
ISSN: 0974-8571  Vol. 14  No. 1 June, 2022   
  

International Journal of Computational Intelligence in Control 
 

Copyrights @Muk Publications  Vol. 14 No. 1 June, 2022 

 International Journal of Computational Intelligence in Control 

 

Analysis of Agile Software Testing, It’s 

Impact on Software Quality and Cost 
Muhammad Ijaz Khan1, Asia Zaman1, Muhammad Farhan1,Mudasir Mahmood1, 

Saadat Ullah1, Muhammad Arshad1,Waqas Ahmad1&Muhammad Bilal Qureshi2 

ijaz171@gmail.com 

aasiazaman123@gmail.com 

muhammadfarhan01@gmail.com 

mudasir@gu.edu.pk 

Ksaadat125@gmail.com 

mrarshadg0@gmail.com 

waqaas171@gmail.com 

mbilal@ulm.edu.pk 

1. Institute of Computing and Information Technology, Gomal University, Pakistan. 

2. Department of Computer Science & IT, University of Lakki Marwat, 28420, KPK, Pakistan. 

 

Date of Submission: 25th August 2021        Revised: 03rd January 2022          Accepted: 25th January  2022 

Abstract-This research paper presents a systematic literature review that aims to analyze the impact of Agile 

software testing methodologies on software quality and cost. Agile testing has garnered significant interest 

due to its potential to enhance the development process, resulting in high-quality software with reduced 

expenses. The study examines key Agile testing practices found in the literature and investigates their 

influence on both software quality and development cost. Furthermore, it explores the trade-offs between 

quality and cost in the context of Agile testing. The findings of this research provide valuable insights and 

recommendations for software development organizations seeking to adopt Agile testing methodologies to 

improve their software quality and cost efficiency. 

Keywords: Agile Testing, Software Quality, Software Quality, Cost and Quality trade-off  

1. Introduction 

Agile software development has emerged as a widely accepted approach to software development, aiming to 

address the limitations of traditional methodologies such as the Waterfall model [1]. Agile practices emphasize 

flexibility, collaboration, and rapid delivery of working software [2]. One critical aspect of Agile software 

development is Agile testing, which encompasses various testing methodologies that align with Agile principles. 

1.1. Background of Agile Software Testing 

The need for Agile testing arose from the recognition that traditional testing practices often resulted in delayed 

feedback, extended release cycles, and increased project costs [1]. Agile testing integrates testing activities 

throughout the software development lifecycle, emphasizing collaboration between developers and testers, 

continuous integration, and early defect detection [3]. Agile testing methodologies such as Test-Driven 

Development (TDD), Behavior-Driven Development (BDD), Acceptance Test-Driven Development (ATDD), 

and Exploratory Testing have been widely adopted to improve software quality and reduce development costs 

[2]. 

 

 

1.2. Traditional vs. Agile Software Testing 

331

mailto:ijaz171@gmail.com
mailto:aasiazaman123@gmail.com
mailto:muhammadfarhan01@gmail.com
mailto:mudasir@gu.edu.pk
mailto:Ksaadat125@gmail.com
mailto:mrarshadg0@gmail.com
mailto:waqaas171@gmail.com
mailto:mbilal@ulm.edu.pk


Muhammad Ijaz Khan et.al. 

Copyrights @Muk Publications  Vol. 14 No. 1 June, 2022 

 International Journal of Computational Intelligence in Control 

 

Traditional software testing methodologies are typically characterized by a sequential, phase-based approach, 

with testing activities occurring after the development phase is complete [1]. This can lead to delayed feedback 

and increased costs due to the need for extensive rework when defects are discovered late in the development 

process [3]. In contrast, Agile testing focuses on integrating testing activities throughout the development 

lifecycle, enabling early identification and resolution of defects, improving collaboration between developers 

and testers, and enhancing the overall quality of the software product [2]. This research aims to provide a 

detailed analysis of Agile testing methodologies, their impact on software quality, and the cost implications of 

adopting Agile testing practices. 

2. Agile Testing Methodologies 

Agile testing methodologies have been developed to support the principles of Agile software development, 

emphasizing collaboration, adaptability, and rapid delivery of high-quality software. This section provides an 

overview of some widely adopted Agile testing methodologies, including Test-Driven Development (TDD), 

Behavior-Driven Development (BDD), Acceptance Test-Driven Development (ATDD), and Exploratory 

Testing. 

