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Abstract. In terms of the theory of relative p-bounded operators, we study
the stochastic Barenblatt–Zheltov–Kochina model, which describes dynam-

ics of pressure of a filtered fluid in a fractured-porous medium with general
Wentzell boundary conditions. In particular, we examine the relative spec-
trum in the one-dimensional Barenblatt–Zheltov–Kochina equation, and con-

struct the resolving group in the stochastic Cauchy-Wentzell problem with
general Wentzell boundary conditions. In the paper, these problems are
solved under the assumption that the initial space is a restriction of the space
L2(0, 1).

Introduction

On the interval [0, 1], let us consider the differential operator

Au(x) = u′′(x), x ∈ [0, 1] (0.1)

with the general Wentzell boundary conditions

Au(0) + α0u
′(0) + α1u(0) = 0, (0.2)

Au(1) + β0u
′(1) + β1u(1) = 0. (0.3)

By formulas (0.1)–(0.3), we define the linear operator A : dom A ⊂ F → F.

Here F is the space (L2[0, 1], dx

∣∣∣∣
(0,1)

⊕ ηds
∣∣
{0,1}) with the norm

∥u∥2F =

1∫
0

|u(x)|2dx+ η0|u(0)|2 + η1|u(1)|2,

(the full construction of the space F see, for example, in [1]), where dx is the
Lebesque measure on the interval (0, 1); ds is the point measure at the boundary;
η0 = 1

−α1
, η1 = 1

β1
, where α1 < 0 < β1 are positive weights. We consider also the

linear manifold dom A = {u ∈ C2[0, 1] : conditions (0.2), (0.3) are fulfilled} as the
domain of the operator A. Fix α, λ ∈ R and construct the operators L = λ − A
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2 NIKITA S. GONCHAROV

and M = αA, where the operator A is taken from the considerations above. It
is known (see, for example, [2]), that the operators L,M ∈ L(domA;F) and the
space domA is densely embedded in the space F.

On the interval [0, 1], let us consider the stochastic Barenblatt-Zheltova-Kochina
equation

L
◦
η (ω, t) =Mη(ω, t) +Nf, (ω, t) ∈ [0, 1]× (0, τ), (0.4)

which describes dynamics of pressure of a filtered fluid in a fractured-porous
medium, with the initial Cauchy condition

η(0) = ξ0, (0.5)

and the Wentzell boundary conditions

ηxx(0, t) + α0ηx(0, t) + α1η(0, t) = 0,

ηxx(1, t) + β0ηx(1, t) + β1η(1, t) = 0.
(0.6)

Here η = η(t) is a stochastic process on the interval (0, τ);
◦
η is the Nelson–

Gliklikh derivative of the process η(t); f is a ”white noise”, which we understand
the Nelson–Gliklich derivative an one-dimensional Wiener process (see, for exam-
ple., [3, 4, 5]); α and λ are the material parameters characterizing the environment;
the parameter α ∈ R+; the operator N ∈ L(U,F) is subject to further clarification.

The purpose of this work is to research the solvability of the problem (0.4) – (0.6)
with Wentzell boundary conditions. Except Introduction, Conclusion and Refer-
ences, the article contains five sections. The space of differentiable K–”noises” is
defined in Section 1. The transition from a deterministic Sobolev type equation to
a stochastic one is presented in Section 2. Stochastic Cauchy–Wentzell problem for
Barenblatt-Zheltova-Kochina model is described in Section 3. The algorithm and
implementation for the numerical solution to this model according to the modi-
fied Galerkin method are described in Section 4. The solution of the stochastic
Cauchy–Wentzell problem for a specific example is given in Section 5.

1. The space of ”noises”

Let Ω ≡ (Ω,A, P ) be a full probability space; R be set of real numbers endowed
with the Borel σ-algebra. By a random variable we mean measurable mapping
ξ : Ω → R. A set of random variables {ξ : Eξ = 0, Dξ ≤ +∞}, the mathematical
expectation of which is equal to zero, and the dispersion is finite, forms the Hilbert
space L2 with the scalar product (ξ1, ξ2) = Eξ1ξ2 and the norm ∥ξ∥2L2

= Dξ.
Consider the set J ⊂ R and the following two mappings. First, f : J → L2,

associates each t ∈ J with a random variable ξ ∈ L2. Second, g : L2 × Ω → R,
associates each pair (ξ, ω) with a point ξ(ω) ∈ R.

