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Abstract. Fear of predators is a well-recognized phenomenon that results
from predation in a natural food-chain or food-web ecosystem. Wang et al.

[34], published the first food-chain model that included the predator’s fear

effect on prey growth rate. The indirect impact of fear has been studied
through its inclusion in several food web and food chain models in various

ecological contexts. Some recent studies and field experiments show that
predators affect their prey not only by direct capture; they also induce fear

in prey species, which reduces their reproduction rate. The dynamics of a

three-species prey-predator model are discussed, with the assumption that
the logistic growth rate of prey is reduced as a result of both predators’

fears, and the reproduction rate of intermediate consumers is affected by the

top predator. We carry out the feasibility, existence of steady states, local
stability analysis, and bifurcation analysis. Through numerical simulation,

we show that the system stays chaotic at a low cost of fear, but an increase in

the fear factor results in stability. We conclude that the chaotic dynamics of
the system is controlled by fear effects, i.e., the whole prey-predator system

is driven by the fear effect of predators.

1. INTRODUCTION

In an ecosystem, the order of feeding relationships among organisms is known
as a food chain, in which energy and nutrients flow from one organism to another
at a time along a direct and linear pathway. Each level in a food chain represents
a trophic level. Several researchers have extensively studied food chain models for
three or more species. The article [11], is a pioneering work on the food chain
model with Holling type-II functional response in which rich chaotic dynamics
occur. Later, several food chain models are proposed and studied in the presence
of various functional responses by the authors [19, 21, 26]. A food web is a diagram
that shows how food chains naturally connect to one another in an ecological
community. The consumer-resource system is yet another term for the food web.
It also includes a variety of food chains that connect with one another. K. McCann
and A. Hastings [20], analyze the role of omnivore in food webs using a non-
equilibrium perspective. These authors observe that the addition of omnivore to
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a simple food-chain model locally stabilizes the food web. The food web models
with various ecological phenomena have been studied by several researchers [6, 9,
13, 12, 22, 23, 31, 32].

The anti-predator behavior includes all forms of action by an individual that
is used to avoid being captured, wounded, or killed by another individual. Lima
and Dill [18], perceived several components of predation risk by developing an
abstraction of the predation strategies. Fear effect of prey is one such common
behavior so it can play an important role on population dynamics. The capability
of an organism to explore one or more such components is important for decision
making in feeding organisms. This is also helpful to the individuals to determine
when and how to (i) avoid predators, (ii) be social and (iii) to breathe air (fish).
Most of the species including human beings are vulnerable with fear. Predators
usually produce fear to their prey in the process of capturing. This motivate Wang
et al. [34], to propose a prey-predator model to incorporate the cost of fear into the
growth of prey population. Their results show the anti-predator response plays an
important role on stabilizing the predator-prey system. A large number of research
articles have been published recently incorporate the fear effect in predator-prey
systems [2, 3, 4, 5, 15, 24, 25, 27, 28, 29].

This section aims to propose a simple food web model that incorporates both
fear effect and harvesting. For this purpose, we first describe a simple food web
model proposed by Tanabe and Namba [31], in which P1(t), P2(t) and P3(t) denote
the densities of the basal resource, intermediate consumer, and an omnivorous top
predator at time t, respectively:

dP1

dt = P1 (r − a11 P1)− a12 P1 P2 − a13 P1 P3,

dP2

dt = a21 P1 P2 − a23 P2 P3 − d1 P2,

dP3

dt = a31 P1 P3 + a32 P2 P3 − d2 P3,

(1.1)

with initial conditions

P1(0) > 0, P2(0) > 0, P3(0) > 0. (1.2)

Table 1: The Parameters used in the system (1.1) are non negative
and have the following sense.

Parameter Description
r Prey’s intrinsic growth rate
a11 Intra-specific competition coefficient of prey
a12 Consumption rate of resources by intermediate consumer
a13 Consumption rate of resources by top predator
a21 Contribution of resources to the growth of consumer
a23 Consumption rate of intermediate consumer by top predator
a31 Contribution of resources to the growth of top-predator
a32 Contribution of consumer to the growth of top-predator
d1 Consumer’s mortality rate
d2 Mortality rate of top predator
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2. Proposed Model

Motivated by the literature, we extend the three-species food web model (1.1)
by considering the fear of both predators on prey species and the fear of the top-
predator on intermediate consumer. We also assume that both middle and top
predators are harvested according to quadratic harvesting. The model is developed
under the following two considerations:

(i) The researchers who have worked with three species of prey-predator models
have considered that the predator affects prey only by direct killing. But in the
literature survey, it is observed that the fear of predator also affects the growth
rate of prey species. So, this fear mitigates the reproduction rate of the prey
population. For this reason, it is relevant to include the fear term in the model to
make it more effective. So, the growth rate of prey population can be modified as

dP1

dt
=

P1 (r − a11 P1)

1 + k1 P2 + k2 P3
, (2.1)

where, k1 and k2 are the fear parameters of middle-predator and top-predator on
prey species, respectively with

P1 (r − a11 P1)

1 + k1 P2 + k2 P3
=

(r + a11)P1

(
1− a11

r+a11
P1

)
+ k1 a11 P1 P2 + k2 a11 P1 P3

1 + k1 P2 + k2 P3︸ ︷︷ ︸
combined reproduction due to fear of both predators

− a11P1︸ ︷︷ ︸
natural

death rate

.

The authors [4, 10, 28, 35] have given a detailed description of the modified growth
rate (2.1) of the prey population, which indicates that such a modeling process is
also valid. The growth rate of consumer gets reduced due to fear of top-predator
on it by a fraction 1

1+k3 P3
with k3 as the fear parameter.

