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SOME RESULTS ON ¢y—-HILFER MIXED FRACTIONAL
INTEGRODIFFERENTIAL EQUATIONS

M. A. GANDHI, V. V. KHARAT*, AND M. T. GOPHANE

ABSTRACT. In this paper, we investigate the existence and uniqueness of
solutions for 1—Hilfer mixed fractional integrodifferential equation. Also,
we study the Ulam-Hyers and Ulam-Hyers-Rassias stability via successive
approximation method. Further, we investigate the dependence of solutions
on the initial conditions and uniqueness via e—approximated solution.

1. Introduction

In the present paper, we study the global existence and uniqueness of solu-
tion, and Ulam-Hyers stability for the )—Hilfer mixed fractional integrodifferential
equations (MFIDE) of the following type

t b
HDZ“f"bw(t) =f (t,w(t),/ K(t,s)w(s)ds,/ H(t, s)w(s)ds> , (1.1)
NP w(a) = w,, (1.2)

where t € [a,b], 0 < a <1, 0< g <1, ID&FY(.) is the (left-sided) v —Hilfer
fractional derivative of order a and type 3, Ii: 7Y is (left-sided) fractional integral
of order 1 — p with respect to another function ¢ in Riemann-Liouville sense and
f:a,b] x R X R x R — R is a given function that will be specified later.

Recently, several researchers have studied the results such as existence, unique-
ness, stabilities and other properties of solutions for the fractional differential and
fractional integrodifferential equations by different techniques, see [1, 2, 3, 5, 6, 7,
8,9, 10, 12, 13, 14, 17, 18, 19, 20, 21] and the detailed literature for fractional
calculus can be found in [4, 11, 15, 16].

The paper is organized as follows: some basic definitions and results concern-
ing ¢¥—Hilfer fractional derivative are presented in section 2. Section 3 deals with
global existence and uniqueness of solutions of the problem (1.1)-(1.2). In sec-
tion 4, we discuss Ulam-Hyers (HU) and Ulam-Hyers-Rassias (HUR) stability of
y—Hilfer MFIDE (1.1) via successive approximations. Section 5 concerned with
e—approximate solution of the ¥—Hilfer MFIDE (1.1).
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2. Preliminaries

Here we present some definitions, notations and results from ([11, 18, 19]) which
are used throughout this paper.

Let 0 <a<b<oo, A=lab CRy=1[00),0<p<1andy e C'AR)
be an increasing function such that ¢'(x) # 0,Vax € A. The weighted spaces

Ci—pw(AR), C7_ (A, R) and, CT' Bpw(A, R) of functions are defined as follows:
() Cr_ps (A, R) = b+ (@8] = R : (9(2) — (@) ~*h(t) € C(A, R)}, with
the norm ||h||¢,_ by = MAXpeA [((t) — (a))t=Ph(t)],
(i) Cf_ (A R) = {h € Crpu(A R) : DELh(E) € Crpul(A, )},
(iii) €7 iw(AaR) ={h e Cipy(AR) M fofh(t) € Crpw(A R)}.

Definition 2.1. ([11], [15]) The y—Riemann fractional integral of order o > 0 of
the function h is given by

I%Yh(t) / L5 (t,n)h(n)dn,

where L3 (t,n) = ' (n) (¥ (t) — w(n))
Lemma 2.2. ([11]) Let & >0, >0 and § > 0. Then

(i) IS I72n(t) = I35 n()

(i) If h(t) = (¥(t) = (0)°~Y, then TS5V R(t) = Fiatlsy ((t) — () +o—L,

We need following results [?, ?] which are useful in the subsequent analysis of
the paper.
Lemma 2.3. ([19]) Ifa > 0 and 0 < p < 1, then I;ﬁw is bounded from C. (A, R)
to Cpy(A,R). Also, if p < a, then I;ﬁw is bounded from C.(A, R) to C(A, R).
Definition 2.4. ([18]) The ¢ —Hilfer fractional derivative of a function h of order
0 < a<1and type 0 < B <1, is defined by
" pedn(r) = [P (w’l( 53 d > [a-Aa=e)vy

