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Abstract. In this study, we utilize, a numerical approach to solve a frac-

tional order linear integro - differential equation in the Caputo sense. We

constructed orthogonal polynomials as basis functions by proposing the stan-
dard least squares method (SLSM) and employ the general weight function

of the type w(x) = (c + dxi)n to generate orthogonal polynomials with

c = 1, d = −1, n = 1, and i = 4. This type of problem is reduced to a
system of linear algebraic equations, which is then solved through SciLab

6.1.1 programming language. To demonstrate the method, some numerical

examples have been solved.

1. Introduction

In science, engineering, and other fields, fractional calculus involves the inte-
gration, derivatives, and applications of non-integer order. Fractional calculus
application areas have expanded to include real-world problems such as earth-
quake modelling, fluid dynamic traffic modelling with fractional derivates, fluid
mechanics, assessment of viscoelastic material properties etc. In the literature
many authors have contributed interesting books on fractional derivatives and
fractional integrations [6], [10]]. Fractional Integro-Differential Equations( FIDEs)
do not yield any analytical or precise solutions so, solving them can be difficult
task. As a result, approximate solutions based on numerical methods are ex-
tremely beneficial. Several numerical methods are proposed in the literature to
solve the FIDEs such as, Least Squares Method(LSM) [1], [2], [3], [4] , [12], [13],
[14]], [15], modified Adomian decomposition method [5], Adomian decomposition
method [7], homotopy perturbation method [13], modified homotopy perturbation
method (MHPM)[16], Bernstein collocation method [17], perturbed least square
method(PLSM)[18].
Ajisope et.al.[1], constructed orthogonal polynomials as fundamental functions us-
ing SLSM for solving the Volterra FIDEs. In [2], the authors presented a numeri-
cal solution to linear FIDE using the Least Square approach with shifted Laguerre
collocation method. In this paper numerical solution was found at m = 7, which
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creates complexity in computaton. The authors in [3], developed numerical solu-
tions for linear FIDEs utilising shifted Chebyshev polyniomials of the third order
and the Least Square Method. Using shifted Chebyshev polyniomials of the first
kind and the Least Square Method, the authors in [4] found numerical solutions
for linear FIDEs. The modified Adomian decomposition method was used by
Hamoud et.al.[5] to estimate the solution of Caputo fractional Volterra-Fredholm
integro-differential equations. Mittal [7] used the Adomain decompisition tech-
nique to get good results for FIDE and compared the results to the collocation
method. The authors in [8] utilized Bernstein polynomials to find the numerical
solution of FIDEs and improved the results in [9] by applying Hermite polyno-
mials even at the lower values of n. Osama et.al.[11] used Bernstein piecewise
polynomial to approximate the solution of the FIDEs. The fractional derivatives
are mentioned in the Caputo sense. The authors of [12] proposed constructed
orthogonal polynomials to solve the FIDEs using two numerical methods: SLSM
and MHPM. In [13], the Bernsetin polynomials are used as the basis function to
calculate approximate solutions of FIDEs using two numerical methods: LSM and
HPM. Oyedepo et.al.[14], solved FIDEs using SLSM and PLSM with Bernstein
polynomials as basis function. The Bernstein Least Squares methodology, which
uses the Bernsetin polynomial for solving the FIDEs, is proposed in [15]. MHPM
and Bernstein polynomials are the techniques utilised in [16] to solve FIDEs. For
solving FIDEs, Oyedepo et.al. [17] proposed the Bernstein collocation approach.
To solve Volterra FIDEs [18] proposed PLSM using constructed orthogonal poly-
nomials(OP). The major goal of our research is to use the Least Square approach
to obtain the numerical solution to the FIDEs utilising the designed orthogonal
polynomials as the basis function. We employ the weight function w(x) = 1− x4

to create the orthogonal polynomials, which improves the absolute error of SLSM
when compared to [12] and [13]. The basic form of the problem considered in this
study is as follows:

Dα
∗ v(x) = F (x) +

∫ 1

0

k(x, t)v(t)dt, 0 ≤ x, t ≤ 1 (1.1)

with the following initial conditions:

v(j)(0) = cj , j = 0, 1, ......n− 1, n− 1 < α ≤ n, n ∈ N (1.2)

where Dα
∗ v(x) is the Caputo fractional derivative of v(x), k(x, t), F (x) are known

functions, x and t are real variables that vary between [0, 1], and v(x) is the
unknown function that needs to be identified.