(ii) Many researchers [1, 8, 14, 16, 30] have studied ecological models using
various types of harvesting. In particular, quadratic harvesting becomes relevant
when the size of the population to be exploited becomes large [8, 14]. Although a
number of prey-predator models for three species with different types of predation
rates have been studied by incorporating the fear effect. As far as our knowl-
edge goes, no researcher has studied the combined effect of fear and quadratic
harvesting.

In the presence of the fear effect and the quadratic harvesting, the model (1.1)
is modified as follows:

dP1

dt = P1(r−a11 P1)
1+k1 P2+k2 P3

− a12 P1 P2 − a13 P1 P3 ≡ P1 ψ
[1](P1, P2, P3),

dP2

dt = a21 P1 P2

1+k3 P3
− a23 P2 P3 − d1 P2 − h1 P

2
2 ≡ P2 ψ

[2](P1, P2, P3),

dP3

dt = a31 P1 P3 + a32 P2 P3 − d2 P3 − h2 P
2
3 ≡ P3 ψ

[3](P1, P2, P3),

(2.2)

with initial condition

P1(0) > 0, P2(0) > 0, P3(0) > 0. (2.3)
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Here, h1 and h2 are the rates of harvesting of both predators, respectively. The
remaining parameters have same ecological meaning as for model (1.1). The pro-
posed system (2.2) is defined in the region R3

+. For simplification of forthcoming
sections, we define

ψ[1](P1, P2, P3) =
(r − a11 P1)

1 + k1P2 + k2P3
− a12 P2 − a13 P3, ψ

[2](P1, P2, P3) =
a21 P1

1 + k3P3

− a23 P3 − d1 − h1 P2 and ψ[3](P1, P2, P3) = a31 P1 + a32 P2 − d2 − h2 P3.

2.1. Feasibility of solutions. In this section, we provide the result for positivity
and establish the condition for boundedness of solutions of the system (2.2), which
ensures the meaningfulness of the proposed system (2.2) from an ecological point
of view.

Theorem 2.1. (a) The solutions (P1(t), P2(t), P3(t)) of the system (2.2) with
initial condition (2.3) remain positive for all t ≥ 0.
(b) The solutions of the system (2.2) with initial condition (2.3) are uniformly
bounded in the region

Ω =

{
(P1, P2, P3) ∈ R3

+ : 0 < χ(t) = P1 +
a12
a21

P2 +
a13
a31

P3 <
(r +M)

2

4 a11M
+ ϕ ,

∀ϕ > 0

}
, if 2 a12 a13 a21 a31 (a32 a23 + 2 h1 h2 ) > a213 a

2
21 a

2
32 + a212 a

2
23 a

2
31.

Proof. The proof of this theorem given in Appendix-A (4) □

2.2. Existence and stability analysis of steady states. In this section, we
have investigated steady states of the system (2.2) and obtained suitable conditions
for their existence. We have also analyzed the local stability of all steady states.

2.2.1. Existence of various steady states. The steady states of the system
(2.2) are given as follows:
(I) S0 = (0, 0, 0) is a trivial steady state of the system (2.2), which always exists.

(II) The axial steady state S1 =
(

r
a11
, 0, 0

)
of the system (2.2) also always exists.

This steady state is free from both predators.

(III) The P1P2-planar steady states are S̃1 =
(
P̃

[1]
1 , P̃

[1]
2 , 0

)
and S̃2 =

(
P̃

[2]
1 , P̃

[2]
2 ,

0
)
. Both are free from top-predator. The P2-components of these steady states

are given by the roots of the following quadratic equation

k1 a12 a21 P
2
2 + (h1 a11 + a12 a21)P2 − r a21 + a11 d1 = 0. (2.4)

The two roots of equation (2.4), are given as

P̃
[1]
2 =

−Q1 +
√
Q2

2 k1 a12 a21
and P̃

[2]
2 =

−Q1 −
√
Q2

2 k1 a12 a21
,

where, Q1 = (h1 a11 + a12 a21) and Q2 = (h1 a11 + a12 a21)
2 − 4 k1 a12 a21 (−r a21

+a11 d1). The only possibility of positive root is P̃2 = P̃
[1]
2 if a11 d1 < r a21.
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Hence, S̃1 =

(
d1+h1 P̃

[1]
2

a21
, P̃

[1]
2 , 0

)
is only a feasible P1 P2-planar steady state of the

system (2.2).

(IV) The P3-components of the P1 P3-planar steady states Ŝ1 =
(
P̂

[1]
1 , 0, P̂

[1]
3

)
and

Ŝ2 =
(
P̂

[2]
1 , 0, P̂

[2]
3

)
are given by the roots of the following quadratic equation

k2 a13 a31 P
2
3 +Q3P3 +Q4 = 0, (2.5)

where, Q3 = h2 a11 + a13 a31 and Q4 = −r a31 + a11 d2. The two roots of this
quadratic equation are given by

P̂
[1]
3 =

−Q3 +
√
Q

2 k2 a13 a31
and P̂

[2]
3 =

−Q3 −
√
Q

2 k2 a13 a31
, where, Q = Q2

3 − 4 k2 a13 a31Q4.

Hence, the equation (2.5) has a positive root P̂3 = P̂
[1]
3 if a11 d2 < r a31 and the sys-

tem (2.2) has a unique feasible P1 P3-planar steady state Ŝ1 =

(
d2+h2 P̂

[1]
3

a31
, 0, P̂

[1]
3

)
.