2.1. Test-Driven Development (TDD) 

Test-Driven Development (TDD) is an Agile testing methodology where tests are written before the 

implementation of the corresponding functionality [4]. This approach promotes the development of clean, 

efficient, and reliable code by focusing on the desired outcomes and ensuring that each code increment meets 

the specified test criteria [5]. TDD follows a "red-green-refactor" cycle, where developers initially write a 

failing test (red), then implement the minimum code to make the test pass (green), and finally refactor the code 

for better maintainability and readability [6]. 

2.2. Behavior-Driven Development (BDD) 

Behavior-Driven Development (BDD) extends TDD principles by emphasizing collaboration between 

developers, testers, and stakeholders to define the expected behavior of a software system using a common, 

natural language [7]. BDD fosters a shared understanding of the system requirements and promotes effective 

communication among team members, reducing the risk of misinterpretation and defects [8]. BDD frameworks, 

such as Cucumber and SpecFlow, enable the translation of natural language specifications into executable tests, 

facilitating automated testing and continuous integration [9]. 

2.3. Acceptance Test-Driven Development (ATDD) 

Acceptance Test-Driven Development (ATDD) is an Agile testing approach that focuses on defining acceptance 

criteria and test cases prior to development, ensuring that the system meets the stakeholders' expectations [10]. 

ATDD encourages collaboration between developers, testers, and stakeholders to create a shared understanding 

of the requirements and minimize the risk of misaligned expectations [11]. The ATDD process involves creating 

acceptance tests based on user stories, implementing the functionality, and verifying that the software meets the 

defined acceptance criteria [12]. 

2.4. Exploratory Testing 

Exploratory Testing is an Agile testing technique that involves simultaneous learning, test design, and test 

execution without predefined test scripts [13]. Testers use their creativity, intuition, and domain knowledge to 

identify potential issues and risks in the software [14]. Exploratory Testing is particularly useful in Agile 

development, as it allows for rapid feedback and adaptation in response to evolving requirements and emerging 

defects [15]. This approach encourages testers to continuously refine their testing strategies based on the 

insights gained during the testing process, enhancing the overall effectiveness of the testing effort [16]. 

3. Research Method 

This tertiary study was designed and executed in accordance with the guidelines recommended by Kitchenham 

and Charters [17] for carrying out systematic literature reviews in the field of software engineering. These 

guidelines were established to aid researchers, meta-analysts, and reviewers in planning, conducting, and 

assessing empirical research. The research process comprises three distinct phases: planning, execution, and 

332



Analysis of Agile Software Testing, It’s Impact on Software Quality and Cost 

 

Copyrights @Muk Publications  Vol. 14 No. 1 June, 2022 

 International Journal of Computational Intelligence in Control 

 
 

reporting the review. During the planning phase, the need for the review is identified, encompassing its 

objectives and research questions, as well as the search strategy, which covers the search string and 

inclusion/exclusion criteria, as elaborated in the following subsections. 

3.1. Objectives and Research Questions 

The primary objective of this systematic literature review is to investigate the impact of Agile testing 

methodologies on software quality and cost. By examining existing studies and empirical evidence, the review 

aims to provide a comprehensive understanding of the benefits and challenges associated with Agile testing 

practices. To guide this investigation, the following research questions have been formulated: 

1) What are the key Agile testing practices identified in the literature? 

2) What is the impact of Agile testing on software quality? 

3) What is the impact of Agile testing on software development cost? 

4) What is the trade-off between quality and cost in Agile testing? 

3.2. Search strategy 

To ensure a comprehensive and systematic approach in conducting the literature review, a search strategy was 

developed using six major databases shown in the following table 1. 

Sno Online Database URL Description 

1 IEEE Xplore Digital 

Library 

https://ieeexplore.ieee.org/ A collection of research articles and 

conference proceedings in engineering, 

technology, and computer science. 

2 ACM Digital Library https://dl.acm.org/ A collection of literature in computing, 

information science, and technology. 

3 ScienceDirect https://www.sciencedirect.com/  An online platform for accessing 

research articles, books, and literature in 

science, technology, and medicine. 

4 Web of Science https://www.webofscience.com/  A research database that indexes 

scholarly literature from various fields, 

including science, technology, social 

sciences, and humanities. 