2. Preliminaries

In this section, we present some fundamental fractional calculus definitions and
properties that will aid us in formulating a method for obtaining a numerical
solution to a given problem.
Definition 2.1:[6]The Caputo fractional derivative operator Dα of order α is
defined as:

Dαf(x) =
1

Γ(m− α)

∫ x

0

f (m)(t)

(x− t)α+1−m
dt, α > 0
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where m− 1 < α ≤ m,m ∈ N, x > 0
We have the following properties:

(1) JαJνf = Jα+ν , α, ν > 0, f ∈ Cµ, µ > 0

(2) Jαxβ = Γ(β+1)
Γ(β+1+α)x

β+α, α > 0, β > −1, x > 0

(3) JαDαf(x) = f(x)−
∑m−1

k=0 fk(0+)x
k

k , x > 0,m− 1 < α ≤ m
(4) DαJαf(x) = f(x), x > 0, m− 1 < α ≤ m
(5) Dα C=0, C is a constant

(6) Dαxβ =

{
0, β ∈ N0, β < ⌈α⌉
Γ(β+1)

Γ(β−α+1)x
β−α, β ∈ N0, and β ≥ ⌈α⌉

where ⌈α⌉ denoted the smallest integer greater than or equal to α and N0 =
{0, 1, 2, ....}
Definition 2.2: Orthogonality:
vp(x) and vq(x) are said to be orthogonal they are defined on the interval c ≤ x ≤ d
if:

< vp(x), vq(x) >=

∫ d

c

vp(x)vq(x)dx = 0 (2.1)

In the other hand, there is a weight function w(x) > 0 exists then:

< vp(x), vq(x) >=

∫ d

c

w(x)vp(x)vq(x)dx = 0 (2.2)

Then we mentioned that vp(x) and vq(x) are orthogonal to each other in terms of
the weight function w(x).
In general, we write:

∫ d

c

w(x)vp(x)vq(x)dx =

{
0, p ̸= q∫ d

c
w(x)v2p(x)dx, p = q

(2.3)

3. Construction of Orthogonal Polynomials

We built our orthogonal polynomials in this section by employing the general
weight function of the type: w(x) = (c + dxi)n. This equates to quartic function
that fulfils the orthogonality conditions with in interval [c,d] for c=1,d=-1,n=1 and
i=4 respectively. The orthogonal polynomial vj(x) defined with in range [c,d] with
the leading term xj is given as a result of the Gram-Schmidt orthogonalization
procedure.

vj(x) = xj −
j−1∑
i=0

bj,ivi(x), i = 0, 1, 2, ..., j − 1 and j ≥ 1, (3.1)

where vj(x) is a jth degree rising polynomial and the values of the approxima-
tion function in ’x’ are represented by vi(x). The linear polynomial vj(x) having
following term x is expressed as, starting with v0(x) = 1,

v1(x) = x− b1,0v0(x), (3.2)
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where b1,0 is an unknown constant to determined. Since v0(x) and v1(x) are or-
thogonal. We have,∫ d

c

w(x)v1(x)v0(x)dx = 0 =

∫ d

c

xw(x)v0(x)dx− b1,0

∫ d

c

w(x)v20(x)dx (3.3)

From the above, we have

b1,0 =

∫ d

c
w(x)xv0(x)dx∫ d

c
w(x)v20(x)dx

(3.4)

Substitute (3.4) into (3.2)

v1(x) = x−
∫ d

c
w(x)xv0(x)dx∫ d

c
w(x)v20(x)dx

v0(x), where v0(x) = 1 (3.5)

As a result of this, the procedure can be generalised and expressed as,

vj(x) = xj + bj,0v0(x) + bj,1v1(x) + bj,2v2(x) + ...+ bj,j−1vj−1(x) (3.6)

Where bj,0 is chosen so that vj(x) is orthogonal to v0(x), v1(x), v2(x), ...vj−1(x).
These conditions defer,

bj,i =

∫ d

c
w(x)xjv0(x)dx∫ d

c
w(x)v20(x)dx

(3.7)