(V) To discuss the co-existing steady states S∗ = (P ∗
1 , P

∗
2 , P

∗
3 ) of the system (2.2),

we focus on the following bi-quadratic equation in P2-component:

B1P
4
3 +B2P

3
3 +B3P

2
3 +B4P3 +B5 = 0, (2.6)

where, B1, B2, B3, B4 and B5 are given in Appendix-B (4).
Note that when exactly one of the coefficients B1, B2, B3 and B4 is negative

with B5 > 0 then from Descartes’s rule of sign the equation (2.6) has a unique
positive root for P3 = P ∗

3 . The P1 and P2−components of S∗ = (P ∗
1 , P

∗
2 , P

∗
3 ) are

positive values of the expressions:

P ∗
1 =

a23 a32 P
∗
3 + a32 a23 k3 (P ∗

3 )
2
+ d1 a32 + a32 d1 k3 P

∗
3 + h1 d2 + d2 k3 h1 P

∗
3

a21 a32 + a31 h1 + a31 k3 h1 P ∗
3

+
h1 h2 P

∗
3 + h2 k3 h1 (P ∗

3 )
2

a21 a32 + a31 h1 + a31 k3 h1 P ∗
3

and

P ∗
2 =

a21 d2 + a21 h2 P
∗
3 − a23a31 P

∗
3 − a23 k3 a31 (P ∗

3 )
2 − d1 a31 − d1k3a31P3∗

a21a32 + a31 h1 + a31 k3 h1 P ∗
3

.

2.2.2. Local stability analysis of various steady states. In this section, our
aim is to analyze the local behavior of the system (2.2) in the neighborhood of
steady states we have listed earlier. The Jacobian matrix of the system (2.2)
evaluated at an arbitrary steady state S = (P1, P2, P3) is given as follows:

J(S) =


R11 − k1 P1(r−a11P1)

(1+k1 P2+k2 P3)
2 − a12 P1 − k2 P1(r−a11P1)

(1+k1 P2+k2 P3)
2 − a13 P1

a21 P2

1+k3 P3
R22 −k3 a21 P1 P2

(1+k3 P3)
2 − a23 P2

a31 P3 a32 P3 R33

 ,

where, R11 = r−2 a11 P1

1+k1 P2+k2 P3
−a12 P2−a13 P3, R22 = a21 P1

1+k3 P3
−a23 P3− d1− 2h1 P2

and R33 = a31 P1 + a32 P2 − d2 − 2h2 P3.
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The Jacobian matrix J(S) at trivial steady state S0 becomes

J(S0) =

 r 0 0

0 −d1 0

0 0 −d2

 .

The characteristic values of the matrix J(S0) are λ01 = r > 0, λ02 = −d1 < 0 and
λ03 = −d2 < 0. Thus the steady state S0 is always a saddle point.

Next, we analyze the stability of the steady state S1 by calculating the following
Jacobian matrix

J(S1) =


−r − r a12

a11
− r a13

a11

0 r a21

a11
− d1 0

0 0 ra31

a11
− d2

 .

The matrix J(S1) has the characteristic values as λ11 = −r, λ12 = r a21

a11
− d1 and

λ13 = r a31

a11
− d2. Thus, we have the following result for the stability of steady

state S1.

Theorem 2.2. The steady state S1 is stable if the conditions r a21 < a11 d1 and
r a31 < a11 d2 are satisfied together otherwise it becomes unstable.

Further, we concentrate on studying the behavior of the solutions of the system
(2.2) near steady state S̃1. The Jacobian matrix at steady state S̃1 is

J(S̃1) =


− a11 P̃

[1]
1

1+k1 P̃
[1]
2

R̃12 −
k2 P̃

[1]
1

(
r−a11 P̃

[1]
1

)
(
1+k1 P̃

[1]
2

)2 − a13 P̃
[1]
1

a21 P̃
[1]
2 −h1 P̃ [1]

2 −k3 a21 P̃ [1]
1 P̃

[1]
2 − a23 P̃

[1]
2

0 0 a31 P̃
[1]
1 + a32 P̃

[1]
2 − d2

 ,

where, R̃12 = −
k1 P̃

[1]
1

(
r−a11 P̃

[1]
1

)
(
1+k1 P̃

[1]
2

)2 − a12 P̃
[1]
1 .

The characteristic polynomial of matrix J(S̃1) is given by

Q̃(λ) =
(
λ− λ̃1

)(
λ2 +

Ã1

1 + k1 P̃
[1]
2

λ+
Ã2P̃

[1]
1 P̃

[1]
2

1 + k1 P̃
[1]
2

)
, (2.7)

where, λ̃1 = a31 P̃
[1]
1 + a32 P̃

[1]
2 − d2, Ã1 = a11 P̃

[1]
1 + h1P̃

[1]
2 + h1 k1

(
P̃

[1]
2

)2
and

Ã2 = a12 a21 + a11 h1 + 2 k1 a12 a21 P̃
[1]
2 .

Thus, we have the following result for the local stability of steady state S̃1.

Theorem 2.3. If a31 P̃
[1]
1 + a32 P̃

[1]
2 < d2, then steady state S̃1 is stable otherwise

it is unstable.
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Now, we shall determine the stability of Ŝ1. The Jacobian matrix J(S) evalu-

ated at Ŝ1 is given as follows:

J(Ŝ1) =


−a11 P̂

[1]
1

1+k2 P̂
[1]
3

R̂12 −
k2 P̂

[1]
1

(
r−a11 P̂

[1]
1

)
(
1+k2 P̂

[1]
3

)2 − a13 P̂
[1]
1

0
a21 P̂

[1]
1

1+k3 P̂
[1]
3

− a23 P̂
[1]
3 − d1 0

a31 P̂
[1]
3 a32 P̂

[1]
3 −h2 P̂ [1]

3

 ,

where, R̂12 = −
k1 P̂

[1]
1

(
r−a11 P̂

[1]
1

)
(
1+k2 P̂

[1]
3

)2 − a12 P̂
[1]
1 .