Lemma 2.5. ([18]) If h € CY(A,R), 0 <a <1 and 0 < B <1, then

() I D h(e) = ht) = Q4 (1, ) 1277 ha)

where Qﬁ(t, a) = Lo Flé);(;?))p 1

(ii) ZDXPI%Yh(t) = h(t).
Definition 2.6. ([11]) Let « > 0, § > 0. The one parameter Mittag-Leffler
function is defined as Eo(z) = Y 1o F(#kﬂ)’ and the two parameter Mittag-

Zk

Leffler function is defined as Eqo 5(2) = 32770 raray-

3. Existence and Uniqueness results

In this section, we will study the existence and uniqueness results of the Cauchy-
type problem (1.1)-(1.2) by applying the following modified version of contraction
principle.
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Lemma 3.1. [16] Let x be a Banach space and let T be an operator which maps
the elements of x into itself for which T" is a contraction, where r is a positive
integer then T has a unique fixed point.

Theorem 3.2. Let0<a<1, 0<A<1landp=a+B—apb. Let f: (a,b] x R X
R — R be a function such that f (t,w(t),fat K(t,s)w(s)d&f: H(t,s)w(s)ds) €
Ci—pp(A,R) for any w € Ci_ (A, R), and let f satisfies the Lipschitz condition

|f(t,wi, 21, 21) — f(t,wa, 22, 22)| < L[ |wy — wa| + |21 — 22| + |21 — 22| |, (3.1)

for allt € (a,b] and for all wy,ws, 21,29, 21,22 € R, where L > 0 is Lipschitz con-
stant. Then the Cauchy problem (1.1)-(1.2) has unique solution in Ci_ (A, R).

Proof. The equivalent fractional integral to the initial value problem (1.1)-(1.2) is
given by [18], for t € (a, b],

t b
w(t) = Qi(t,a)wa + ];";’Pf (t,w(t%/ K(t,s)w(s)ds,/ H(t,s)w(s)ds)
— 0t a)wa + ﬁ / £t )
n b
x f <n,w(n),/ K(n,a)w(o)do,/ H(n,o)w(a)do) dn. (3.2)

Our aim is to prove that the fractional integral (3.2) has a solution in the weighted
space

Ci—pp(A,R).

Consider the operator T defined on C1— .4 (A, R) by

(Tw)(t) = 9, (t, a)wa + ﬁ / 3t )
n b
x f (mw(n),/ K(n,a)w(a)da,/ H(n,o)w(o)da) dn. (3.3)

By Lemma 2.3, it follows that 1% <t, w(t), f; K(t,s)w(s)ds, fab H(t, s)w(s)ds) €
Ci—pw (A, R). Clearly, waQZ(t, a) € C1—p.(A, R). Therefore, from (3.3), we have
Tw € Ci—py(A, R) for any w € C1—_ (A, R). This proves T maps Ci—,. (A, R)
into itself. Note that the fractional integral equation (3.3) can be written as fixed
point operator equation w = Tw, w € Ci_ (A, R).

We prove that the operator T has fixed point which will act as a

solution for the problem (1.1)-(1.2). For any ¢ € (a,b], consider the space Ci. =
Ci—pp([a,t], R) with the norm defined by,

lwlle,, = Jnax |(¥(w) = (a)) " w(w)|.
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Using mathematical induction for any wq,ws € Ci.y and t € (a,b], we prove that
for j € N,

(L(1 4 (b= a)ky + (b—a)hy) (V(t) — ¥(a))*)
L(ja+p)
X [lwr —wzllc,., (3.4)

IT7wi = TPws ¢, < T(p)

where kp = sup{|K(t,s)| : a < t,s < b} and hy = sup{|H (¢, )| :a < t,s <b}.
Let any wy,ws € Ctp. Then from the definition of operator T given in (3.3) and
using Lipschitz condition on f, we have

[Twy — Twsllc,,,

L(1+ (b—a)ky + (b— a)hs)(th(t) — ¢(a))'~*

o) w1 —wallc,,,

/ L3 (t,n) (h(n) —p(a))’ dn

+ (b= a)ke + (b — a)hy) (¥ (t) — ¥(a))*T'(p)
I(a+ p)

w1 —w2|lc,,,

Thus the inequality (3.4) holds for j = 1. Let us suppose that the inequality (3.4)
holds for j =r € N, i.e. suppose