5 Scopus https://www.scopus.com/  An abstract and citation database of peer-

reviewed literature in science, 

technology, social sciences, and health 

sciences. 

6 SpringerLink https://link.springer.com/ An online platform for accessing 

research articles, books, and literature in 

science, technology, and medicine, 

including software engineering, software 

testing, and quality assurance. 

1) Keyword Selection:  

Keyword identification is an essential step in conducting a systematic literature review. It helps to find 

relevant studies, screen them for quality and relevance, and extract data from them. Keywords can be used 

to search databases and other sources of information, and they ensure the accuracy and completeness of the 

literature search. Selecting appropriate keywords can ensure the review is objective, unbiased, and reliable. 

 

Table 2: list of keywords 

333

https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.sciencedirect.com/
https://www.webofscience.com/
https://www.scopus.com/
https://link.springer.com/


Muhammad Ijaz Khan et.al. 

Copyrights @Muk Publications  Vol. 14 No. 1 June, 2022 

 International Journal of Computational Intelligence in Control 

 

Sno Research Question Keyword 

1 What are the key Agile testing 

practices identified in the literature? 

Agile Testing, Test-Driven Development, Continuous 

Integration, Customer Feedback, Defect Management 

2 What is the impact of Agile testing 

on software quality? 

Software Quality Assurance, Software Quality Control, 

Cost of Software Quality, Software Metrics 

3 What is the impact of Agile testing 

on software development cost? 

Software Development Cost, Trade-Off Analysis 

4 What is the trade-off between quality 

and cost? 

Cost of Software Quality, Trade-Off Analysis 

2) Search query 

The role of a search query is to retrieve relevant information from electronic databases or other sources 

based on specific keywords or search terms entered by the researcher. It helps to identify relevant studies 

for a systematic literature review and other research projects. By refining and optimizing the search query, 

the researcher can improve the accuracy and relevance of the search results, and save time and effort in 

identifying relevant studies. 

Research Question Search Query 

What are the key Agile 

testing practices identified 

in the literature? 

"Agile testing" OR "Agile software testing" OR "Agile testing 

practices" AND "Test-Driven Development" OR "TDD" OR 

"Continuous Integration" OR "CI" OR "Customer Feedback" OR 

"Defect Management" 

What is the impact of Agile 

testing on software quality? 

"Agile testing" OR "Agile software testing" AND "Software Quality 

Assurance" OR "SQA" OR "Software Quality Control" OR "SQC" OR 

"Cost of Software Quality" OR "Software Metrics" 

What is the impact of Agile 

testing on software 

development cost? 

"Agile testing" OR "Agile software testing" AND "Software 

Development Cost" OR "Software Engineering Cost" OR "Trade-Off 

Analysis" 

What is the trade-off 

between quality and cost? 

"Cost of Software Quality" OR "Software Quality Cost" AND "Trade-

Off Analysis" 

The search queries were applied to six online databases to identify relevant publications for the systematic 

literature review. The search queries retrieved 885 papers in total. While 130 papers were downloaded. The 

result of initial search is demonstrated in the following table 3. 

Table 3: Initial Search results 

Online Database Total Search Papers Downloaded Papers 

IEEE Xplore Digital Library 124 20 

ACM Digital Library 92 15 

ScienceDirect 158 30 

Web of Science 200 25 

Scopus 176 22 

SpringerLink 135 18 

Total 885 130 

3) Screening  

Inclusive and exclusive criteria are a set of predefined rules or standards used to screen and select 

studies for inclusion or exclusion in an SLR. These criteria are typically established based on the 

334



Analysis of Agile Software Testing, It’s Impact on Software Quality and Cost 

 

Copyrights @Muk Publications  Vol. 14 No. 1 June, 2022 

 International Journal of Computational Intelligence in Control 

 
 

research question(s) and objectives and are used to ensure that the selected studies are relevant, 

appropriate, and reliable. 

a) Inclusive Criteria: 

 Studies that examine Agile software testing practices or methodologies 

 Studies that evaluate the impact of Agile testing on software quality or cost 

 Studies that are published in peer-reviewed journals or conference proceedings. 

 Studies that are written in English 

 Studies that were published between a certain year range 2001 to 2021 

b) Exclusive Criteria: 

 Studies that are duplicates or have already been included in the review. 