A mapping η : J × Ω → R, having the form η = η(t, ω) = g(f(t), ω), is called
an (one-dimensional) stochastic process. For each fixed t ∈ J , the value of
the stochastic process η = η(t, ·) is a random value, i.e. η = η(t, ·) ∈ L2, which is
called a section of a stochastic process at t ∈ J . For each fixed ω ∈ Ω, the function
η = η(·, ω) is called a (sample) path of a stochastic process , corresponding to the
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STOCHASTIC BARENBLATT–ZHELTOV–KOCHINA MODEL ON THE INTERVAL 3

elementary event result ω ∈ Ω. The paths are also called realizations or sample
functions of a random process.

Usually, when this does not lead to ambiguity, the dependence of η(t, ω) on ω
is not specified and a random process is denoted by η(t).

Let be an interval J ⊂ R, then the stochastic process η = η(t), t ∈ J is called
continuous, if all its paths are almost sure continuos.

The set of continuous stochastic processes forms a Banach space, which we
denote by CL2, where

∥η∥2CL2
= supDη(t, ω).

Let A0 be a σ-subalgebra of the σ-algebra A. Construct the subspace L0
2 ⊂ L2

of random variables measurable with respect to A0. Denote by Π: L2 → L0
2 an

orthoprojector.
For any ξ ∈ L2, a random value of Πξ is called aconditional expectation of a

random value of ξ with respect to A0 and is denoted by E(ξ|A0).
Fix η ∈ CL2 and t ∈ J . Denote by Nη

t a σ-algebra generated by a random
value of η(t), and denote by Eη

t = E(·|Nη
t ) a conditional expectation with respect

to Nη
t .

Let η ∈ CL2, the Nelson–Gliklikh derivative
◦
η of the stochastic process η(t) at

the point t ∈ J is called a random variable

◦
η (t, ·) = 1

2
{ lim
∆t→0+

Eη
t

(
η(t+∆t, ·)− η(t, ·)

∆t

)
+ lim

∆t→0+
Eη

t

(
η(t, ·)− η(t−∆t, ·)

∆t

)
},

if the limits exist in the sense of the uniform metric on R.
If the Nelson–Gliklikh derivatives

◦
η (t, ·) of the stochastic process η(t) exist in

all (or almost all) points of the interval J , then we say that the Nelson–Gliklikh

derivative
◦
η (t, ·) exist on J (almost sure on J ).

As an example, consider the Nelson–Gliklikh derivative for the Wiener pro-
cess β(t) (see, for example, [6]), describing Brownian motion in the Einstein-
Smoluchowski model

◦
β (t) =

β(t)

2t
, t ∈ R+.

Note that the set of continuous stochastic processes having the derivative
◦
η (t, ·)

forms the Banach space C1L2 with the norm

∥η∥2C1L2
= sup

J

(
Dη(t, ω) +D

◦
η (t, ω)

)
.

Introduce the space ClL2, l ∈ {0} ∪ N, of random processes from CL2, whose
paths are differentiable (almost sure) by Nelson–Gliklikh on J up to the order l
inclusively, define the norm in the space by the following formula:

∥η∥2ClL2
= sup

J

( l∑
k=0

D
◦ l
η (t, ω)

)
.

By definition, we understand the Nelson–Gliklikh derivative of the order zero
◦ 0
η

as the original stochastic process, by the space ClL2, l ∈ {0} ∪ N we understand
the space of K–”noises”.

13



4 NIKITA S. GONCHAROV

Let us consider a real separable Hilbert space U (F) with orthonormal basis {φk}
({ψk}). Introduce a monotonic sequence K = {λk} ⊂ R such that

∞∑
k=1

λ2k < ∞.

Denote by UKL2 (FKL2) the Hilbert space, which is a completion of the linear
span of K-random variables

ξ =
∞∑
k=1

λkξkφk, ξk ∈ L2

(
ζ =

∞∑
k=1

µkζkψk ζk ∈ L2

)
by the norm

∥ξ∥2U =

∞∑
k=1

λ2kDξk,

(
∥ζ∥2F =

∞∑
k=1

µ2
kDζk

)
.

Note that for existence of a K-random variable ξ ∈ UKL2 (ζ ∈ FKL2) it is
enough to consider a sequence of random variables {ξk} ⊂ L2 ({ζk} ⊂ L2) having
uniformly bounded dispersions Dξk ≤ Const (Dζk ≤ Const), k ∈ N.