(LA + (b—a)ky + (b—a)hy) (¥ (t) — ¥(a)*)"
I(ra+ p)
X flwr —wallc,,, (3.5)

|T"wy — T welc,,, < T(p)

holds. Next we prove that (3.4) holds for j = 7+ 1. Let wy,we € Cy,y, and denote
wi = T"w; and wi = T ws. Then using the definition of operator 7" and Lipschitz
condition on f, we get

1T wy = T wslle,, = ITw] = Twi|lc,,
<LA+(b—a)ky+ (b—a)hy) m[ax] |(¥(w) —(a)'—*
wela,t

/£¢wn|wl ) = w(ldn

+(b—a)ky + (b—a)hy)(¥(t) —1(a) ="
I(a)

></ L3 (t,n) (W(n) — (@)’ wi —w3lc,,dn

From (3.5), we have

(LA + (b—a)ky + (b— a)hy)((t) — ¥(a))®)"
L(ra+p)

||U)T - w;HCt;w S F(p)

X [lwr —wallc,,, -
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Therefore,
1T w0y — T s,

L1+ (b—a)ky + (b— a)hp)(¥(t) — ¢(a))' =7 /t ;
a))®)"

< o) 3(tm) () — (a)”

() L (= @by (b= )hy) (W) —
T(ra + )

o LA+ (—a)ky+ (b= a)hy)(W(t) = ¥(a))*)™+'T(p)
= T((r+ Da+p)

Thus we have

1T wy — T gy,
_ (LO+ (b= a)ky + (b— a)hy) (1) —6(a))*) T (p)
- L((r+ Da+p)

Therefore, by principle of mathematical induction the inequality (3.4) holds for all

j € N and for every ¢ in A. As a consequence we find on the fundamental interval
A

w1 —ws|c,,,dn

w1 — wallc,,,

w1 —w2lc,,, -

b
|1 T wy — T9ws Hcl—p;w(A’R)

<T(p) (L(1+ (b—a)ky + (b — a)hy) (¥(t) — ¥(a))®)

J
T(ja + p) lwr = walley .y a.m)-

(3.6)

By definition of two parameter Mittag-Leffler function, we have
Eop(L(L+ (b—a)ky + (b — a)hy)((b) — ¥ (a))®)

_ i (L4 (b = a)ky + (b= a)hy) (¥ (b) — 9(a))*)
; L(ja+ p) '

j=0

(L1 + (b —a)ky + (b — a)hs) (1 (b) — (a))*)’
I'(ja+p)
convergent series of real numbers. Therefore,

L (L (b= )k + (b= )hy) (£(8) — $(a)")

Note that is the j** term of the

g0 L(jo+p) -0
Thus we can choose 7 € N such that
() L0+ 0= byt (0 — ) (6) (@)Y _ |

L(ja+p)

so that T7 is a contraction. Therefore, by Lemma 3.1, T has a unique fixed point
w* in C1_ (A, R), which is a unique solution of the Cauchy-type problem (1.1)-
(1.2). O

Remark 3.3. The existence result proved above with no restriction on the interval
A = [a,b], and hence solution w* of (1.1)-(1.2) exists for any a,b(0 < a < b < 00).
Thus the Theorem 3.2 guarantees global unique solution in Ci_ .4 (A, R).
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4. Ulam-Hyers stability

To discuss HU and HUR stability of (1.1), we adopt the approach of [14, 21].
Fort € A, € > 0 and continuous function ¢ : A — [0, 00), we consider the following
inequalities :

t b
HDgf;ww*(t) —f (t,w*(t),/ K(t,s)y*(s)ds,/ H(t,s)w*(s)ds) <e (4.1)

t b
HDg‘f"ww*(t)—f<t,w*(t), / K(t, s)y* (s)ds, / H(t,s)w*(s)ds) < o(t),

¢ b
D)~ f (t,w*u), [ s @as, [, s)w*(s)ds> < colt)
(4.3)
Definition 4.1. The problem (1.1) has HU stability if there exists a real number
Cy > 0 such that for each € > 0 and for each solution y* € C1_ (A, R) of the
inequation (4.1) there exists a solution y € Ci_,.4(A, R) of (1.1) with
ly* —ylle,_,..ar < Cre.