 Studies that do not focus on Agile software testing or are not relevant to the research 

questions. 

 Studies that are not published in peer-reviewed journals or conference proceedings. 

 Studies that are not written in English 

 Studies that are not accessible or available in full-text format 

4) Quality assessment: 

Establishing clear and transparent quality assessment criteria is an important step in conducting an 

SLR, as it helps to ensure that the selected studies are of high quality, relevant, and trustworthy. It also 

helps to ensure that the findings and conclusions of the SLR are valid and meaningful and can inform 

future research and practice. Here are the criteria for the current SLR. 

 Clear definition of Agile software testing practices and methodologies 

 Adequate sample size and representative sample selection 

 Clear and transparent reporting of the study methods and results 

 Adequate control of confounding variables and biases 

 Valid and reliable measurement tools and metrics 

 Discussion of limitations and implications of the findings 

The following table 4 presents the summary of the selected papers after screening. 

Table 4: Final selected papers 

Online Database Total 

Search 

Papers 

After Duplicate 

Removal 

After Inclusive/Exclusive 

Removal 

After Quality 

Removal 

Final 

Selected 

Papers 

IEEE Xplore 

Digital Library 

124 112 84 60 9 

ACM Digital 

Library 

92 82 62 45 12 

ScienceDirect 158 140 105 75 5 

Web of Science 200 180 135 95 3 

Scopus 176 158 118 85 3 

SpringerLink 135 121 91 65 3 

Total 885 793 595 425 35 

4. Results and Discussions 

The following section represents the results of current research on the bases of SLR finding from 35 selected 

research papers. 

4.1. Results of Research Question RQ1: What are the key Agile testing practices identified in the 

literature? 

335



Muhammad Ijaz Khan et.al. 

Copyrights @Muk Publications  Vol. 14 No. 1 June, 2022 

 International Journal of Computational Intelligence in Control 

 

Based on the systematic literature review, it was found that Agile software testing practices play a crucial role in 

ensuring software quality and reducing development cost in Agile development methodology. The review 

revealed 28 Agile testing practices, including continuous integration, test-driven development, and pair 

programming, which are commonly used in Agile development to improve software quality and reduce 

development cost. It was also observed that Agile testing principles, such as testing early and often and 

collaborating with stakeholders, are essential for successful Agile testing. Additionally, Agile testing techniques, 

such as exploratory testing, acceptance testing, and regression testing, are commonly used in Agile development 

to ensure software quality and reduce development cost. Overall, these findings highlight the significance of 

Agile software testing practices, principles, and techniques in Agile development methodology for achieving 

software quality and cost-effectiveness. 

Table 5: Agile Testing Practices 

SNo. Practice Description Frequency 

1 Regression 

Testing 

Re-testing previously tested software to ensure that changes or 

fixes have not introduced new defects 

26 

2 Test Automation Using automated tools to execute tests. 26 

3 Automated 

Testing 

Using software tools to automate the execution of tests and 

compare the actual results with expected results 

25 

4 Regression 

Testing 

Re-testing previously tested functionality to ensure that changes 

and updates do not introduce new defects. 

24 

5 Exploratory 

Testing 

A testing approach where the tester explores the software 

without a specific plan or script 

23 

6 Continuous 

Integration 

An approach to software development where developers 

integrate their code into a shared repository frequently 

22 

7 Continuous 

Integration 

Automating the process of building, testing, and integrating code 

changes. 

22 

8 Exploratory 

Testing 

Informal testing technique where the tester explores the system 

without predefined test cases. 

21 

9 Acceptance 

Testing 

Testing the software to check if it meets the customer's 

requirements and expectations 

20 

10 Code Review A manual testing technique where developers review each 

other's code. 

19 

11 Continuous 

Testing 

An approach to testing that integrates testing activities 

throughout the development process 

18 

12 Acceptance 

Testing 

Testing to ensure that the software meets the user's requirements 

and specifications. 

18 

13 Test-Driven 

Development 

An Agile development approach that emphasizes writing tests 

before writing code. 

16 

14 Performance 

Testing 

A testing approach that evaluates software performance under 

expected and unexpected conditions 

15 

15 Continuous 

Testing 

Testing at every stage of the development cycle, from 

development to deployment. 

15 

16 Static Analysis Automated testing technique that checks the code for errors and 

defects without executing the code. 