Construct the space of differentiable K–”noises”. Consider the inteval (ϵ, τ) ⊂
R. A mapping η : (ϵ, τ) → UKL2 given by the formula

η(t) =
∞∑
k=1

λkξk(t)φk,

where the sequence {ξk} ⊂ CL2, is called a U-valued continuous stochastic K-
process, if the series on the right converges uniformly on any compact in J by the
norm ∥·∥U and paths of the process η = η(t) are almost sure continuous.

A continuous stochastic K-process

◦
η (t) =

∞∑
k=1

λk
◦
ξk (t)φk, (1.1)

is called continously differentiable by Nelson–Gliklikh on J , if the series converges

uniformly on any compact in J by the norm ∥·∥U and paths of the process
◦
η=

◦
η (t)

are almost sure continuous.
Denote by Cl(J ,UKL2), l ∈ {0} ∪ N the space of differentiable K–”noises”,

whose paths almost sure differentiable by Nelson–Gliklikh on J up to the order l
inclusively, with the following norm:

∥η∥2Cl(J ,UKL2)
= sup

J

( ∞∑
k=0

λ2k

l∑
j=1

D
◦ j
η

)
.

An example of continously differentiable by Nelson–Gliklikh up to the order l
inclusively K-process is Wiener K-process (see, for example, [6])

WK(t) =
∞∑
k=1

λkβk(t)φk

where {βk} ⊂ ClL2 is a sequence of Brownian motions on R+.
Similarly, the space of Cl(J ,FKL2), i.e. differentiable K–”noises” on FKL2,

are constructed.

14



STOCHASTIC BARENBLATT–ZHELTOV–KOCHINA MODEL ON THE INTERVAL 5

2. Stochastic Sobolev type equation

Let us consider a real separable Hilbert space U (F) with orthonormal basis
{φk} ({ψk}).
Lemma 2.1. Let the sequences {λk} and {µk} be associated with the inequality
µ2
kDζk ≤ λ2kDξk. Then the operator A ∈ L(U;F) iff A ∈ L(UKL2;FKL2).

Let us give an idea of the proof. Statement is obviously, since the inequality
hold according to comparison test for infinite series with non-negative (real-valued)
terms

∥Aξ∥2F ≤M

∞∑
k=1

µ2
kDζk ∥ψk∥2U ≤M ∥ξ∥2U .

Therefore, in terms of the theory of relative σ-bounded operators (see, e.g., [7])
holds the following

Lemma 2.2. Let the sequences {λk} and {µk} be associated with the inequality
µ2
kDζk ≤ λ2kDξk. The operator M ∈ L(U;F) is σ-bounded with respect to the

operator L ∈ L(U;F) iff M ∈ L(UKL2;FKL2) is σ-bounded with respect to the
operator L ∈ L(UKL2;FKL2) . Moreover, the L-spectrum of the operator M is
the same in both cases.

Using Lemma 2.2 we can consider the theory of relative σ-bounded operators
in the space random K-variables. Consider the auxiliary problem with the initial
Cauchy condition

η(0) = ξ0 (2.1)

for the abstract equation

L
◦
η (ω, t) =Mη(ω, t) +Nf, (2.2)

where L,M,N ∈ L(UKL2;FKL2), η ∈ Cl+1(J ,FKL2) is a desired random K-
process, f ∈ Cl+1(J ,FKL2) is a ”white noise”.

A random K-process η ∈ Cl+1(J ,FKL2) is called a solution to equation (2.2),
if almost sure all its paths satisfy equation (2.2) for all t ∈ J . The solution η = η(t)
to equation (2.2) is called solution to problem (2.1), (2.2), if it satisfies condition
(2.1).

Theorem 2.3. Let the operators L,M ∈ L(UKL2;FKL2), where the operator M
is (L, σ)– bounded. Then for any random K-process f ∈ Cl+1(J ,FKL2) such that
Nf ∈ Cl+1(J ,FKL2) and any U-valued random variable ξ0 ∈ L2, independent
with Nf at a fixed t ∈ [0, τ ] , there exists the unique solution η = η(t) to problem
(2.1), (2.2), which has the following form:

η(t) = −M−1
0 Nf0 + U tξ0 +

∫ t

0

U t−sL−1
1 Nf1ds,where f0 = (I−Q)f, f1 = Qf.