Definition 4.2. The problem (1.1) has generalized HU stability if there exists a
function Cy € ([0,00),[0,00)) with C(0) = 0 such that for each solution w* €
Ci—pp(A, R) of the inequation (4.1) there exists a solution w € C1_ (A, R) of
(1.1) with ||w* — w||cl—p‘,’d)(A7R) < Cf(e).

Definition 4.3. The problem (1.1) has HUR stability with respect to a function ¢
if there exists a real number Cy 4 > 0 such that for each solution y* € Ci_,.4,(A, R)
of the inequation (4.3) there exists a solution w € C1_ (A, R) of (1.1) with

(W) = (a)) = (w* (1) — w(t))] < Croed(t), t € (A, R).
Definition 4.4. The problem (1.1) has generalized HUR stability with respect

to a function ¢ if there exists a real number Cy 4 > 0 such that for each solution
w* € C1—p.(A, R) of the inequation (4.2) there exists a solution y € Ci—,.4 (A, R)
of (1.1) with

() = ¥(a) =7 (w* (1) — w(t))| < Creo(t), t €A,

In the next theorem we will make use of the successive approximation method
to prove that the ¢—Hilfer FDE (1.1) is HU stable.

Theorem 4.5. Let f: (a,b] x R X R — R be a function such that
f (Lw(t), f; K(t,s)w(s)ds,fab H(Ls)w(s)ds) € Ci_pu(AR),
for any w € C1_ (A, R), and that satisfies the Lipschitz condition

|f(t,wi, 21, 21) — f(t,we, 22, 22)| < L[ |wy — wa| + |21 — 22| + |21 — 22| ],
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where t € (a,b], wy,ws, 21, 22,%1,22 € R and L > 0 is Lipschitz constant.
For every e > 0, if w* € C1_,,4 (A, R) satisfies

t b
H Dasite (1) — f(t,w*(t), / K(t, 5)y*(s)ds, / H(t,s)w*(s)ds)

then there exists a solution w of equation (1.1) in C1_ (A, R) with
Ii:p"ww*(a) = Ii:p;ww(a) such that fort € A,

<e teEA,

lw* = wlie,uar)
< |:(Ea(L(1 + (b —a)ky + (b — a)hp) (¥ (b) — ¥(a))®) — 1)
- L1+ (b—a)ky + (b—a)hy)

Proof. Fix any € > 0, let w* € C1_,.4(A, R) satisfies

(W(b) - ¢<a>>1ﬂ .

‘HDgf;ww*(t) (t w* / K(t,s)w*(s)ds, .a®H(t, s)w* (s )ds)’ <e teA.
(4.4)

Then there exists a function o+« € Ci—p.(A, R) (depending on w*) such that
low=(t)] <€, t €A and

HDgf;ww*(t) =f (t,w*(t),/tK(t,s s)ds / H(t,s)w ) + o ().

(4.5)
If w*(t) satisfies (4.5) then it satisfies equivalent fractional integral equation
1- 1
= Q) (t,a)],"w™(a) + F—/ L (t,n)
n
% f (0 )7/ K, 0)w dJ/Hm o)do | dn
a
+L/ L (t,n)ow(n)d (4.6)
F(a) " P > 1) 0w+ \1])at). .
Define
wolt) = w'(1), L€ A, (47)
and consider the sequence {wy, }52; € C1_,.4(A, R) defined by
wn(t) = Ot @) 177w (a)
I "
i L esens (o, [T Koo o)
b
/ K(n,a)wn_l(a)do) dn. (4.8)
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Using mathematical induction firstly we prove that for every t € A, j € N and
wj € C1pla, t] = Ciy

|wj —wj-1llc.,

< €

T L1+ (b—a)ky + (b—a)hy)

L L+ (b a)k +F((I;O—Hc:)iz)b)(w(t) =W iy~ pa)r. (49)

