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Abstract. In the present study, a semi-analytical solution is obtained for the
Casson fluid flow between two porous stretchable disks with mass transpira-

tion. The governing equations are reduced to a non-linear ordinary differential

equation using suitable similarity transformations. The solution is obtained
using a semi-analytical technique (Homotopy Perturbation Method). The

effects of Reynolds number (R), Casson parameter (γ), and mass transpi-

ration (λ) for the flow problems are investigated in detail. The radial and
vertical velocity profiles were found for moderately large Reynolds numbers.

It is observed that the increase in the values of the Casson parameter sup-

presses the velocity field. As the Reynolds number increases, a boundary
layer behaviour is observed near the wall with constant velocity core flow in

the centreline region between two disks for mass suction or lower mass in-
jection. The effects of mass transpiration on the flow are quite different and

interesting. The present scheme developed admits a remarkable accuracy and

has an analytical structure solution, which helps to compute various physical
quantities. The results are obtained through an efficient algorithm for HPM

using MATHEMATICA. The results are shown in the form of graphs and

tables.

1. Introduction

The flow through stretching boundaries is important in industrial applications.
Stretching boundary is widely used in the extrusion process of polymers, plastic,
thin films, etc. Based on boundary layer assumptions Sakiadis [9] first proposed
the solution for the surface stretching problem. An analytical solution for the
two-dimension Navier-Stokes equation was given by Crane [3]. Gupta et al. [4]
further explored the Crane problem and found a solution for injection and suction
at the wall. They found the exact solution for suction/injection of the surface,
including heat transfer aspects, and influenced suction/injection parameters on
the flow profile. Wang [16] extended the stretching boundary value problem to a
three-dimension.

The significance of poroisty in fluid mechanics is immense as it plays a vital
role in characterizing the fluid flow in porous system. Zaturka and Banks [17]
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studied the combined effect of stretching walls and porosity. Mass transpiration
phenomena plays an important role in various industrial application including ma-
terial separation, micro and ultra filteration, etc. The efficiency and effectiveness
of many processes, where a material having different transport coefficient can be
analysed using this concept. Tiegang Fang [13] investigated the flow between two
coaxial infinite stretching disks. Fang and Zhang [14] extended their work by con-
sidering both mass transpiration and stretching motion. The flow over a disk or
between disks is popular among researchers because of their applications in engi-
neering, such as rotating disk reactors, heat exchangers, bio-fluids, chemical, and
automobile industries. Recently, Awati et al. [1] studied the series solution for
the viscous flow between two porous disks and stretching motion in the presence
of suction/injection with mass transpiration.

Mathematical models narrating the realistic flow problems often involve non-
Newtonian fluids. One of these fluids is Casson fluid. It acts as an elastic solid
above threshold shear stress and small shear strain. Casson fluid model is a pre-
ferred rheological model for many fluids, including blood and chocolate. [[15],
[11]]. Squeezing flow of Casson fluid between two parallel plates is widely studied
by various authors [[15], [10]]. Casson fluid over a stretching surface studied by
Mukhyopadhyay [12]. The magnetohydrodynamic laminar flow between porous
disks studied by Chandrasekhara et al. [2].

The homotopy perturbation method is a powerful mathematical tool to solve
various non-linear problems. The technique is straightforward; it requires no small
parameter. The solutions obtained are highly accurate even with few iterations
[[5], [6], [7], [8]]. Casson fluid flow between two porous disks with stretching motion
is yet to be considered. In this paper, we fill out the gap of the flow profile for
Casson fluid flow between two stretchable disks considering mass transpiration.
Solutions are obtained using Homotopy Perturbation Method.

2. Mathematical Modeling

Consider an axis-symmetric Casson fluid flow between two stretchable infinite
disks with a distance 2d between them. Let the disks be lie in the plane z = −d
and z = d. The same velocity proportionate to the radii is applied to both discs
to stretch them in the radial direction. This formulation is for infinite stretchable
disks; however, it can also be applied to finite stretchable disks of sufficiently large
diameters in the region near the central axis by ignoring the edge effects. The
disks are assumed to be porous, allowing mass transpiration.
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Figure 1. Schematic diagram of the problem