The characteristic polynomial of matrix J(Ŝ1) is given as following

Q̂(λ) =
(
λ− λ̂1

)(
λ2 +

Â1

1 + k2 P̂
[1]
3

λ+
Â2P̂

[1]
1 P̂

[1]
3

1 + k2 P̂
[1]
3

)
, (2.8)

where, λ̂1 =
a21 P̂

[1]
1

1+k3 P̂
[1]
3

− a23 P̂
[1]
3 − d1, Â1 = a11 P̂

[1]
1 + h2P̂

[1]
3 + h2 k2

(
P̂

[1]
3

)2
and

Â2 = a13 a31 + a11 h2 + 2 k2 a13 a31 P̂
[1]
3

Thus, we have the following result for the local stability of steady state Ŝ1.

Theorem 2.4. If a21 P̂1

1+k3 P̂
[1]
3

< a23 P̂3 + d1, then stationary point Ŝ1 is stable oth-

erwise it is unstable.

Finally, we check the local stability of co-existing steady state S∗ = (P ∗
1 , P

∗
2 , P

∗
3 ).

The Jacobian matrix J(S) of the system (2.2) evaluated at S∗ is given as following:

J(S∗) =

 −L1 −L2 −L3

L4 −h1 P ∗
2 −L5

a31, P
∗
3 a32 P

∗
3 −h2 P ∗

3

 ,

where, L1 =
a11 P∗

1

1+k1 P∗
2 +k2P∗

3
, L2 =

P∗
1 (r−a11 P∗

1 )k1

(1+k1P∗
2 +k2 P∗

3 )
2 +a12 P

∗
1 , L3 =

P∗
1 (r−a11 P∗

1 )k2

(1+k1 P∗
2 +k2 P∗

3 )
2 +

a13 P
∗
1 , L4 =

a21 P∗
2

1+k3 P∗
3
and L5 =

k3 a21 P∗
1 P∗

2

(1+k3 P∗
3 )

2 + a23 P
∗
2 .

The characteristic equation of the matrix is given by the following equation:

λ3 + ξ1 λ
2 + ξ2 λ+ ξ3 = 0, (2.9)

where, ξ1 = L1 + h1 P
∗
2 + h2 P

∗
3 , ξ2 = h1 h2 P

∗
2 P

∗
3 + a32 L5 P

∗
3 + h2 L1 P

∗
3 +

a31 L3 P
∗
3+h1 L1 P

∗
2+L2 L4 and ξ3 = h1 h2 L1 P

∗
2 P

∗
3+a32 L1 L5 P

∗
3+a32 L3 L4 P

∗
3+

h2 L2 L4 P3 − a31 L2 L5 P
∗
3 + h1 a31 L3 P

∗
2 P

∗
3 .

Theorem 2.5. The co-existing steady state S∗ = (P ∗
1 , P

∗
2 , P

∗
3 ) is locally asymp-

totically stable if ξ1 > 0, ξ3 > 0 and ξ1 ξ2 − ξ3 > 0.

We know that a simple Hopf-bifurcation occurs when the following conditions
are satisfied [[7], [17]]:
(a) The matrix J(S∗)|k1=k1

[H] has a pair of purely imaginary characteristic values
and remaining one characteristic value has the negative real part. For this purpose,
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we require the following: ξ1 > 0, ξ3 > 0, and ξ1 ξ2 = ξ3 at k1 = k1
[H].

(b) The transversality condition d
dk1

(Re(λ)) |k1=k1
[H] ̸= 0.

Example 2.6. Since, the analytical finding of Liu’s criterion of existence of peri-
odic solution through Hopf bifurcation for the system (2.2) is much complicated.
So, we verify these conditions numerically. For this purpose we consider a set
of parameters: k2 = 0.2, k3 = 0.5, r = 5, a11 = 0.45, a12 = 1, a13 = 20, a21 =
1, a23 = 1, d1 = 1, a31 = 0.1, a32 = 1, d2 = 1.2, h1 = 0.1 and h2 = 0.27 and we
choose fear parameter k1 as bifurcation parameter. The system has unique Hopf

bifurcation threshold k
[H]
1 = 1.439583. For this choice of parameters’ values the

system (2.2) has only one co-existing steady state S∗ as k1 ∈ (0, 2.876403). The
co-existing steady state S∗ is stable for k1 ∈ (1.439583, 2.876403) and unstable for

k1 < k1
[H] = 1.439583. Here, we get ξ1 = 0.3202869752 > 0, ξ3 = 2.610513025 >

0, and ξ1 ξ2 = ξ3 = 0.8361133721. The characteristic equation corresponding to

the matrix J(S∗) at k1
[H] = 1.439583 given as

λ3 + 0.3202869752λ2 + 2.610513025λ+ 0.8361133721 = 0. (2.10)

The roots of this equation are −0.3202869942, 1.615708214I and −1.615708214I
which are the characteristic values of the matrix J(S∗).

2.3. Dynamics of the system beyond Hopf-bifurcation. In this section, we
discuss the different complex dynamical behaviors of the system (2.2) numerically
for the impact of fears (k1 and k2) of both predators on prey and the impact of
fear (k3) of the top-predator on the middle-predator. Also, we study the impact
of harvesting (h1 and h2) of both predators on the proposed system (2.2).
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Figure 1. Changes in prey species (P1) w.r.t. parameter a13
is shown in (a). The maximum Lyapunov exponents are drawn
in (b) for a13 = 22 with remaining parameters’ values given in
Example 2.7.