By definition of successive approximations and using (4.6) we have

w1 = wollc,,,

1—p 1 v e}
= max |(0() — 6(0) e [ st
< € Joax, [(ww) - ”F(a / Ly (w,n dn}
< € (L(L+ (b—a)ky + (b — a)hy) (¥ (t) — ¥(a))®)
T L+ (b—a)ky+ (b—a)hy) Ia+1)
X (W(t) —p(a)' 7.
Therefore,

||w1 - wOHCt;w S L(

1+ (b — a)kb + (b — a)hb)
(L1 + (b—a)ky + (b— a)hy)(¥(t) — ¢(a))®) 1-p
L ((6) — ()",

which proves the inequality (4.9) for j = 1. Let us suppose that the inequality

(4.9) holds for j = r € N, we prove it for j = r + 1. By definition of successive
approximations and Lipschitz condition on f, we obtain

lwr1 = wrlle,, = max |(y

ety (W) — ¥(a) P {wr 41 (w) — we(w)}]

< L1+ (b—a)ky + (b— a)hy) max_ [(1h(w) — ¥(a))'~”

we€la,t]
1 / £y mlur (1) = w1 ()]d
F(Oé w w,n wr Wr—1(N)|an

< L0+ (b= a)ky + (b= a)hy) ((t) — 9(a))' "
- I(a)

< [ et - @) e, dn
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Using the inequality (4.9) for j = r, we have

lwrs1 = wrllcy,

< € (L(1+ (b — a)ky + (b — a)hy))" !
T L1+ (b—a)ky+ (b—a)hy) I(ra+1)

() = (@) I () = ()™

< € (L(1+ (b—a)ky + (b—a)hy))" T
T L1+ (b—a)ky+ (b—a)hy) Iira+1)

—p P(ra+1) 1o
x (¥(t) —(a))! m@/’(@ — ¢(a))rDe,

Therefore,

erJrl - erCt;w
< € (LA + (b= a)ke + (b — a)h) (¥(t) — ¥(a))*)"*
T L+ (b= a)ky + (b—a)h) I((r+1a+1)
< ((t) = (a))' ™,
which is the inequality (4.9) for j = r + 1. Using the principle of mathematical

induction the inequality (4.9) holds for every j € N and every t € A.
Therefore,

lwj —wj-1lle,_,..a,R)

< € (L + (b= a)ky + (b — a)hy) ((t) — ¥(a))*)’
~ L1+ (b—a)ky + (b—a)hy) I'(ja+1)

< (¥(t) = 9(a))' ="

Now using this estimation we have

o)
€

D llws = witllo,puam < T g ah TG ang PO )

j=1

> (b—a)ky + (b —a)hy)(¥(t) —1(a))*)’
x Z b T(jo+ 1)b '

Jj=1
Thus we have

Sl — wslleniam < O 0—ah s o—am) VO~ v@)'

J=1

(Ea(L(L+ (b= a)ky + (b — a)hy) (1(b) — ¥(a))*) — 1)
(4.10)

Hence the series

o0

w0+2(wj *wj_l) (411)

Jj=1
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converges in the weighted space C1_,.4 (A, R). Let w € C1— (A, R) such that
w = wy + Z —wj_1) (4.12)

Noting that w, = wy + ijl(wj — wj,l), is the n'" partial sum of the series
(4.11), we have |lw, —w|lc,_, ,(a,r) — 0 asn — o0.

Next, we prove that this limit function w is the solution of fractional integral
equation with Ii:’"ww*(a) = Ii:’"ww(a). Therefore, by the definition of successive
approximation, for any ¢t € A, we have

[(t) = (@)~ (w(t) - () w(a)

e e

< lw = wnl\clpw[abﬁrL( (b—a)ky + (b —a)hy

x [w(t)— / £t 1) wn (1) — <n>dn}

L(l + (b —a)ky + (b — a)hy)['(p)
I'(a+p)

< o~ wallos_, u o + ( (1) - ¢<a)>a)

X ||wn,1 - w”Cl piw[a,b]» VneN

By taking limit as n — oo in the above inequality, for all ¢ € [a, b], we obtain

0t0) - v (i) - a1l uto) - s [ et

f <n,w<n>, / " k(.0 )uw(0)do), / H(w)w(a)da) dn>| -

Since, (1(t) —1(a))'=? # 0 for all t € A, we have
w(t) = Q) (t,a) 7 w(a)