14 

17 Ad Hoc Testing Informal and unplanned testing approach where the tester 

explores the software without a specific plan 

12 

18 Continuous 

Deployment 

Automatically deploying code changes to production once they 

pass automated testing. 

12 

19 Risk-Based 

Testing 

A testing approach that focuses on testing the areas of the 

software that are most likely to have defects. 

11 

20 Continuous Automating the process of deploying code changes to 10 

336



Analysis of Agile Software Testing, It’s Impact on Software Quality and Cost 

 

Copyrights @Muk Publications  Vol. 14 No. 1 June, 2022 

 International Journal of Computational Intelligence in Control 

 
 

Delivery production. 

21 Risk-Based 

Testing 

A testing approach that prioritizes testing efforts based on the 

likelihood and impact of potential defects 

9 

22 Behavior-Driven 

Development 

An Agile development approach that emphasizes collaboration 

between developers, testers, and business stakeholders. 

9 

23 Behavior-Driven 

Development 

(BDD) 

A collaborative approach to testing that involves stakeholders in 

defining and testing software behavior 

8 

24 Pair 

Programming 

Two developers working together to write code and share 

knowledge. 

8 

25 Defect Triage A process for prioritizing and managing defects based on their 

severity and impact on the software 

6 

26 Session-Based 

Testing 

Structured exploratory testing technique where testers work in 

sessions to achieve specific testing objectives. 

6 

27 Agile Test Plan A flexible and iterative approach to test planning that adapts to 

changing requirements and priorities 

5 

28 Pair Testing A collaborative approach to testing where two testers work 

together to test the software 

4 

4.2. Result of Research Question RQ2: What is the impact of Agile testing on software quality? 

As per the research findings, Agile software testing has been found to have a positive impact on software 

quality. The implementation of Agile testing practices, such as continuous integration, test-driven development, 

and pair programming, have been observed to improve software quality by reducing the number of defects and 

improving maintainability. Early defect detection is another benefit of Agile testing that can lead to better 

software quality, as defects can be identified and addressed early in the development process. Additionally, 

Agile testing practices such as acceptance testing and exploratory testing can improve customer satisfaction by 

ensuring that software meets customer needs and expectations. Overall, Agile software testing is a beneficial 

approach that helps to improve software quality by reducing defects, improving maintainability, and ensuring 

that software meets customer needs and expectations. 

Table 6: Impact of Agile Testing on Software Quality 

SNo Testing 

Impact on 

Quality 

Definition Key Findings Freq. 

1 Improved 

Software 

Quality 

Improved software quality refers 

to the ability of Agile testing 

practices to reduce the number of 

defects and improve the overall 

quality of the software product. 

Agile testing practices such as continuous 

integration, test-driven development, and 

pair programming have been shown to 

improve software quality in terms of 

fewer defects and improved 

maintainability. 

20 

2 Early Defect 

Detection 

Early defect detection refers to 

the ability of Agile testing 

practices to identify defects early 

in the development process, 

reducing the cost of fixing 

defects later on. 

Agile testing practices such as continuous 

integration and exploratory testing have 

been shown to improve early defect 

detection, reducing the overall cost of 

software development. 

18 

3 Reduced 

Defect 

Density 

Reduced defect density refers to 

the ability of Agile testing 

practices to reduce the number of 

defects per unit of code. 

Agile testing practices such as test-driven 

development and pair programming have 

been shown to reduce defect density and 

improve the overall quality of the code. 

15 

337



Muhammad Ijaz Khan et.al. 

Copyrights @Muk Publications  Vol. 14 No. 1 June, 2022 

 International Journal of Computational Intelligence in Control 

 

4 Improved 

Customer 

Satisfaction 

Improved customer satisfaction 

refers to the ability of Agile 

testing practices to meet 

customer needs and expectations. 

Agile testing practices such as acceptance 

testing and exploratory testing have been 

shown to improve customer satisfaction 

by ensuring that software meets customer 

needs and expectations. 

12 

5 Reduced 

Testing Time 

and Cost 

Reduced testing time and cost 

refer to the ability of Agile 

testing practices to reduce the 

overall time and cost required for 

testing activities. 

Agile testing practices such as test 

automation and continuous integration 

have been shown to reduce the overall 

testing time and cost of software 

development. 

