertices (s, Ds, Vs) and (s̃, Ds̃, Vs̃).

Then, for each element νs ∈ Vs, the element dn(νs) = ⊕νs̃ ∈ ⊕Vs̃ belongs to
the direct sum of the vector spaces Vs̃, where the sum is taken over all the vector
spaces Vs̃ corresponding to the vertices (s̃, Ds̃, Vs̃), which are the endpoints of the
edges with the begining at the vertex (s, Ds, Vs).

3. Correctness of the constructed chain complex

Lemma 3.1. For any n, the condition dn+1dn = 0 is fulfilled.

Proof. STEP 1. Construct an arbitrary two-dimensional face F of the unit
n−dimensional cube, see Fig.3, as follows.

Recall that if two vertices are connected by an edge, then the states that cor-
respond to these vertices, for example, s1 and s2, are neighboring (i.e., the states
are such that smoothing types are the same in all the corresponding crossing, ex-
cept one). For the same reason, in the states s1 and s4 connected by two edges
consecutively, the smoothing types are the same in all the corresponding crossings,
except some pair of crossings denoted by c1 and c2 such that both these crossings
are smoothed by the type A in the state s1, and are smoothed by the type B in the
state s4. Therefore, there exist exactly two crossings, c1 and c2, of the diagram D
that switch the type of smoothing within the face F .

Hereinafter, without loss of generality, instead of the sets Ds, we consider the
simplified sets D′

s that contain only one or two curves, which are involved in the
considered linear maps. In other words, we take into account only the curves that
appear or disappear within the considered combination of the linear maps. Then
each of the spaces V ′

s is a tensor product

V ′
s = V ⊗γ′(s) ⊗W⊗δ′(s), (3.1)

where γ′(s) and δ′(s) are the numbers of trivial and nontrivial curves, respectively,
in the simplified set D′

s.
Without loss of generality, hereinafter we take into account only these two cross-

ings c1 and c2, and consider the simplified sets D′
sr , r = 1, 2, 3, 4, that contain only

the curves, each of which is involved in at least one of the linear maps associated
with the edges of the face F . In other words, we take into account only the curves
that appear or disappear within the face F .

Each vertex of the face F is endowed with a triple of the form (sr, D′
sr , V

′
sr ),

r = 1, 2, 3, 4. Here the set D′
sr includes only the curves on the torus T obtained by

smoothing the crossings c1 and c2, and V ′
sr is a vector space corresponding to the

set Dsr . In the sets Dsr , in order to save information about crossings, the curves
are connected by dashed arcs at the points of smoothing crossings. At the same
time, each of the simplified sets D′

s contains only two dashed arcs indicating the
points of smoothing the two crossings c1 and c2.
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Figure 3. A two-dimensional face F of the unite n− dimensional cube

Each edge of the face F is endowed with a linear map fr ∈ {η,mt,∆t}, where
r = 1, 2, 3, 4, and t = 1, 2, 3. Here all the maps fr are positive, i.e. are considered
without regard to the signs determined by formula (2.7) when constructing a chain
complex.

STEP 2.
Let us show that the constructed face F is commutative, i.e. f3 ◦ f1 = f4 ◦ f2.

Here by fp+2 ◦ fp we mean a superposition of the linear maps fp and fp+2 such
that the map fp is applied first of all, p = 1, 2.

In the general case, the commutativity of the face F is verified by multiplication
of the matrices corresponding to the linear maps fr, i.e. η, mt or ∆t, where
r = 1, 2, 3, 4, and t = 1, 2, 3. Enumeration of superpositions is significantly reduced
by the following conditions.

(1) The maps fp (i.e., f1 and f2) have the same preimage space Vs1 ,
(2) The maps fp+2 (i.e., f4 and f3) have the same image space Vs4 .Let ρ(sr) be the number of all (both trivial and nontrivial) curves in the set

D′
sr , and ρ = max

r
ρ(sr). Obviously, ρ ≤ 4, since on a torus there exist no more

than 4 curves connected by two dashed arcs such that at each curve there is an
endpoint of at least one arc.