+F(1a)/:,c$(t,n)f (n,w(n)’/jK(W’) o)do) / Himo dg) "

(4.13)

This proves that w is the solution of (1.1)-(1.2) in Ci—,.4(A, R). Further, for the
solution w* of inequation (4.4) and the solution w of the equation (1.1), using
(4.7) and (4.12), for any t € A, we have

|(W(t) = ¥(a)' P (w* (t) — w(t))]
(W) = (@) (wy(t) —wia ()] < Y llws = wi-alle, oy

1 j=1
€

L0+ 0@kt Gy VO @™
X (Ba(L(1+ (b— a)ky + (b— a)) (6(b) — $(a)*) — 1)

o,

J

<
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Therefore,

||w* _ ’U}H < ((Ea(L(l + (b - a‘)kb + (b B a’)hb)(w(b) - w(a’))a) - 1)
Or-pvlatl = L1+ (b—a)ky + (b— a)hy)

x (¥(b) —¥(a))'7*) e
This proves the equation (1.1) is HU stable. O

Corollary 4.6. Suppose that the function f satisfies the assumptions of
Theorem 4.5. Then the problem (1.1) is generalized HU stable.

Proof. Set

Yy (e)

_ ((Bo(LA+ (0 —a)ky + (b — a)hy) (¥(b) — ¥(a))*) — 1) (e )
-( 0+ () + (b— o)) W0 v o

in the proof of Theorem 4.5. Then v;(0) = 0 and for each w* € C1_,.4(A, R)
that satisfies the inequality

<e teEA,

t b
HDgf;ww*(t) —f (t,w*(t),/ K(t, s)w*(s)ds,/ H(t7s)w*(s)ds>

there exists a solution w of equation (1.1) in C1— (A, R) with
Ii:p‘ww*(a) = Ii;p;ww(a) such that
H’U}* - w”Cl—p;d;[ayb] < wf(G)a teA.

Hence mixed fractional integrodifferential equation (1.1) is generalized HU stable.
(I

Theorem 4.7. Let f: (a,b] X R X R — R be a function such that

f (t, w(t), [F Kt s)w(s)ds, [* H(t, s)w(s)ds) € C1_pu(AR),

for any w € Ci_ (A, R), and that satisfies the Lipschitz condition
|f(t w1, 21, 21) = f(E ws, 22, 22)] < L Jwi — wa| + [21 — 22| + |21 — 22 |,

where t € (a,b], wy,ws, 21, 29,21, € R and L > 0 is Lipschitz constant. For
every € >0, t € A, if w* € C1_,.4(A, R) satisfies

<ep(t),

t b
H DBty () - f <t,w*(t), / K(t, s)w*(s)ds, / H(t,s)w*(s)ds)

where ¢ € C(A, Ry) is a non-decreasing function such that
5760 < A(1), t€ A

and A > 0 is a constant satisfying 0 < AL(1 4+ (b — a)ky + (b — a)hy) < 1. Then,
there exists a solution w € C1_ (A, R) of equation (1.1) with
Ii:p‘ww*(a) = Ii;p;ww(a) such that

[(¥(t) = 9(a) ~* (w" (1) — w())]

- A

11— )\L(l + (b — a)k:b + (b — a)hb)

((b) — Y(a))1 "] ed(t), t € A.
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Proof. For every € > 0, let w* € C1_ (A, R) satisfies

t b
HDZ‘;B;ww*(t) —f <t,w*(t)7/ K(t,s)w*(s)ds,/ H(Ls)w*(s)ds)

Proceeding as in the proof of Theorem 4.5 there exists a function
ow* € C1_pp(A, R) (depending on w*) such that

w () = QU (8, a) 1,7 w* (a)

¢
—|—I;‘i¢f <t7w*(t),/ K(t,o)w* da/ H(t,o) do) +Ia+ O (t).