The steady state, axis-symmetric Navier Stokes flow equations in the cylindrical
coordinates are
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where V = (ur, uz) is the velocity vector. ν, γ, p and ρ are the kinematic viscosity,
Casson parameter, fluid pressure, and the density of the fluid respectively. The
similarity transformations are

ur = rEF (η) (2.4)

uz = EdH(η) (2.5)

p = ρEν
[
P (η) +

βr2

4d2
]
+ P0 (2.6)

here the pressure at the bottom disk is called as the reference pressure denoted by
P0 and η = z

d , the similarity variable. In this work, the definition of η is not a real
similarity variable, but a non- dimensional distance. This definition is formed on
the flow characteristics of the considered configuration. The quantity E is the disk
stretching strength parameter with a unit 1

s , and β is a parameter corresponding to
pressure gradient for the radial pressure. Substitute equation (2.4) into equations
(2.1, 2.2) and (2.3) gives a similarity group of equations as follows

H ′ = −2F (2.7)(
1 +

1

γ

)
F ′′ − β = R(F 2 + F ′H) (2.8)

P ′ = 2RFH − 2
(
1 +

1

γ

)
F ′ (2.9)

with boundary conditions

H(−1) = −λ,H(1) = λ, F (1) = 1, F (−1) = 1, P (−1) = 0. (2.10)
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If h and Uc = Ed are the characteristic length and velocity, the Reynolds number

is denoted by R = Ed2

ν . Here ν is the fluid kinematic viscosity. The parameter λ
illustrates the mass transpiration strength at the two disks (symmetry assumed).
The Reynolds number indicates the disk stretching strength for given d and ν and
also the mass transpiration velocity strength for a given λ. λ > 0 indicates mass
suction at the disks and λ < 0, a mass injection. Substitute equation (2.7) into
equation (2.8) gives (

1 +
1

γ

)
H ′′′ + β −RHH ′′ +

RH ′2

2
= 0 (2.11)

with the associated boundary conditions as

H ′(1) = −2, H ′(−1) = −2, H(1) = λH(−1) = −λ. (2.12)

Taking derivative of equation (2.11) with respect to η, we obtain(
1 +

1

γ

)
H ′′′′ −RHH ′′′ = 0 (2.13)

with the same boundary conditions as in equation (2.12).

3. Method of Solution

The problem is solved using a semi-analytical technique named Homotopy Per-
turbation Method (HPM). To illustrate the solution of HPM solution for a non-
linear differential equation, let us take,

E[f(ξ)]− f1(ξ) = 0 (3.1)

where E, ξ, f(ξ) and f1 represent the operator, independent variable, unknown
function, and a known function. E can be also expressed as

E = L+N

where L,N are the simple linear part and the remaining part of the equation
(3.1).

With the right choice of L,N , homotopy equation can be obtained. The homo-
topy equation is of the form

H(ϕ(n, q; q)) = (1− q)[L(ϕ, q)− L(v0(ξ))] + q[E(ϕ, q)− f1(ξ)] = 0 (3.2)

Here q is called an embedding parameter and its value of q varies from zero to
unity. The initial guess to the equation (3.1) is v0(ξ). So we assume the solution
of equation (3.2) as follows

ϕ(n, q) =

∞∑
n=0

qnfn(ξ) (3.3)

The solution to the considered problem is equation (3.3) at q = 1 [5].

The zeroth, first and second order solutions of the considered problem are as
follows

H0(η) =
1

2

[
2η − 2η3 + 3ηλ− η3λ

]
(3.4)
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H1(η) =
1
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]

(3.7)

4. Results and Discussion

The effects of Reynolds number, mass transpiration parameter and Casson pa-
rameter on the fluid flow profile are discussed in this section. The velocity profiles
are obtained using HPM, which are drawn only between η = 0 and η = 1 because
of the symmetry at η = 0 for different values of γ, λ, and R. The impact of
different values of R with γ = 0.3 on velocity profile for no mass transpiration
(λ = 0) is demonstrated in Figure 2. The vertical velocity curve is linear near
the central region and decreases with an increase in R. We note that the radial
velocity increases in the region 0 ≤ η ≤ 0.5 and decreases in 0.5 ≤ η ≤ 1.

Figure 3 shows the velocity profiles for various values of R, γ = 0.2 for mass
suction (λ = 2). The vertical velocity is observed to be decreased as there is an
increase in R. The radial velocity profile nature was found to be the same as the
no mass transpiration case. Figure 4 depicts the effect of different values of R
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and γ = 0.2 on the velocity profile with mass injection (λ = −5). The vertical
velocity is observed to be decreasing as we increase R. It is also noted that radial
velocity increased in the region 0 ≤ η ≤ 0.4, and an opposite trend is noted in the
0.4 ≤ η ≤ 1 region.