STEP 2. 1. Let ρ = 1.
Obviously, the face F is commutative. Indeed, f1 = f2 = f3 = f4 = η, since

V ′
sr = W for all r = 1, 2, 3, 4.
STEP 2. 2. Let ρ = 2 or ρ = 3.
Enumeration of all possible cases to switch the type and number of curves, as

well as multiplication of matrices of the corresponding maps, is a routine check,
which can be carried out as follows.

(1) Fix the values of ρ(s1) and ρ(s4).
(2) Enumerate all pairs of the corresponding spaces V ′

s1 and V ′
s4 .

(3) For each fixed pair of the spaces V ′
s1 and V ′

s4 , consider all pairs of the
maps fp : V ′

s1 → V ′
sp+1

and fp+2 : V ′
sp+1

→ V ′
s4 , for which the superposition

fp+2 ◦ fp : V ′
s1 → V ′

s4 is defined, where p = 1, 2.
(4) For fixed spaces V ′

s1 and V ′
s4 , show that the results of all the constructed

superpositions fp+2 ◦ fp : V ′
s1 → V ′

s4 are the same, i.e. the result is
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independent of the chosen maps fp, fp+2 and the space V ′
sp+1

, where p =
1, 2.

In order to enumerate all possible cases, we note the following obvious state-
ments.

Lemma 3.2.

(1) ρ(s1) = ρ(s4) if and only if either one of the linear maps fp+2 and fp is
the linear map mt1 , while another is the linear map ∆t2 , where p = 1, 2
and t1, t2 ∈ {1, 2, 3}, or both linear maps are η.

(2) |ρ(s1) − ρ(s4)| = 1 if and only if exactly one of the linear maps, either
fp+2 or fp, where p = 1, 2, is the linear map η, while another is the linear
map mt, if ρ(s1) > ρ(s4), or the linear map ∆t, if ρ(s1) < ρ(s4), where
t ∈ {1, 2, 3}.

(3) |ρ(s1) − ρ(s4)| = 2 if and only if both linear maps fp+2 and fp are either
mt, if ρ(s1) > ρ(s4), or ∆t, if ρ(s1) < ρ(s4), where t ∈ {1, 2, 3} can takes
different values for fp+2 and fp and p = 1, 2.

Proof. For all t = 1, 2, 3, the linear map mt decreases the number of curves by
one, and the linear map ∆t increases the number of curves by one. In its turn, the
linear map η remains the number of curves the same. �
Lemma 3.3. The linear map η is defined only on a vector space of the form

V ′
s = V ⊗γ′(s) ⊗W.

In other words, δ′(s) = 1 in formula (3.1).

Proof. Indeed, consider a dashed arc ℓ, the endpoints of which belong to a nontriv-
ial curve ζ on the torus. If both endpoints of ℓ belong to the same side of ζ, then,
as a result of switching the type of the crossing, the nontrivial curve ζ splits into
two curves having different types, i.e. trivial and nontrivial. The nontrivial curve
maps to the nontrivial one, i.e. the map η : W 7→ W takes place, if endpoints
of ℓ belong to different sides of the curve ζ. In this case, on the torus T , the
complement to the union ζ ∪ ℓ is a 2-disk D2 and cannot contain other nontrivial
curves. �

It is easy to see that for each fixed pair ρ(s1) and ρ(s4), there exist only those
pairs of the spaces V ′

s1 and V ′
s4 and the superpositions fp+2 ◦ fp : V ′

s1 → V ′
s4

that are given below, where p = 1, 2. The corresponding superpositions are equal,
since the corresponding products of the matrices (2.6) (or the obvious extensions
of these matrices) of the linear maps are equal.

Suppose that ρ(s1) = ρ(s4), then we obtain Cases 1 – 3 given below, where we
take into account item (1) of Lemma 3.2.

Case 1: Suppose that ρ(s1) = ρ(s4) = 1.
(1) fp+2 ◦ fp : V → V , where fp+2 ◦ fp ∈ {m1 ◦∆1,m3 ◦∆3}:

• V ∆1−−−−−→V ⊗ V m1−−−−−→V,

• V ∆3−−−−−→W ⊗W m3−−−−−→V.