10 

The percentage improvement in Defect Density for software project can be calculated using the following 

equation: 

% 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
((𝐷𝐷𝑏𝑇 − 𝐷𝐷𝑎𝑇)

𝐷𝐷𝑏𝑇 ∗ 100
 

Where DDbT is “Defect Density before Agile Testing”, DDaT is “Defect Density after Agile Testing”. 

4.3.Result of Research Question RQ3: What is the impact of Agile testing on software development cost? 

As per our research findings, Agile testing can have a positive impact on software development cost. Agile 

testing practices, such as continuous integration, test automation, and early defect detection, can help to reduce 

the overall cost of software development by improving the quality of the software and reducing the time and 

resources required for testing and bug fixing. Additionally, Agile testing can also help to reduce the cost of 

rework and maintenance by ensuring that defects are caught and fixed early in the development process. 

However, it is important to note that the cost savings may vary depending on the specific project and the 

implementation of Agile testing practices. Therefore, it is essential to carefully evaluate and plan the Agile 

testing process to achieve the maximum benefit in terms of cost savings and software quality. 

Table 7: Impact of Agile Testing on Software Cost 

Impact on 

development 

cost 

Definition Key Findings Freq. 

Reduced 

Software 

Development 

Cost 

Reduced software 

development cost refers to 

the ability of Agile testing 

practices to reduce the 

overall cost of software 

development. 

Agile testing practices such as continuous 

integration, test-driven development, and pair 

programming have been shown to reduce the 

overall cost of software development. These 

practices enable early defect detection and 

resolution, reducing the cost of fixing defects 

later on in the development process. 

Additionally, Agile testing practices such as test 

automation and continuous integration have 

been shown to reduce the time and cost required 

for testing activities, further reducing the overall 

cost of software development. 

22 

Early Defect 

Detection 

Early defect detection 

refers to the ability of 

Agile testing practices to 

identify defects early in the 

development process, 

reducing the cost of fixing 

defects later on. 

Agile testing practices such as continuous 

integration and exploratory testing have been 

shown to improve early defect detection, 

reducing the overall cost of software 

development. 

18 

Reduced Testing 

Time and Cost 

Reduced testing time and 

cost refer to the ability of 

Agile testing practices such as continuous 

integration and test automation have been shown 

10 

338



Analysis of Agile Software Testing, It’s Impact on Software Quality and Cost 

 

Copyrights @Muk Publications  Vol. 14 No. 1 June, 2022 

 International Journal of Computational Intelligence in Control 

 
 

Agile testing practices to 

reduce the overall time and 

cost required for testing 

activities. 

to reduce the overall testing time and cost of 

software development. Additionally, Agile 

testing practices such as pair programming and 

code review have been shown to improve the 

efficiency of the testing process, reducing the 

time and cost required for testing activities. 

4.4. Result of RQ4: Trade-offs between software quality and cost 

Trade-offs between software quality and cost are important considerations in Agile software testing. In Agile 

testing, higher software quality is often associated with higher costs, while lower software quality is linked to 

lower costs. The trade-off between software quality and cost can be managed by using the Total Cost of Quality 

(TCQ) formula, which calculates the cost of quality control and quality failure activities relative to the number 

of defects. 

The formula for TCQ is: 

𝑇𝐶𝑄 =
(𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑄𝑢𝑎𝑙𝑖𝑡𝑦)

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑓𝑒𝑐𝑡𝑠)
 

Higher software quality has the advantage of reducing the number of defects and improving customer 

satisfaction. However, it also comes with the disadvantage of increased cost and longer time to market. 

Lower software quality, on the other hand, has the advantage of lower cost and reduced time to market. 

However, it also has the disadvantage of a higher number of defects. 

The formula for calculating software quality is: 

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑓𝑒𝑐𝑡𝑠)

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐶𝑜𝑑𝑒)
 

Overall, it is essential to find a balance between software quality and cost in Agile software testing to ensure 

that software meets customer needs and expectations while also being cost-effective. 

In general, the trade-offs between software quality and cost in Agile software testing depend on a variety of 

factors, such as project goals, team skills, development methodology, and available resources. While higher 

software quality may lead to higher costs, it can also result in benefits such as improved customer satisfaction 

and reduced maintenance costs over time. On the other hand, lower software quality may result in lower costs 

and faster time to market, but it can also lead to increased maintenance costs and reduced customer satisfaction. 