We use the weight function in the form,

w(x) = 1− x4, v0(x) = 1

We have n = 1, j = 1 and v0(x) = 1, we can write (3.1) as,
v1(x) = x− b1,0v0(x) where b1,0 = 0. Thus,

v1(x) = x, v2(x) = x2 − 5

21
, v3(x) = x3 (3.8)

Define shifted orthogonal polynomia v∗i (x) interms of the orthogonal polynomial
vi(x) valid in [0, 1] by the following relation:

v∗i (x) = vi(2x− 1) (3.9)

Therefore, we get

v∗0(x) = 1, v∗1(x) = 2x−1, v∗2(x) = 4x2−4x+
16

21
, v∗3(x) = 8x3−12x2+6x−1 (3.10)

The approach used in this study assumes an approximate solution using an or-
thogonal polynomial as the basis function, as follows:

v(x) ∼= vn(x) =

n∑
i=0

biv
∗
i (x) (3.11)

where bi, i=0,1,2,...are constants, and v∗i (x) signifies the orthogonal polynomial of
degree N.
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4. Demonstration of the Proposed method

The least squares method with construction of orthogonal polynomials is ap-
plied to find the approximate solution of FIDE of the type(1.1) and (1.2).
Operating Iα on both sides of (1.1), we obtain

IαDαv(x) = IαF (x) + Iα
[∫ 1

0

k(x, t)v(t)dt

]
(4.1)

v(x) =

m−1∑
k=0

vk(0+)
xk

k!
+ IαF (x) + Iα

[∫ 1

0

k(x, t)v(t)dt

]
(4.2)

To determine the approximate solution of (1.1), we use the orthogonal polynomial
basis on [c, d] as

v(x) ∼= vn(x) =

n∑
i=0

biv
∗
i (x) (4.3)

where bi(i = 0, 1, ......n) are unknown constants to be determined. Substituting
(4.3) into (4.2)

n∑
i=0

biv
∗
i (x) =

m−1∑
k=0

vk(0+)
xk

k!
+ IαF (x) + Iα

[∫ 1

0

k(x, t)

n∑
i=0

biv
∗
i (t)dt

]
As a result, the residual equation is as follows:

R(b0, b1, ...........bn) =

n∑
i=0

biv
∗
i (x)−

{
m−1∑
k=0

vk(0+)
xk

k!
+ Iα

[
F (x) +

∫ 1

0

k(x, t)

n∑
i=0

biv
∗
i (t)dt

]}
(4.4)

Let

S(b0, b1, ...bn) =

∫ 1

0

[R(b0, b1, ...bn)]
2
w(x)dx (4.5)

where w(x) is the positive weight function defined on [c, d]. For the sake of sim-
plicity, we’ll choose w(x) = 1. Thus,

S(b0, b1, ........bn) =∫ 1

0

[
n∑

i=0

biv
∗
i (x)− {

m−1∑
k=0

vk(0+)
xk

k!
+ Iα

[
F (x) +

∫ 1

0

k(x, t)

n∑
i=0

biv
∗
i (t)dt

]
}

]2
dx

(4.6)

We obtain the value of bi by finding the minimum value of S as :

∂S

∂bi
= 0, i = 0, 1, .......n (4.7)
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Applying (4.7) on (4.6) we obtain,

∫ 1

0

[
n∑

i=0

biv
∗
i (x)− {

m−1∑
k=0

vk(0+)
xk

k!
+ Iα

[
F (x) +

∫ 1

0

k(x, t)

n∑
i=0

biv
∗
i (t)dt

]
}

]
dx∗

∫ 1

0

{v∗i (x)− Iα(

∫ 1

0

k(x, t)v∗i (t)dt)}dx (4.8)

By simplifying the above equation we can obtain a (n+ 1) algebraic system of
equations in (n+ 1) unknown constants b′is.
This system can be formed by using matrices form as follows:

A =


∫ 1

0
R(x, b0)h0dx

∫ 1

0
R(x, b1)h0dx · · · · · ·

∫ 1

0
R(x, bn)h0dx∫ 1

0
R(x, b0)h1dx

∫ 1

0
R(x, b1)h1dx · · · · · ·

∫ 1

0
R(x, bn)h1dx

...
...