(2) fp+2 ◦ fp : W → W , where fp+2 ◦ fp ∈ {m2 ◦∆2, η ◦ η}:
• W ∆2−−−−−→V ⊗W m2−−−−−→W,
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• W η
−−−→

W η
−−−→

W.

Case 2: Suppose that ρ(s1) = ρ(s4) = 2.
(1) fp+2 ◦ fp : V ⊗ V → V ⊗ V , where fp+2 ◦ fp ∈ {∆1 ◦m1,m1 ◦∆1}:

• V ⊗ V m1−−−−−→V ∆1−−−−−→V ⊗ V,

• V ⊗ V ∆1−−−−−→V ⊗ V ⊗ V m1−−−−−→V ⊗ V.

(2) fp+2 ◦ fp : V ⊗ V → W ⊗W , where fp+2 ◦ fp ∈ {∆3 ◦m1,m2 ◦∆3}:
• V ⊗ V m1−−−−−→V ∆3−−−−−→W ⊗W,

• V ⊗ V ∆3−−−−−→V ⊗W ⊗W m2−−−−−→W ⊗W.

(3) fp+2 ◦fp : V ⊗W → V ⊗W , where fp+2 ◦fp ∈ {∆2 ◦m2,m2 ◦∆1,m3 ◦
∆3,m1 ◦∆2}:

• V ⊗W m2−−−−−→W ∆2−−−−−→V ⊗W,

• V ⊗W ∆1−−−−−→V ⊗ V ⊗W m2−−−−−→V ⊗W,

• V ⊗W ∆3−−−−−→W ⊗W ⊗W m3−−−−−→V ⊗W,

• V ⊗W ∆2−−−−−→V ⊗ V ⊗W m1−−−−−→V ⊗W.

(4) fp+2 ◦ fp : W ⊗W → W ⊗W , where fp+2 ◦ fp ∈ {∆3 ◦m3,m2 ◦∆2}:
• W ⊗W m3−−−−−→V ∆3−−−−−→W ⊗W,

• W ⊗W ∆2−−−−−→V ⊗W ⊗W m2−−−−−→W ⊗W.

(5) fp+2 ◦ fp : W ⊗W → V ⊗ V , where fp+2 ◦ fp ∈ {∆1 ◦m3,m3 ◦∆2}:
• W ⊗W m3−−−−−→V ∆1−−−−−→V ⊗ V,

• W ⊗W ∆2−−−−−→V ⊗W ⊗W m3−−−−−→V ⊗ V.

Case 3: Suppose that ρ(s1) = ρ(s4) = 3. The second case described in item
(1) of Lemma 3.2 is impossible, since each curve should take part in at least
one linear map. In the first case, we have a pair of curves connected by a
dashed arc (switching brings to the linear map mt1 , t1 ∈ {1, 2, 3}), while
the third curve is disjoint and is endowed with a dashed arc (switching
brings to the linear map ∆t2 , t2 ∈ {1, 2, 3}). Therefore, the face F is
commutative, since any curve in each of the sets D′

s is involved in only one
map, mt1 or ∆t2 , i.e. the two possible walks along the edges differ only in
the choice in which of the two crossings the smoothing type switches first.
Hence, f1 = f4 and f2 = f3, while f1 and f2 act independently.

Suppose that ρ(s1) < ρ(s4), then we obtain Cases 4 – 6 given below, where we
take into account items (2) and (3) of Lemma 3.2.

Case 4: Suppose that ρ(s1) = 1, ρ(s4) = 2.
(1) fp+2 ◦ fp : W → V ⊗W , where fp+2 ◦ fp ∈ {η ◦∆2,∆2 ◦ η}:

• W ∆2−−−−−→V ⊗W η
−−−→

V ⊗W,

• W η
−−−→

W ∆2−−−−−→V ⊗W.