Example 2.7. First of all, we verify the results obtained in the article [[31]] by
taking a13 as bifurcation parameter and remaining parameters’ value as: k1 =
0, k2 = 0, k3 = 0, r = 5, a11 = 0.4, a12 = 1, a21 = 1, a23 = 1, d1 = 1, h1 = 0, a31 =
0.1, a32 = 1, d2 = 1.2, h2 = 0. For the chosen set of parameters, the system (2.2)
has a unique Hopf-bifurcation threshold a13

[H] = 0.79634, and the corresponding
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bifurcation diagrams is shown in Figure 1(a), which agrees with the diagram given
in [31]. From these figures, it is clear that increasing the value of the bifurcation
parameter a13 results in chaotic behavior. To confirm the chaotic dynamics of the
system (2.2), the maximum Lyapunov exponents are also drawn in Figure 1(b) for
a13 = 22.
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Figure 2. (a) represents the changes in prey species (P1), w.r.t.
prey consumption rate a13. The maximum Lyapunov exponents
are plotted in (b) for a13 = 2.

Example 2.8. Now, we check the effect of a13 on the dynamics of the system (2.2)
in the presence of harvesting h1 and h2. To study the effect of a13, we choose a
set of parameters’ values as: k1 = 0, k2 = 0, k3 = 0, r = 5, a11 = 0.4, a12 = 1, a21 =
1, a23 = 1, d1 = 1, h1 = 0.1, a31 = 0.1, a32 = 1, d2 = 1.2, h2 = 0.27. If we choose a13
as the bifurcation parameter, then we get a unique Hopf-bifurcation threshold at
a13

[H] = 1.39875. The corresponding bifurcation diagrams is shown in Figure 2(a).
These three figures confirm that increasing the values of the bifurcation parameter
a13 causes the system (2.2) to remain chaotic for a narrower range of values of
a13. It gives us a hint for control of chaos from the proposed system (2.2). The
maximum Lyapunov exponents are plotted in Figure 2(b) for a13 = 22. To observe
the effects of harvesting on the dynamics of system (2.2) in absence of fear effect,
we fix a set of parameters’ value as: k1 = 0, k2 = 0, k3 = 0, r = 5, a11 = 0.4, a12 =
1, a13 = 15, a21 = 1, a23 = 1, d1 = 1, a31 = 0.1, a32 = 1, d2 = 1.2, h2 = 0.027 and
choose h1 as bifurcation parameter. For these parameters’ value the system (2.2)

has h
[H]
1 = 1.04111 as a Hopf bifurcation threshold and also a unique co-existing

steady state. Figure 3(a) show the chaotic dynamics of the proposed system (2.2),
which has been clearly confirmed by the one positive maximum Lyapunov exponent
drawn in the Figure 3(b).
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Figure 3. (a) shows variations in middle-predator (P2), w.r.t.
predator harvesting h1. (b) represents the maximum Lyapunov
exponents for h1 = 0.1.

Similarly, if we take h2 as bifurcation parameter and set: k1 = 0, k2 = 0, k3 =
0, r = 5, a11 = 0.4, a12 = 1, a13 = 25, a21 = 1, a23 = 1, d1 = 1, h1 = 0.1, a31 =

0.1, a32 = 1, d2 = 1.2, then h
[H]
2 = 20.1050 is a unique Hopf-bifurcation threshold

of the system (2.2). The corresponding chaotic bifurcation diagrams is shown
in Figure 4(a) for middle-predator (P2). This diagram shows that chaos can be
controlled by harvesting an appropriate amount of middle-predator (P2) and top-
predator (P3) populations. To confirm the existence of chaotic dynamics, we also
plotted the maximum Lyapunov exponents in Figure 4(b) and this figure shows
that one of the maximum Lyapunov exponents is positive, which is sufficient for
the existence of chaos in the system (2.2).
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Figure 4. (a) depicts the changes in top-predator species (P3),
w.r.t. predator harvesting h2. (b) shows the maximum Lyapunov
exponents for h2 = 0.5.

Example 2.9. To know the effect of a13 on the dynamics of system (2.2) in
the absence of fear k2 and k3, and in the presence of k1, h1 and h2, we choose
parameters’ values as: k1 = 0.25, k2 = 0, k3 = 0, r = 5, a11 = 0.4, a12 = 1, a21 =
1, a23 = 1, d1 = 1, h1 = 0.1, a31 = 0.1, a32 = 1, d2 = 1.2, h2 = 0.27, by varying the
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values of a13, we check the effect of consumption rate of prey by top-predator on
the system dynamics. For the chosen set of parameters, the system (2.2) has a
unique Hopf-bifurcation threshold a13

[H] = 1.7851 and a unique co-existing steady
state S∗ = (2.175087488, 1.265593839, 1.048528104). We notice that the increase
in a13 makes system dynamics chaotic through period doubling routes, which can
be seen from Figure 5(a). Also, to verify the chaotic dynamics of the proposed
system (2.2), the maximum Lyapunov exponents are plotted in Figure 5(b).
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Figure 5. (a) describes changes in prey species (P1), w.r.t. con-
sumption rate of prey by middle-predator a13, in presence of both
fear (k1) and harvesting (h1 and h2) in the system (2.2). (b)
shows the maximum Lyapunov exponents for a13 = 20.