Figures 5 and 6 represent the mass suction effect on the velocity profile with
γ = 0.2 for R = 0.1 and R = 2, respectively. The magnitude of vertical velocity
increase with an increase of λ, and a reverse behavior is noted in the case of the
radial velocity profile. Figures 7 and 8 show the effect of mass injection for R = 0.1
and R = 2, respectively, for γ = 0.2. The nature of the corresponding curves was
found to be opposite to that of the mass suction case.

The impact of the Casson parameter on the velocity profile for R = 10 is shown
in Figure 9. It demonstrates the suppression of vertical velocity as there is an
increase in γ. The radial velocity is found to be increasing in 0 ≤ η ≤ 0.5 and
decreasing in 0.5 ≤ η ≤ 1 region. Table 1 shows the wall shear stress H ′′(1) for
different values of λ, γ and R. The values of H ′′(1) is found to be decreasing with
an increase of the mass transpiration parameter and the Reynolds number. We
can also observe the suppression of wall shear stress for increment in the Casson
parameter.

Table 1. Wall shear stress H ′′(1)

γ λ R = 0 R = 1 R = 2 R = 5 R = 10
0.1 -5 9 8.69790 8.42858 7.78808 7.12565

-3 3 2.94217 2.88802 2.74571 2.56463
-1 -3 -2.98713 -2.97449 -2.93789 -2.88108
1 -9 -9.10275 -9.20843 -9.54320 -10.16080
3 -15 -15.41800 -15.86760 -17.41560 -20.69080
5 -21 -21.94680 -23.01000 -26.45290 -36.12470

0.2 -5 9 8.47132 8.04451 7.20996 6.54524
-3 3 2.89680 2.80542 2.59064 2.37235
-1 -3 -2.97658 -2.95391 -2.89021 -2.79688
1 -9 -9.19062 -9.39112 -10.05260 -11.35430
3 -15 -15.79050 -16.69000 -20.08390 -28.01080
5 -21 -22.82440 -25.05690 -34.37830 -55.53660

0.3 -5 9 8.29608 7.77451 6.90347 4.06303
-3 3 2.86032 2.74243 2.49014 2.27396
-1 -3 -2.96777 -2.93698 -2.85252 -2.73458
1 -9 -9.26656 -9.55213 -10.52410 -12.51710
3 -15 -16.12320 -17.49530 -22.81470 -35.45830
5 -21 -23.6329 -27.06940 -42.27290 -69.75080
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Figure 2. (A) Vertical and (B) Radial velocity profiles for for
different R when γ = 0.3 and λ = 0.
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Figure 3. (A) Vertical and (B) Radial velocity profiles for dif-
ferent R when γ = 0.2 and λ = 2
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Figure 4. (A) Vertical and (B) Radial velocity profiles for dif-
ferent R when γ = 0.2 and λ = −5
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Figure 5. (A) Vertical and (B) Radial velocity profiles for dif-
ferent positive mass transpiration strength when γ = 0.2 and
R = 0.1.
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Figure 6. (A) Vertical and (B) Radial velocity profiles for differ-
ent positive mass transpiration strength when γ = 0.2 and R = 2.
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Figure 7. (A) Vertical and (B) Radial velocity profiles for dif-
ferent negative mass transpiration strength when γ = 0.2 and
R = 0.1.
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Figure 8. (A) Vertical and (B) Radial velocity profiles for differ-
ent negative mass transpiration strength when γ = 0.2 and R = 2.
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Figure 9. (A) Vertical and (B) Radial velocity profiles for dif-
ferent Casson parameter when λ = 2 and R = 10.
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5. Conclusion

In this paper we have analysed the semi-analytical solution for the Casson
fluid flow between two porous stretchable disks with mass transpiration. We have
obtained the effects of mass transpiration parameter, Reynolds number and Casson
parameter on the fluid flow with the help of homotopy perturbation method. HPM
is flexible and very efficient method to solve non-linear differential equation. This
approach reveals the analytical structure of the solution. Contrary to numerical
schemes, where each scheme must be developed separately, the resultant quantity
can be produced quickly and efficiently. The proposed method requires less storage
space and time.
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