Note that, for example, the superposition V ∆3−−−−−→W ⊗W η
−−−→

W ⊗W

does not exist, see Lemma 3.3.
Case 5: Suppose that ρ(s1) = 1, ρ(s4) = 3.

(1) fp+2 ◦ fp : V → V ⊗W ⊗W , where fp+2 ◦ fp ∈ {∆3 ◦∆1,∆2 ◦∆3}:
• V ∆1−−−−−→V ⊗ V ∆3−−−−−→V ⊗W ⊗W,

• V ∆3−−−−−→W ⊗W ∆2−−−−−→V ⊗W ⊗W.
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(2) fp+2 ◦ fp : V → V ⊗ V ⊗ V , where fp+2 ◦ fp = ∆1 ◦∆1:
• V ∆1−−−−−→V ⊗ V ∆1−−−−−→V ⊗ V ⊗ V.

(3) fp+2 ◦ fp : W → W ⊗W ⊗W , where fp+2 ◦ fp = ∆3 ◦∆2:
• W ∆2−−−−−→V ⊗W ∆3−−−−−→W ⊗W ⊗W.

(4) fp+2 ◦ fp : W → V ⊗ V ⊗W , where fp+2 ◦ fp ∈ {∆1 ◦∆2,∆2 ◦∆2}:
• W ∆2−−−−−→V ⊗W ∆1−−−−−→V ⊗ V ⊗W,

• W ∆2−−−−−→V ⊗W ∆2−−−−−→V ⊗ V ⊗W.

Case 6: Suppose that ρ(s1) = 2, ρ(s4) = 3.
fp+2 ◦ fp : V ⊗W → V ⊗ V ⊗W , where fp+2 ◦ fp ∈ {∆1 ◦ η, η ◦∆1}:
• V ⊗W η

−−−→
V ⊗W ∆1−−−−−→V ⊗ V ⊗W,

• V ⊗W ∆1−−−−−→V ⊗ V ⊗W η
−−−→

V ⊗ V ⊗W.

Suppose that ρ(s1) > ρ(s4), then we use the symmetry to obtain Cases 7 – 9 given
below from Cases 4 – 6 given above by replacement mt with ∆t, t ∈ {1, 2, 3}, and
vice versa.

Case 7: Suppose that ρ(s1) = 2, ρ(s4) = 1.
(1) fp+2 ◦ fp : V ⊗W → W , where fp+2 ◦ fp ∈ {η ◦m2,m2 ◦ η}:

• V ⊗W m2−−−−−→W η
−−−→

W,

• V ⊗W η
−−−→

V ⊗W m2−−−−−→W.

Case 8: Suppose that ρ(s1) = 3, ρ(s4) = 1.
(1) fp+2 ◦ fp : V ⊗ V ⊗ V → V , where fp+2 ◦ fp = m1 ◦m1:

• V ⊗ V ⊗ V m1−−−−−→V ⊗ V m1−−−−−→V.

(2) fp+2 ◦ fp : W ⊗W ⊗W → W , where fp+2 ◦ fp = m2 ◦m3:
• W ⊗W ⊗W m3−−−−−→V ⊗W m2−−−−−→W.

(3) fp+2 ◦ fp : V ⊗ V ⊗W → W , where fp+2 ◦ fp ∈ {m2 ◦m1,m2 ◦m2}:
• V ⊗ V ⊗W m1−−−−−→V ⊗W m2−−−−−→W,

• V ⊗ V ⊗W m2−−−−−→V ⊗W m2−−−−−→W.

(4) fp+2 ◦ fp : V ⊗W ⊗W → V , where fp+2 ◦ fp ∈ {m3 ◦m2,m1 ◦m3}:
• V ⊗W ⊗W m2−−−−−→W ⊗W m3−−−−−→V,

• V ⊗W ⊗W m3−−−−−→V ⊗ V m1−−−−−→V.