Further, using mathematical induction, one can prove that the sequence of suc-
cessive approximations {wy}72; C Ci—p.(A, R) defined by

* 1 ! [e%
wn(t) = 92, (t, ) 17w >+—/£w<t,n>

(n,wn 1 / K(n,0)wn—1( dU/ H(n,o)w,_1(c )da)d

(4.14)

satisfy the inequality

||wj - wjfl‘lct;w < L1+ (b—a)ky + (b— a)hy) ()‘L(l + (b - a>kb + (b - a)hb))j
x ((t) —v(a)) P e(t), j € N. (4.15)

Using the inequation (4.15), we obtain

€

ZHw] wj— 1HC‘rw T L1+ (b—a)ky+ (b—a)hy)

DAL+ (b= a)ky + (b= a)hy)) | ($(t) = (@)~ 6(1).
Thus
> A
; lwj = wi-illow, < <1 “ML(1+ (b—a)ks) + (b— a)hb)>
X (W(t) —p(a) Po(t). (4.16)

Following the steps as in the proof of the Theorem 4.5 there exists
w € C1—py(A, R) such that ||w, —wllc,_, ,(a,r — 0asn — oco. This w is the

solution of the problem (1.1)-(1.2) with I;Ip;ww(a) = I;Ip;ww*(a), and we have
w = wgy + Z;‘;l(wj — wj_1). Further, for the solution w* of inequation and the
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solution w of the equation (1.1), for any ¢t € A,
|((t) = ¥ (@) ~* (w"(t) — w(t))]
|((t) = 9 (a)' = (w;(t) — wj-1(t))]

o,

j=1
<D lwj —wialle,,
j=1
A .
= (1 AL+ (b— )yt (b a)hb)> (1) = (@) 7o (t).

Thus, we have

| (%) — (@) =" (w" (1) — w(t))]

A -
= (1 AT (0= )l T by WO @) > € $(t).
This proves the equation (1.1) is HUR stable. O

Corollary 4.8. Suppose that the function f satisfies the assumptions of
Theorem 4.7. Then, the problem (1.1) is generalized HUR stable.

Proof. Set e =1 and
A

Cre = b) — =7 ) in th f of
fo (1—)\L(1+(b—a)k:b+(b—a)hb) W(b) = vla) > e proot @
Theorem 4.7. Then for each solution w* € Ci_,.4(A, R) that satisfies the in-
equality

< o(t),

t b
H D (1) — f (t,y*w, [ ws s, H(t,s>y*<s>ds>

there exists a solution w of equation (1.1) in C1— . (A, R) with
Ii:p‘ww*(a) = Ii;p;ww(a) such that

|((t) = ¥(a) " (w"(t) — w(t)| < Cred(t), t € A
Hence the fractional integrodifferential equation (1.1) is generalized HUR stable.

O

5. e—Approximate solutions to Hilfer MFIDE

Definition 5.1. A function w* € Ci_,.(A, R) that satisfy the fractional inte-
grodifferential inequality

<e t€EA,

t b
HDS;ﬁ”pw*(t) —f (t,w*(t),/ K(t,s)w*(s)ds,/ H(t,s)y*(s)ds)

is called an e—approximate solutions of ¥—Hilfer MFIDE (1.1).
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Theorem 5.2. ([18]) Let u,v be two integrable, non negative functions and g be
a continuous, nonnegative, nondecreasing function with domain A. If

ult) < olt) + g(t) / £5(r, su(r)dr,

then
/ ] Ly F(r,s)v(T)dr, Yt € A. (5.1)

Theorem 5.3. Let f : (a,b]x Rx R — R be a function which satisfies the Lipschitz
condition | f(t, w1, z1,21) — f(t, wa, 22, 22)| < L[ |wy — wa| + |21 — 22| + |21 — 22 |,
where t € (a,b], wy,ws, 21, 22,%1,22 € R and L > 0 is Lipschitz constant.