. . .
...∫ 1

0
R(x, b0)hndx

∫ 1

0
R(x, b1)hndx · · · · · ·

∫ 1

0
R(x, bn)hndx



B =



∫ 1

0

[
IαF (x) +

∑m−1
k=0 vk(0+)x

k

k!

]
h0dx∫ 1

0

[
IαF (x) +

∑m−1
k=0 vk(0+)x

k

k!

]
h1dx

...∫ 1

0

[
IαF (x) +

∑m−1
k=0 vk(0+)x

k

k!

]
hndx


where

hi = v∗i (x)− Iα
[∫ 1

0

k(x, t)v∗i (t)dt

]
, i = 0, 1, ...n

R(x, bi) =

n∑
i=0

biv
∗
i (x)− Iα

[∫ 1

0

k(x, t)

(
n∑

i=0

biv
∗
i (t)

)
dt

]
, i = 0, 1, ...n

By solving above system, we obtain the unknown co-efficients and the approximate
solution of (1.1).
In this work we defined absolute error has

Absolute error = |v(x)− vm(x)|, 0 ≤ x ≤ 1 (4.9)

where v(x) is the exact solution and vm(x) is the approximate solution.

5. Numerical Examples

To demonstrate the Proposed method, we choose two illustrations. All of the
results were generated using SciLab 6.1.1.

Example 5.1. Consider the fractional integro-differential equation[12]

D
1
2 v(x) =

8
3x

3
2 − 2x

1
2

√
π

+
x

12
+

∫ 1

0

xtv(t)dt, 0 ≤ x ≤ 1, v(0) = 0 (5.1)
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with exact solution v(x) = x2 − x.
By taking the fractional integration on both sides of the equation (5.1), we get

v(x) =

m−1∑
k=0

vk(0+)
xk

k!
+ Iα

{
8
3x

3
2 − 2x

1
2

√
π

+
x

12
+

∫ 1

0

xtv(t)dt

}
(5.2)

To determine the approximate solution of (5.1) we set

v(x) =

3∑
i=0

biv
∗
i (x) (5.3)

After substituting in equation (5.2)

3∑
i=0

biv
∗
i (x) = Iα

{
8
3x

3
2 − 2x

1
2

√
π

+
x

12
+

∫ 1

0

xt

[
3∑

i=0

aiv
∗
i (t)

]
dt

}

After simplifying the above equation we get,

b0

[
1− x1.5

2Γ(2.5)

]
+ b1

[
2x− 1− x1.5

6Γ(2.5)

]
+ b2

[
4x2 − 4x+

16

21
− x1.5

21Γ(2.5)

]
+

b3

[
8x3 − 12x2 + 6x− 1− x1.5

10Γ(2.5)

]
− 8Γ(2.5)x2

6
√
π

+
2Γ(1.5)x√

π
− x1.5

12Γ(2.5)
= 0

Also substituting x = 0.1, 0.2, 0.3 and 0.4 in above equation, we get a linear system
of equations:

(0.7344667)b0 + (−0.1028397)b1 + (0.065173)b2 + (−0.0614433)b3 + 0.1236052 = 0

(−0.1028397)b0 + (0.2942772)b1 + (−0.0113863)b2 + (0.1766532)b3 − 0.0167419 = 0

(0.065173)b0 + (−0.0113863)b1 + (0.094641)b2 + (−0.006807)b3 − 0.0112463 = 0

(−0.0614433)b0 + (0.1766532)b1 + (−0.006807)b2 + (0.1289011)b3 − 0.0100017 = 0

Solving the above equations we get:
b0 = −0.1904762, b1 = 0.0000002, b2 = 0.2499995, and b3 = −0.0000005
The values are then substituted into equation(5.3)we get the approximate solution
of(5.1).
Approximate solution is,

v(x) = −0.1904762 + 0.0000002(2x− 1) + 0.2499995(4x2 − 4x+ 16/21)

− 0.0000005(8x3 − 12x2 + 6x− 1)

Following Table 1 represent comparison between the approximate solution when
α = 1/2 with the exact solution v(x) = x2 − x.
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x
exact so-
lution

Approximate
solution of
OP (n = 3)

Approximate
solution [12]

Absolute
error of OP

Absolute er-
ror [12]