Case 9: Suppose that ρ(s1) = 3, ρ(s4) = 2.
(1) fp+2 ◦ fp : V ⊗ V ⊗W → V ⊗W , where fp+2 ◦ fp ∈ {m1 ◦ η, η ◦m1}:

• V ⊗ V ⊗W η
−−−→

V ⊗ V ⊗W m1−−−−−→V ⊗W,

• V ⊗ V ⊗W m1−−−−−→V ⊗W η
−−−→

V ⊗W.

STEP 2. 3. Let ρ = 4. In this case, obviously, the face F is commutative.
Indeed, any curve in each of the sets D′

s is involved in only one map, therefore,
the two possible walks along the edges differ only in the choice in which of the two
crossings the smoothing type switches first. Hence, f1 = f4 and f2 = f3, while f1
and f2 act independently.

STEP 3. Let us construct the face F to be anticommutative. Similarly to the
proof proposed in [4] (see also [3]) for a chain complex constructed for a classical
knot, we can set each commutative face F to be anticommutative. To this end,
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we endow each linear map corresponding to an edge of the face F with the sign
determined by formula (2.7) introduced when constructing a chain complex..

STEP 4. Since each two-dimensional face F of the unit n− dimensional cube
is anticommutative, then dn+1dn = 0, see [3]. �

4. Invariance

Lemma 4.1. The proposed construction of the Khovanov homology of knots in
the thickened torus T × I is invariant.

Proof. Direct verification of invariance with respect to all three Reidemeister
moves Ω1 – Ω3 is carried out similarly to the corresponding proof given in [3].
An analogy takes place, since the constructed linear maps mt and ∆t, t = 1, 2, 3,
have all the properties used for proof in [3]. Namely, the element v+ is a unit for
the maps mt, t = 1, 2, 3 (this property is used to prove invariance under Ω1) and
the maps ∆t, t = 1, 2, 3, are isomorphisms modulo v+ = 0 (this property is used
to prove invariance under Ω2 and Ω3). The linear map η does not appear in the
Reidemeister moves. �

5. Main Theorem

A factor group Hn(C) = ker(dn)/Im(dn−1) is called an n−dimensional coho-
mology group of a chain complex C (2.1). Nevertheless, following historically es-
tablished terminology, when constructing Khovanov’s construction, we talk about
homology instead of cohomology.

A chain complex C is called finitely generated if the number of its nonzero chain
groups (i.e., nonzero Cn) is finite.

For a fixed value of the homological grading i(νs) = i, consider a graded vector
space

Vi = ⊕j,kVi,j,k.

Then by the graded dimension of the graded vector space Vi we mean a power
series

qg dimVi =
∑
j,k

qj · gk · dimVi,j,k, (5.1)

where dimVi,j,k is the usual dimension of the vector space Vi,j,k, and q and g are
variables.

By the graded Euler characteristic µ̂(C) of a finitely generated graded chain
complex C we mean the alternating sum of the graded dimensions (5.1) of homology
groups of the chain complex C [3].

Theorem 5.1. Up to the change of variables a = (−q)−1/2 and x = g + g−1, the
generalized Kauffman bracket X (a, x)K (1.2) of a knot K ∈ T × I is equivalent to
the graded Euler characteristic µ̂(C(K)):

X (a, x)K = µ̂(C(K)) =
∑
i

(−1)i ·qg dimHi(K) =
∑
i,j,k

(−1)i ·qj ·gk ·dimHi,j,k(K).
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Proof. For a finitely generated graded chain complex C such that dn+1dn = 0 and
all chain groups Cn have finite dimension, the graded Euler characteristic µ̂(C) is
equal to the alternating sum of the graded dimensions of the chain groups Cn, see
[4, 3].

It is easy to see that definition (5.1) of the graded dimension qg dimVi of the
graded space Vi = ⊕j,kVi,j,k implies the equalities

qg dim(V ⊗γ(s) ⊗W⊗δ(s)) = (q + q−1)γ(s)(g + g−1)δ(s)

and
qg dim(V1 ⊕ V2) = qg dimV1 + qgdimV2.

Therefore, the terms in the sum of the Kauffman bracket over all states satis-

fying the condition i = ω(D)−σ(s)
2 = n are associated with elements of the chain

group Cn. �
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