(2.3)
Proof. The proof of the theorem is similar to the deterministic case. Ideas and
methods of the theory σ-bounded operators can be found, for example, in [7]. Note
only that the Q operator should be understood as the projector

Q =
1

2πi

∫
γ

LL
µ(M)dµ ∈ L(F),
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6 NIKITA S. GONCHAROV

where γ ⊂ C is a contour bounding the region containing the L-spectrum of the
operator M , LL

µ(M) = L(µL −M)−1 is the left L-resolvent of the operator M ;

f0, f1 belong to kerQ = F0
KL2,ℑQ = F1

KL2, respectively. �

3. The Cauchy–Wentzell problem in the stochastic
Barenblatt–Zheltov–Kochina model

Construct a solution to problem (0.4) – (0.6) in the space ofK-”noise” by means
of reduction to the problem (2.1), (2.2).

Denote by {λk : k ∈ N} the sequence of the Laplace operator’s eigenvalues
with Wentzell boundary conditions, which are numbered in non-increasing order
taking into account the multiplicity, and correspond to the sequence of orthonormal
eigenfunctions {φk : k ∈ N}. Introduce a U-valued random K-processes. Take
the sequence K as the set of the Green operator’s eigenvalues {λk : λk = ν−1

k }
and determine a U-valued random K-Wiener process in the form

WK(t) =

∞∑
k=1

νkβk(t)φk. (3.1)

The formula (3.1) is defined correctly due to the following asymptotics (see,
e.g., [8]):

λn ∼ −

(
πn+

(
−α0 + β0

πn

)
+O

(
1

n3

))2

.

According to the operator A (see, e.g. [2]), determine the operators L = λ−A,
M = αA as elements of the space L(UKL2;FKL2) by Lemma 2.2, and define the
inhomogeneity function to be a derivative of the one-dimensional Wiener process

f =
◦
WK (t) ∈ Cl+1(J ,FKL2).

Due to the fact that the last term in the formula (2.3) has an integral singularity
at zero, we transform it as follows:∫ t

ϵ

U t−sL−1
1 QN

◦
WK (s)ds = L−1

1 QNWK(t)− U t−ϵL−1
1 QNWK(ϵ)+

+

∫ t

ϵ

U t−sSL−1
1 QNWK(s)ds, where S = L−1

1 M1.

(3.2)

Integration by parts makes sense for any ϵ ∈ (0, t), t ∈ R+, due to the definition
of the Nelson–Gliklikh derivative. Take the limit ϵ→ 0 in (3.2) and obtain∫ t

0

U t−sL−1
1 QN

◦
WK (s)ds = L−1

1 QNWK(t) +

∫ t

0

U t−sSL−1
1 QNWK(s)ds.

Since for all λ ∈ R and α ∈ R\{0} the operator M is (L, σ)-bounded (see, e.g.,
[2]), according to Theorem 2.3 the following theorem holds

Theorem 3.1. For any λ ∈ R and α ∈ R\{0}, N ∈ L(UKL2;FKL2) and ξ0 ∈
L2, are independent of WK(t) there exists the unique solution η = η(t) to problem
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(0.4) – (0.6), which has the following form:

η(t) = −M−1
0 (I−Q)N

◦
WK (t) + U tξ0 + L−1

1 QNWK(t) +

∫ t

0

U t−sSL−1
1 QNWK(s)ds.

(3.3)

Construct the projector Q ∈ L(F)

Q =
∑
λ̸=λk

< ·, φk >F φk.

Then,

M−1
0 (I−Q)N

◦
WK (t) =


0, if λ /∈ σ(A);

1
αλ

∑
λ=λk

1
2t

∞∑
j=1

<βj(t),φk>FNφk

(λ−λk)λj
, if λ ∈ σ(A).

U tξ0 =



∞∑
k=1

e
αλk

λ−λk
t
< ξ0, φk >F φk, if λ /∈ σ(A);

∞∑
k=1,λ̸=λk

e
αλk

λ−λk
t
< ξ0, φk >F φk, if λ ∈ σ(A).

L−1
1 QNWK(t) =



∞∑
k=1

∞∑
j=1

<βj(t),φk>FNφk

(λ−λk)λj
, if λ /∈ σ(A);

∞∑
k=1,λ̸=λk

∞∑
j=1

<βj(t),φk>FNφk

(λ−λk)λj
, if λ ∈ σ(A).

∫ t

0

U t−sSL−1
1 QNWK(s)ds =



∞∑
k=1

∞∑
j=1

t∫
0

e

αλk
λ−λk

(t−s)
αλk<βj(s),φk>F

(λ−λk)
2λj

dsNφk, λ /∈ σ(A);

∞∑
k=1,λ ̸=λk

∞∑
j=1

t∫
0

e

αλk
λ−λk

(t−s)
αλk<βj(s),φk>F

(λ−λk)2λj
dsNφk, λ ∈ σ(A).