Next, we study the impact of fear on the dynamics of the proposed system (2.2).
First, we investigate the impact of fear (k1) of the middle-predator on prey in the
absence of fear of the top-predator and the middle-predator, i.e. k2 = 0 and k3 = 0
by choosing a set of parameters with the following values: k2 = 0, k3 = 0, r =
5, a11 = 0.4, a12 = 1, a13 = 20, a21 = 1, a23 = 1, d1 = 1, h1 = 0.1, a31 = 0.1, a32 =
1, d2 = 1.2, h2 = 0.27. For these set of parameters values, the system (2.2) has

a unique Hopf-bifurcation threshold k
[H]
1 = 1.59582 and also a unique co-existing

steady state S∗ = (1.137461913, 1.093834981, 0.02807841525) if we take k1 = 0.08.
The bifurcation diagram is plotted in Figure 6(a), which shows that increasing
the impact of fear of middle-predator (k1) stabilizes the system (2.2) from chaotic
instability. The system remains chaotic because of the low cost of fear in prey
growth. It shows that prey species become more aware and save themselves from
their predators. The maximum Lyapunov exponents are also plotted in Figure
6(b) from which it is clear that one maximum Lyapunov exponents (blue curve)
is always positive.
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Figure 6. (a) shows variations in prey species (P1), w.r.t. k1.
(b) depicts the maximum Lyapunov exponents for k1 = 0.08.
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Figure 7. (a) describes the changes in the prey species (P1) w.r.t.
parameter k2. (b) represents the maximum Lyapunov exponents
for k2 = 2.

We investigate fear of the top-predator on prey (k2) if fear of the middle-predator
on prey and fear of the top-predator on middle-predator are absent in the proposed
system (2.2) by selecting a set of parameters’ values: k2 = 0, k3 = 0, r = 5, a11 =
0.49, a12 = 1, a13 = 25, a21 = 1, a23 = 1, d1 = 1, h1 = 0.1, a31 = 0.1, a32 = 1, d2 =
1.2, h2 = 0.27. A unique co-existing steady state S∗ = (1.223559715, 1.105181268,
0.1019897752) exists for the chosen set of parameters’ values with k2 = 2. Figure
7(a) shows that increasing the fear of top-predator (k2) on prey causes the system
(2.2) becomes periodically unstable through chaotic instability. The maximum
Lyapunov exponents are also drawn in Figure 7(b).
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Figure 8. (a) describes the changes in the middle-predator (P2)
w.r.t. parameter k3. (b) shows the maximum Lyapunov expo-
nents for k3 = 1.

Now, we observe the effect of (k3) in absence of the other fear in the proposed
system (2.2). We fix parameters’ values: k1 = 0, k2 = 0, r = 5, a11 = 0.4, a12 =
1, a13 = 30, a21 = 1, a23 = 1, d1 = 1.3, h1 = 0.12, a31 = 0.1, a32 = 1, d2 = 1.2, h2 =
0.27. For these chosen set of parameters values, the system (2.2) has a unique Hopf-

bifurcation threshold k
[H]
3 = 12.72310 and a unique co-existing steady state S∗ =

(3.277516693, 0.8973729144, 0.09305401362) for given Hopf-bifurcation threshold.
Figures 8(a) show that increasing the fear of top-predator (k3) on middle-predator
causes the system (2.2) becomes periodically unstable through chaotic instability.
The maximum Lyapunov exponents are drawn in Figure 8(b).
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Figure 9. (a) depicts the changes in the top-predator w.r.t. har-
vesting h2. (b) represents the maximum Lyapunov exponents for
h2 = 0.05.

We are also curious about the impact of harvesting h1 and h2 on the dynamics
of the system (2.2) in the presence of the fear effect (k1). For this purpose, we
first study the effect of harvesting h1 on the system dynamics. We fixed a set
of parameters’ values as: k1 = 0.25, k2 = 0, k3 = 0, r = 5, a11 = 0.4, a12 =
1, a13 = 20, a21 = 1, a23 = 1, d1 = 1, a31 = 0.1, a32 = 1, d2 = 1.2, h2 = 0.27.
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The corresponding bifurcation diagram is shown in Figure 10(a) for the P2 species
w.r.t. middle-predator harvesting h1 as bifurcation parameter. The Figure 10(b)
shows that one of the maximum Lyapunov exponents is positive (blue curve) which
verifies existence of chaotic dynamics of the proposed system (2.2).
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Figure 10. (a) shows the changes in the middle-predator w.r.t.
middle-predator harvesting h1. (b) depicts the maximum Lya-
punov exponents for h1 = 0.05.

To check the behavior of proposed system with respect to harvesting h2 of top-
predator, we choose a set of parameters’ values as: k1 = 0.25, k2 = 0, k3 = 0,
r = 5, a11 = 0.4, a12 = 1, a13 = 25, a21 = 1, a23 = 1, d1 = 1, h1 = 0.1,
a31 = 0.1, a32 = 1, d2 = 1.2. The corresponding bifurcation diagram is shown in
Figure 9(a), from which it is clear that the system becomes stable for increasing
values of h2. Also, for the given set of parameters’ values with h2 = 0.05 one of
the maximum Lyapunov exponents (blue curve) in Figure 9(b) is positive which
confirm the appearance of chaos in proposed ecological system.