Let w; € Ci—p.p(A, R), (i =1,2) be an ¢;—approzimate solutions of MFIDE (1.1)
corresponding to Ii:p;ww;‘ (a) = w((f) € R, respectively. Then

wi —wille,_,..a,R)

(1p(b) — p(a))>—PH!
< (@ te) ( Ta+ 1)

N i —a)ky + (b—a)hy))* (W(b) - ¢(a))(k+1)a>

Pt k+1)afp+1)

wh — @) L(1+ (b—a)ky + (b — a)hy))* _ bk
+ ( DS (0(0) = v(a) )

(5.2)

Proof. Let wf € Ci_,y(A,R), (i = 1,2) be an ei—approximate solutions of
MFIDE (1.1) that satisfy the initial condition Iljp”pw’»“(a) = w!” € R. Then

HD;ljrﬁ;wwf(t) (tw /Kts ds/Hts )

Operating Io"w on both the sides of the above inequation and using the Lemma2.5,
we get

S €;.

(5.3)

Y

at €

ngfrw Hngrﬁ;wwf(t) (t wy / K(t, s)w;(s)ds / H(t, s)w >|

> I:jerDgf;ww;‘(t)—I:waw /Kts ds/Hts )‘
>‘w — P wt ()t a)

I:’wf<tw /Kts ds/Hts )
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Therefore,
€i

Ia+1)

—¢(a)* =
t b
—Isiwf (t,w;‘(t),/ K(t, s)w:‘(s)d&/ H(t, s)w} (s)ds)

() = (@) 2 |w (1) - w2 (t,0)

Li=1,2.  (5.4)

Using the following inequalities
|z — w| < |z| + |w| and |z| — |w| < |z —w]|, z,w € R,
from the inequation (5.4), for any t € A, we have
€1 + €2
t _ [}
FER Wi~ v)

> |(wi(t) = w3 (6)] — |l - w)0% (¢, a)

e, {f (t,wi‘(t), /a K, s)w’{(S)d8> -/ (tvws(t)’ /:K (t’s)w;(s)d‘s)”

Therefore,

[(wi () — w3 (1))] <

€1+ € o L M rp
F(Oeri) (w(t)—lﬂ(a)) —&—‘(wé)—wg))Qw(t,a)‘

L1+ (b—a)ky + (b —a)hy)
I(c)

< [ st it — wita)lan

Applying Theorem 5.2 with

u(t) = |(w (1) — w3 (1))
o) = o g 3y @0 — (@) + [l — w1 a)

2 (u(
o)~ M 0= C?Zz;)—i- (b~ a)h)

we obtain

(
(b—a)ky + (b—a)hy))*
(i Da—pt1)
<(1/)(t) —P(a))P!

L'(p)

> —a —a k
# <w<t>—¢<a>>m+p-1>

(¥(t) - 1/}(60)“*”“)
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Thus for every ¢t € A, we have

((8) — ¥(a) (i (1) = w3 (1))
< (€1 +€2) <(¢(t) I?(;/J(j)l);‘ pt

i Z (L(l —;(b — a)]fb + (b — U:)hb))k (w(t) _ w(a))(k+1)a>

= —a —a k
fu — ] F(1p)+; (L0 + (b F(;kj : a()b )hs)) (w(t)_wa))m)
(

> —a —a k
+ Z L —;(((bk; + if;t (;-1- 1))hb)) (¥(b) — w(a))(’“*““>

d —a —a K
+ [ —uf?)| (F(lp) D w<a>>’m>

Therefore,

wi —wille,_,..a,R)

(1(b) — p(a))>P T
< (e teo) < F(a+ 1

s 1 —a)ky + (b—a)hy))” _ b)) D
+k§::1 k+ Da—pt1) (¥(b) = ¥(a))

1 > (L(1+ ( b*a)kb+(b*a)hb)) a
<r+zl T(p + k) ) =t )

w((ll) — w

+

which is the desired inequality. O

Remark 5.4. If €, = e = 0 in the inequality (5.3) then w} and w3 are the solutions
of Cauchy problem (1.1)-(1.2) in the space Ci_,y|a,b]. Further, for e, = e =0
the inequality takes the form

1
i = wdller o < [l — w® (F(p)
> (b—a)k b—a)hy))¥
# 3 w(b)w(a))ka),
=1

which provides the information regarding continuous dependance of the solution
of the problem (1.1)-(1.2) on initial condition. In addition, if wt = w? we have

|wi —w3llc,_,.,(a,r) = 0, which gives the uniqueness of solution of the problem
(1.1)-(1.2).
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