In conclusion, note that if λ ∈ σ(A), then a random value of ξ0 belongs to the
phase space

Pf =

{
u ∈ domA : αλ < u, φk >F= −

∞∑
j=1

< βj(t), φk >F φj

λj
, λk = λ

}
.

And since ξ0 are independent of WK(t), then cov(ξ0, βk(t)) = 0, where βk(t)
are (sample) paths of Wiener process that have the following form:

βk(t) =
∞∑
j=1

ξj sin
π

2
(2j + 1)t, k = 1, 2, · · ·
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8 NIKITA S. GONCHAROV

where ξj are uncorrelated Gaussian random variables such that Eξj = 0, Dξj =[
π
2 (2j + 1)

]−2

. Further, for the sake of simplicity of calculations, we put the

operator N = I.

4. The algorithm of numerical solution for
Barenblatt–Zheltova–Kochina model

Based on the theoretical results, a program for the numerical solution of problem
(0.4) – (0.6) was developed and implemented in Maple 2015.This program allows
to find an approximate solution to problem (0.4) – (0.6) under arbitrary initial and
boundary conditions, the values of λ, α and ”white noise” WK(t), and displays a
graph of the approximate solution. We describe the algorithm in more detail.

It is necesary to find an approximate solution using the modify Galerkin method,
since the Barenblatt–Zheltova–Kochina model may be degenerate. Let us con-
struct Galerkin approximations solutions to the Cauchy–Wentzell problem in the
following form:

ũ(x, t) = uN (x, t) =
N∑

k=1

uk(t)φk(x), (4.1)

where {φk : k ∈ N} are eigenfunctions of the one-dimensional operator A , which
correspond to its eigenvalues, orthonormal by the norm < ·, · >F, which are num-
bered in non-increasing order taking into account the multiplicity.

Using the operators and functions of Maple 2015, we set the initial condition
γ0, the coefficients of ¡¡white noise¿¿ βk and the Wentzell boundary conditions.

Substitute approximate solution (4.1) to equation (0.4) and take the scalar
product of equation (0.4) and eigenfunctions φk(x) with respect to < ·, · >F . We
obtain the following system:

(λ− λ1)u
′
1(t) = αu1(t) + f1(t),

(λ− λ2)u
′
2(t) = αu2(t) + f2(t),

· · ·
(λ− λN )u′N (t) = αuN (t) + fN (t).

(4.2)

Depending on the parameters λ , we have algebraic or first-order differential
equations in the system (4.2). Let us consider these conditions in more details.

(i) λ /∈ σ(A). Due to this fact, the mathematical model is non-degenerate, and
all the equations in the resulting system are ordinary differential equations of the
first order. For the solvability of this system with respect to uk(t), we take the
scalar product of the initial conditions (0.6) and the eigenfunctions φk(x) with
respect to < ·, · >F . Then, we solve the system (4.2) with appropriate initial
condition and find the coefficients uk(t) in the approximate solution ũ(x, t).

(ii) λ ∈ σ(A). Without loss of generality suppose that λ = λm1 = · · · = λmr ,
where r is the multiplicity of the root. Then, some of equations are algebraic, and
some equations are ordinary differential equations of the first order. Let us consider
separately systems composed of algebraic equations and differential equations of
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STOCHASTIC BARENBLATT–ZHELTOV–KOCHINA MODEL ON THE INTERVAL 9

the first order. Note that the solution to the original problem exists, according to
Theorem 3.1, if the initial random variable ξ0(x) belongs to the phase space

Pf =

{
u ∈ domA : αλ < u, φk >F= −

∞∑
j=1

< βj(t), φk >F φj

λj
, λk = λ

}
.

Find a solution for the obtained differential (differential and algebraic) systems
with the help of built-in operators in Maple 2015 and write the numerical solution
to problem (0.4) – (0.6). The block diagram of the stochastic Barenblatt–Zheltova–
Kochina model is shown in Fig. 1 .

Figure 1. Block diagram of the algorithm.

5. Example of solution for the stochastic Cauchy–Wentzell problem

Example. Let us consider the Cauchy–Wentzell problem for the equation

(λ−A)
◦
η (ω, t) = αAη(ω, t)+

◦
WK (t), (ω, t) ∈ [0, 1]× (0, τ), where (5.1)

λ = 0, α = 0,
◦
WK (t) =

1

2tλ1

(
ξ0 sin

π

2
t+ ξ1 sin

π

2
3t

)
; cov(ξ0, ξ1) = 0;

ξ0, ξ1 ∼ N(0, 1), η(0) = γ0 ∼ N(0, 1),

ηxx(0, t) + ηx(0, t)− 3η(0, t) = 0,

ηxx(1, t)− ηx(1, t) + 6η(1, t) = 0.