Example 2.10. In this example, we study the impact of fears k1, k2 and k3 on
the system (2.2). First, to investigate the effect of k1 on the proposed system in
presence of other factors, i.e., harvesting (h1 and h2) and fear effects (k2 and k3),
we set parameters’ values as: k2 = 0.2, k3 = 0.5, r = 5, a11 = 0.45, a12 = 1, a13 =
20, a21 = 1, a23 = 1, d1 = 1, h1 = 0.1, a31 = 0.1, a32 = 1, d2 = 1.2, h2 = 0.027. The
bifurcation diagram presented in Figure 11(a) with respect to parameter k1 show
the appearance of chaos in the proposed system which describe the changes in prey
(P1) species. These diagrams show that the system is chaotic for small values of
k1 and chaotic dynamics become disappear for large values of k1. To verify the
appearance of chaos in the proposed system, we draw the maximum Lyapunov
exponents which is depicted in Figure 11(b). From this figure, it is clear that one
of the maximum Lyapunov exponents (blue curve) is positive
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Figure 11. (a) is the bifurcation diagram, which shows the
changes in prey species (P1) w.r.t. middle-predator fear k1. The
maximum Lyapunov exponents are plotted in (b) for k1 = 0.15.

Now, we study the dynamics of the proposed system (2.2) to observe the effect of
k2 in presence of other factors (h1, h2, k1 and k3) by choosing a set of parameters’
values as: k1 = 0.2, k3 = 0.5, r = 5, a11 = 0.45, a12 = 1, a13 = 20, a21 = 1, a23 =
1, d1 = 1, h1 = 0.1, a31 = 0.1, a32 = 1, d2 = 1.2, h2 = 0.027. The bifurcation
diagram with respect to fear of top-predator on prey species k2 for prey (P1)
population is presented in Figure 12(a). From these diagrams it can be seen that
chaotic dynamics of the system disappear for large values of k2. It means fear k2
of top-predator on prey species control the chaos of the system.
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Figure 12. (a) is the bifurcation diagram, which shows the
changes in prey (P1) species w.r.t. middle-predator fear k2. (b)
shows the maximum Lyapunov exponents for k2 = 0.15.
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Figure 13. (a) is the bifurcation diagrams, which shows the
changes in middle-predator (P2) species w.r.t. middle-predator
fear k3. (b) represent the maximum Lyapunov exponents for k2 =
1.5.

The maximum Lyapunov exponents are plotted in Figure 12(b) for k2 = 0.15
with remaining parameters’ values same as above.

Also, we study the dynamics of the proposed system for k3 in presence of
other factors (h1, h2, k1 and k2) by choosing a set of parameters’ values as: k1 =
0.015, k2 = 10, r = 5, a11 = 0.4, a12 = 1, a13 = 25, a21 = 1, a23 = 1, d1 = 1.3, h1 =
0.1, a31 = 0.1, a32 = 1, d2 = 1.2, h2 = 0.027. The bifurcation diagrams with respect
to parameter k3 for middle-predator is presented in Figure 13(a). To observe the
appearance of chaotic behavior of the proposed system, we draw the maximum
Lyapunov exponents in Figure 13(b) for k2 = 1.5. From this figure, it is seen that
one of the maximum Lyapunov exponents is positive.

3. Conclusion

In this article, we analyzed a prey-predator system for three species by incorpo-
rating fear effects of predators on their prey with predators harvesting. Analyti-
cally, we have derived conditions for the positivity and boundedness of solutions in
support of ecological feasibility of the proposed system by using suitable differential
inequalities. We have shown analytically the existence of ecological steady states
and observed that the proposed system has multiple co-existing steady states. Fur-
ther, the local stability analysis of each steady states of the system is performed
with the help of characteristic values of the Jacobian matrix. The global stability
using suitable Lyapunov functions of various steady states which are locally stable
can also be performed in future studies. Since, the model system dynamics transits
from the limit cycle to a stable focus, resulting in Hopf bifurcation. Therefore,
we have also done Hopf bifurcation in our analysis. We have numerically shown
that the system enters into Hopf-bifurcation with consumption rate of prey by
intermediate consumer (a13), the fear parameters (k1, k2 and k3), and harvesting
in predators (h1 and h2) as bifurcation parameters.

We observe that in absence of parameters k1, k2, k3, h1 and h2, the proposed
system which is same as a food web model proposed by [31] agrees with the results
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discussed in this article. To study the dynamics of the proposed system due to
impact of fears of predators on their preys and harvesting of both predators, we
have plotted the bifurcation diagrams with respect to each of these parameters.
From the bifurcation diagrams, we observe that increase either of the parameters
k1, k2, k3, h1 and h2 can control chaos which is observed by [31] with respect to
a13. In case of multiple steady states more dynamics can be performed in form of
saddle-node bifurcation and bifurcation of periodic solutions in future.
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4. Appendix

Appendix-A

Proof. (a) The system (2.2) along with initial condition (2.3) gives

P1(t) = P1(0) exp

(∫ t

0

ψ[1](P1(τ), P2(τ), P3(τ))dτ

)
> 0,

P2(t) = P2(0) exp

(∫ t

0

ψ[2](P1(τ), P2(τ), P3(τ))dτ

)
> 0

and P3(t) = P3(0) exp

(∫ t

0

ψ[3](P1(τ), P2(τ), P3(τ))dτ

)
> 0.

This result ensures that solutions of the system (2.2) originating from the region
R3

+ remain inside it for all t ≥ 0. □

Proof. (b) Let us define a function χ(t) = P1 +
a12

a21
P2 +

a13

a31
P3, then the derivative

of χ(t) with respect to time t given as

dχ(t)

dt
=
dP1

dt
+
a12
a21

dP2

dt
+
a13
a31

dP3

dt
,

which can be written as

dχ(t)

dt
=

P1 (r − a11P1)

1 + k1 P2 + k2 P3
− a12 k3 P1 P2 P3

1 + k3 P3
− a12 d2P2

a21
− a13 d2P3

a31

−
{
a12 h1P

2
2

a21
−
(
a13 a32
a31

− a23 a12
a21

)
P2 P3 +

a13 h2P
2
2

a31

}
.
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For a positive constant M , we have

dχ(t)

dt
+Mχ(t) =

P1 (r − a11P1)

1 + k1 P2 + k2 P3
+MP1 +

a12 (M − d1)P2

a21
+
a13 (M − d2)P3

a31

− a12 k3 P1 P2 P3

1 + k3 P3
−
{
a12h1P2

2

a21
−
(
a13a32
a31

− a23a12
a21

)
P2P3 +

a13h2P
2
3

a31

}
.