0.1 -0.09 -0.0900001 -0.08998135725 0.0000001 0.000018642
0.2 -0.16 -0.1600001 -0.15996634990 0.0000001 0.00003365
0.3 -0.21 -0.21 -0.20995511270 0 0.000044887
0.4 -0.24 -0.2399999 -0.2399476690 0.0000001 0.000052331
0.5 -0.25 -0.2499999 -0.24994404190 0.0000001 0.000055958
0.6 -0.24 -0.2399999 -0.23994425520 0.0000001 0.000055744
0.7 -0.21 -0.2099999 -0.20994833220 0.0000001 0.000051667
0.8 -0.16 -0.1600001 -0.15995629600 0.0000001 0.000043704
0.9 -0.09 -0.0900003 -0.08996816998 0.0000003 0.00003183

Table 1. Example 1 numerical results

Figure 1. Comparison between approximate and exact solution
of Example 1

Example 5.2. Consider the fractional integro-differential equation[12]

D
5
6 v(x) = − 3

91

x1/6Γ(5/6)(−91 + 216x2)

π
+ (5− 2e)x+

∫ 1

0

xetv(t)dt

subject to v(0) = 0, with exact solution v(x) = x− x3.
Approximate solution is,

v(x) = 0.2857142+0.1249994(2x−1)−0.3749996(4x2−4x+16/21)−0.1249991(8x3−12x2+6x−1)
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Following Table 2 represent comparison between the approximate solution with
the exact solution v = x− x3.

x
exact so-
lution

Approximate
solution of
OP (n = 3)

Approximate so-
lution [12]

Absolute
error of OP

Absolute er-
ror [12]

0.1 0.099 0.0990001 0.09895741497000 0.0000001 0.0000425
0.2 0.192 0.1920001 0.19191319860000 0.0000001 0.000086801
0.3 0.273 0.2730001 0.2728702740000 0.0000001 0.00012972
0.4 0.336 0.3359999 0.33583118160000 0.0000001 0.000168818
0.5 0.375 0.3749998 0.37479846150000 0.0000002 0.000201538
0.6 0.384 0.0.3839997 0.38377465420000 0.0000003 0.000225345
0.7 0.357 0.3569997 0.35676229990000 0.0000003 0.0002377
0.8 0.288 0.2879998 0.28776393890000 0.0000002 0.000236061
0.9 0.171 0.1710001 0.17078211170000 0.0000001 0.000217888

Table 2. Example 2 numerical results

Figure 2. Comparison between approximate and exact solution
of Example 2

6. Conclusion

In this paper, we use the constructed orthogonal polynomials to deduce the
numerical solution to FIDE’s using the least square approach. The usage of SLSM
is useful since, it requires less processing work and is an effective method for solving
such equations. The numerical findings achieved are superior to those found in [12].
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The numerical solutions and the exact solutions are much better in accordance.
To demonstrate our method is better in solving FIDE’s, comparisons between
approximate and exact solutions are shown in Table 1 and Table 2 with graphical
formats. We used SciLab 6.1.1 for programming to demonstrate numerical results.

References

1. Ajisope, M. O, A.Y.Akinyele, C.Y.Ishola, A.A.Victor, M.L.Olaosebikan and T.Latunde :

Application of Least Squares Method for Solving Volterra Fractional Integro-Differential

Equations Based on Constructed Orthogonal Polynomials. The Pacific Journal of Science
and Technology , 22(2), 49-56, (2021).

2. Amr M.S.Mahdy, Rana T.Shwayyea: Numerical solution of fractional integro-differential

equations by least squares method and shifted Laguerre polynomials pseudo-spectral method,
Internatinal Journal of Scientific and Engineering Research 7(4), 1589-1596, (2016).

3. A. M.S.Mahdy, E.M.H. Mohamed, and G. M. A. Marai: Numerical solution of fractional
integro-differential equations by least squares method and shifted Chebyshev polynomials of

the third kind method. Theoretical Mathematics and Applications, 6(4), 87-101, (2016).

4. D.Sh.Mohammed: Numerical solution of Fractional Integro-differential equations by least
squares method and shifted chebyshev polynomial, Mathematical Problems in Engineer-

ing2014, (2014).

5. Hamoud, Ahmed Abdullah, Kirtiwant Ghadle, and Shakir Atshan: The approximate solu-
tions of fractional integro-differential equations by using modified Adomian decomposition

method. Khayyam Journal of Mathematics 5 (1), 21-39, (2019).