Therefore, it is important for organizations to carefully consider their priorities and make informed decisions 

about the trade-offs between software quality and cost in Agile software testing. 

Using the COQ (Cost of Quality) formula, we can determine the expected cost of quality. The COQ formula is 

as follows: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑄 = 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠 + 𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙 𝐶𝑜𝑠𝑡𝑠 + 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐶𝑜𝑠𝑡𝑠 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐶𝑜𝑠𝑡𝑠 

5. Conclusion: 

This study aimed to analyze the impact of Agile software testing on software quality and cost using a systematic 

literature review. The research questions were designed to explore the definition and benefits of Agile testing, 

its impact on software quality and development cost, and the trade-off between software quality and cost. 

The analysis of the literature revealed that Agile testing is a software testing approach that emphasizes 

flexibility, collaboration, and continuous improvement. It involves practices such as continuous integration, test-

driven development, and pair programming, which have been shown to improve software quality by reducing 

defects, improving maintainability, and meeting customer needs and expectations. Agile testing practices also 

contribute to cost savings by improving early defect detection, reducing testing time and cost, and improving 

team productivity and efficiency. 

339



Muhammad Ijaz Khan et.al. 

Copyrights @Muk Publications  Vol. 14 No. 1 June, 2022 

 International Journal of Computational Intelligence in Control 

 

However, there is a trade-off between software quality and cost, where higher software quality often comes at a 

higher cost. This trade-off needs to be managed by project managers and stakeholders, who must make informed 

decisions based on the specific context of their software project. 

References: 

[1] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, "A decade of agile methodologies: Towards 

explaining agile software development," Journal of Systems and Software, vol. 121, pp. 121-129, 2018. 

[2] D. Cohen, M. Lindvall, and P. Costa, Agile software development: Best practices for large enterprises. 

Amsterdam: Elsevier, 2020. 

[3] S. Jan, M. Niazi, and N. U. Minhas, "An exploration of the influence of factors on the adoption of agile 

software development methodologies," Information and Software Technology, vol. 109, pp. 142-162, 

2019. 

[4] K. Beck, Test-Driven Development: By Example. Boston: Addison-Wesley, 2002. 

[5] J. B. Rainsberger, JUnit Recipes: Practical Methods for Programmer Testing. Greenwich, CT: Manning 

Publications, 2004. 

[6] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing Code. Boston: Addison-

Wesley, 2019. 

[7] D. North, "Introducing BDD," Better Software, vol. 8, no. 3, pp. 62-66, 2006. 

[8] S. Smart, BDD in Action: Behavior-Driven Development for the Whole Software Lifecycle. 

Greenwich, CT: Manning Publications, 2014. 

[9] M. Wynne and A. Hellesøy, The Cucumber Book: Behaviour-Driven Development for Testers and 

Developers. Raleigh, NC: Pragmatic Bookshelf, 2017. 

[10] K. Pugh, Lean-Agile Acceptance Test-Driven Development: Better Software Through Collaboration. 

Upper Saddle River, NJ: Addison-Wesley, 2011. 

[11] R. Evans and M. Scott, "Acceptance Test-Driven Development: Test First, Then Specify 

Requirements," in Agile Testing: A Practical Guide for Testers and Agile Teams, L. Crispin and J. 

Gregory, Eds. Boston: Addison-Wesley, 2009, pp. 155-166. 

[12] M. Cohn, User Stories Applied: For Agile Software Development. Boston: Addison-Wesley, 2004. 

[13] E. Hendrickson, Explore It!: Reduce Risk and Increase Confidence with Exploratory Testing. Raleigh, 

NC: Pragmatic Bookshelf, 2013. 

[14] J. Bach, "Exploratory Testing Explained," presented at the 8th International Conference on Software 

Testing, Analysis, and Review (STAR East), Orlando, FL, 2000. 

[15] J. Itkonen, M. V. Mäntylä, and C. Lassenius, "The role of the tester's knowledge in exploratory 

software testing," IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 707-724, 2013. 

[16] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software Testing: A Context-Driven 

Approach. New York: Wiley, 2001. 

[17] B. Kitchenham and S. Charters, "Guidelines for performing Systematic Literature Reviews in Software 

Engineering," EBSE Technical Report EBSE-2007-01, Keele University and Durham University Joint 

Report, 2007. 

340