Let N = 6, then the approximate solution have the following form:

ũ(x, t) = u6(x, t) =
6∑

k=1

uk(t)φk(x). (5.2)

Solve the Sturm-Liouville problem and find the basis functions φk(x) in de-
composition (5.2). Using the method of moving chords for the transcendental
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10 NIKITA S. GONCHAROV

equations of the corresponding form

ctgx = x ·
1 + 3

x2 − 6
x2 − 18

x4 − 1
x2

6
x2 − 2− 3

x2

, x =
√
−λn, λn < 0

λ+
√
λ− 3

λ−
√
λ− 3

=
e2

√
λ(λ−

√
λ+ 6)

λ+
√
λ+ 6)

, λ > 0

find and write the eigenfunctions of the one-dimensional Laplace operator.
We have the eigenvalues

λ1 = −x21 = −35.14514947,

λ2 = −x22 = −84.71034130,

λ3 = −x23 = −153.8532547,

λ4 = −x24 = −242.7027758,

λ5 = −x25 = −351.2803151,

λ6 = 5.39027.

Let us find φk(x) and construct an orthonormal basis. Set the initial condition
and ”white noise” using the functions that specify random values with normal
distribution. Substitute approximate solution (5.2) in equation (5.1) and take
the scalar product of equation (5.1) and the eigenfunctions φk(x) with respect to
< ·, · >F . For example, write the following system for fixed ω:

35.1451u′1(t)− 0.0001sin(1.5707t)− 0.0034sin(4.7123t)− 0.0409 = 0,

84.7103u′2(t)− 0.0099sin(1.5707t)− 0.5739sin(4.7123t) + 0.0259 = 0,

153.8532u′3(t) + 0.0021sin(1.5707t) + 0.1240sin(4.7123t)− 0.0278 = 0,

242.7027u′4(t)− 0.0052sin(1.5707t)− 0.3010sin(4.7123t) + 0.0113 = 0,

351.2803u′5(t) + 0.0021sin(1.5707t) + 0.1215sin(4.7123t)− 0.0214 = 0,

−5.3902u′6(t)− 0.0217sin(1.5707t)− 1.2510sin(4.7123t) + 0.1966 = 0.

(5.3)
Due to the fact that λ /∈ σ(A), the mathematical model is non-degenerate, and,

according to the algorithm, all the equations in the resulting system are ordinary
differential equations of the first order. Let us solve the system (5.3) with the
initial conditions

u1(0) = 0.045617,

u2(0) = 0.155882,

u3(0) = −0.021318,

u4(0) = 0.077029,

u5(0) = −0.028692,

u6(0) = 0.178588.
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and find the Galerkin coefficients

u1(t) = −0.00000109cos(1.5707t)− 0.000021cos(4.7123t) + 0.001165t+ 0.04564,

u2(t) = −0.0000749cos(1.5707t)− 0.001437cos(4.7123t)− 0.000306t+ 0.157395,

u3(t) = 0.00000892cos(1.5707t) + 0.000171cos(4.712t) + 0.000181t− 0.021498,

u4(t) = −0.0000137cos(1.5707t)− 0.000263cos(4.7123t)− 0.00004658t+ 0.0773,

u5(t) = 0.00000383cos(1.5707t) + 0.0000734cos(4.7123t) + 0.0000611t− 0.0288,

u6(t) = 0.002569cos(1.5707t) + 0.049251cos(4.7123t) + 0.036479t+ 0.126768.

Substituting the Galerkin coefficients in the representation, we obtain an approxi-
mate solution to the original problem. The graph of the solution in the form paths
of stochastic process η(t) is shown in Fig. 2 (a-b).

a)

b)

Figure 2. Paths for the solution of the problem in Example.

Conclusion

We constructed an algorithm and implementation for the numerical solution to
Cauchy-Wentzel problem for the stochastic Barenblatt-Zheltova-Kochina model
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on the interval [0.1]. For this purpose, we used a new approach to the study of the
stochastic model with ”white noise”, which we understand as the Nelson–Gliklikh
derivative of one-dimensional Wiener process, the full description of which is given,
for example, in [3, 4, 5, 6, 17].
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