6. Igor Podlubny: Fractional differential equations, Academic Press, San Diego, Calif, USA
198, (1999).

7. Mittal, R. C., and Ruchi Nigam: Solution of fractional integro-differential equations by

Adomian decomposition method. Int. J. Appl. Math. Mech 4 (2) , 87-94, (2008).
8. Nanware J A, Parameshwari M Goud, T.L.Holambe: Solution of Fractional Integro-

differential equations by Bernstein Polynomials, Malaya. Journal of Matematik, Open Ac-
cess, 1, pp.581-586, (2020).

9. Nanware, J. A., Parameshwari M. Goud, and T. L. Holambe: Numerical solution of fractional

integro-differential equations using Hermite polynomials. J. Math. Comput. Sci. 11 (6), 8448-
8457, (2021).

10. Oldham. K and Spanier.J: The fractional calculus theory and applications of differentiation

and integration to arbitrary order. Elsevier,(1974).
11. Osama H. Mohammed and Sarmad A. Altaie: Approximate solution of Fractional Integro-

Differential equations by using Bernstein polynomials, Engineering and Technology Journal

30(8), 1362-1373, (2012).
12. Oyedepo T,and Taiwo O. A : Numerical Studies for Solving Linear Fractional Integro-

differential Equations Based on Constructed Orthogonal Polynomials, ATBU Journal of
Science, Technology and Education, 7(1), 1-13,(2019).

13. T Oyedepo ,O.A.Taiwo,A.F. Adebisi,C.Y. Ishola, and O.E.Faniyi: Least Squares Method
and Homotopy Perturbation Method for Solving Fractional Integro-Differential Equations.
Pacific Journal of Science and Technology, 20(1), 86-95,(2019).

14. Oyedepo T,Taiwo OA, Abubakar JU, and Ogunwobi ZO : Numerical studies for solving frac-

tional integro-differential equations by using least squares method and bernstein polynomials.
Fluid Mechanics Open Access 3 (3), 1-7, (2016).

15. Oyedepo T,Akinduko O.B, Faniyi O.E, and Okperhie E.P: Bernstein Least-Squares Tech-
nique for solving fractional Integro-Differential Equations. Science World Journal 14(3),
56-60, (2019).

16. Oyedepo T,A.F.Adebisi, M.T.Raji, M.O.Ajisope, J.A Adedeji, J.O.Lawal, and

O.A.Uwaheren: Bernstein Modified Homotopy Perturbation Method for the Solution of
Volterra Fractional Integro-Differential Equations. The Pacific Journal of Science and Tech-

nology, 22(1), 30-36, (2021).

204



APPROXIMATE SOLUTION OF FIDES USING LSM BASED ON CONSTRUCTED OP 11

17. Oyedepo, T., Ishola, C. Y., Aminu, T. F., & Akpan, C. E. Bernstein Collocation Method for

the Solution of Fractional Integro-differential Equations. ATBU Journal of Science, Tech-

nology and Education, 8(1), 65-72, (2020).
18. Oyedepo, T., Adebisi, A. F., Tayo, R. M., Adedeji, J. A., Ayinde, M. A., & Peter, O. J.

Perturbed least squares technique for solving volterra fractional integro-differential equations

based on constructed orthogonal polynomials. J. Math. Comput. Sci., 11(1), 203-218, (2020).
19. Richard Herrmann: Fractional Calculus:An Introduction for Physicists, World Scientific,

Singapore(2014).

1 Department of PG Studies and Research in Mathematics,, Shrikrishna Mahavidyalaya,
Gunjoti, Dist.Osmanabad - 413 606, India

Email address: jag−skmg91@rediffmail.com

2 Department of Mathematics,, Pratishthan Mahavidyalaya, Paithan, Dist:Aurangabad-
India

Email address: pmgoud21@gmail.com

3 Department of Mathematics,, Late Shankarrao Gutte Arts, Commerce and Sci-

ence College,, Dharmapuri,Tq.Parli (V), Dist.Beed (M.S), India

Email address: holambetarachand@gmail.com

205


	1. Introduction
	2. Preliminaries
	3. Construction of Orthogonal Polynomials
	4. Demonstration of the Proposed method
	5. Numerical Examples
	6. Conclusion
	References