The expression

a12h1
a21

P 2
2 −

(
a13a32
a31

− a23a12
a21

)
P2P3 +

a13h2
a31

P 2
3

is a quadratic form and will be positive definite if it satisfies the condition:

2 a12 a13 a21 a31 (a32 a23 + 2 h1 h2 ) > a213a
2
21a

2
32 + a212 a

2
23a

2
31.

If we choose M = min(d1, d2), then under the above condition, we can write

dχ(t)

dt
+Mχ(t) ≤ −a11

(
P1 −

r +M

2 a11

)2

+
(r +M)

2

4 a11
.

This gives

dχ(t)

dt
+Mχ(t) ≤ (r +M)

2

4 a11
.

Now, using the theory of differential inequality [33], we obtain

0 < χ(t) ≤ (r +M)
2

4 a11M

(
1− e−Mt

)
+ χ(0) e−Mt.

Therefore,

0 < lim
t→∞

χ(t) ≤ (r +M)
2

4 a11M
.

Hence, all solutions of the system (2.2) with initial condition (2.3) which starts
from R3

+ are bounded in the region Ω. □

Appendix-B

B1 = k2a13h
2
1k

2
3a

2
31 + k1a12k

2
3a

2
23a

2
31 − h1k2a12a23k

2
3a

2
31 − h1k1a13a23k

2
3a

2
31,

B2 = 2 a12k1a
2
31a23k

2
3d1−a13k1a231k23h1d1−2 a13k1a

2
31h1a23k3−a12k2a231k23h1d1−

2 a12k2a
2
31h1a23k3−a12a231k23h1a23+a11a32a31k23h1a23+a13k1a31k3h1a21h2+2 a13

k2a31a21a32k3h1+2 a13k2a
2
31h

2
1k3+a11h2a31k

2
3h

2
1+a13a

2
31k

2
3h

2
1+2 a12k1a

2
31a

2
23k3−

a12k2a31a21a32a23k3−2 a12k1a31a21h2a23k3+a12k2a31k3h1a21h2−a13k1a31a21a32
a23k3,

B3 = a11a32k3h1a21h2−2 a12k1a31a21h2a23+2 a11a32a31h1a23k3−a12a31a21a32a23
k3+a12a31k3h1a21h2−a12k2a31a21a32a23+a12k2a31h1a21h2−a13k1a31a21a32a23+
a13k1a31h1a21h2+2 a13a31a21a32k3h1+2 a13k2a31a21a32h1+a12k1a

2
31a

2
23−ra231k23

h21 + 2 a13a
2
31h

2
1k3 + a13k2a

2
31h

2
1 + a13k2a

2
21a

2
32 + a12k1a

2
21h

2
2 + a11a

2
32a21a23k3 +

2 a11h2a31h
2
1k3−2 a12a

2
31h1a23k3−a12k2a231h1a23−a13k1a231h1a23+a13k1a221a32h2+

a12k2a
2
21a32h2+a12k1a

2
31d

2
1k

2
3−a12a231k23h1d1+a11d2a31k23h21−2 a12k1a31a21d2a23k3

−2 a12k1a31a21h2d1k3−a12k2a31a21a32d1k3+a12k2a31k3h1a21d2−a13k1a31a21a32
d1k3+a13k1a31k3h1a21d2+4 a12k1a

2
31a23d1k3+a11a32a31k

2
3h1d1−2 a12k2a

2
31h1d1k3
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− 2 a13k1a
2
31h1d1k3,

B4 = a13a
2
21a

2
32+a13a

2
31h

2
1−2 ra31a21a32k3h1−a12a231h1a23−2 ra231h

2
1k3+a11h2a31

h21+a11a
2
32a21a23+a12a

2
21a32h2+2 a13a31a21a32h1+a11a32a31h1a23−a12a31a21a32

a23+a12a31h1a21h2+a11a32h1a21h2+2 a12k1a
2
31d

2
1k3+2 a12k1a

2
31a23d1+a11a

2
32a21

d1k3+a12k2a
2
21a32d2+a13k1a

2
21a32d2+2 a12k1a

2
21d2h2−2 a12a

2
31h1d1k3−a12k2a231h1

d1 − a13k1a
2
31h1d1 + 2 a11d2a31h

2
1k3 − 2 a12k1a31a21d2d1k3 − 2 a12k1a31a21d2a23 −

2 a12k1a31a21h2d1 + 2 a11a32a31h1d1k3 − a12a31a21a32d1k3 + a12a31k3h1a21d2 −
a12k2a31a21a32d1+a12k2a31h1a21d2−a13k1a31a21a32d1+a13k1a31h1a21d2+a11a32
k3h1a21d2

and B5 = a11a32h1a21d2−2 a12k1a31a21d2d1+a12k1a
2
21d

2
2+a12k1a

2
31d

2
1−a12a231h1

d1− ra221a232+a11d2a31h21− ra231h21+a11a232a21d1+a11a32a31h1d1+a12a221a32d2−
a12a31a21a32d1 + a12a31h1a21d2 − 2 ra31a21a32h1.
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