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Abstract. This research paper develops and extends the existence of maxi-

mal and minimal solutions for a class of nonlinear fractional integrodifferential
equations involving the Atangana-Baleanu operator. By means of Arzela-

Ascoli theorem with help of the upper and lower solutions method, we inves-

tigate the sufficient conditions of existence of maximal and minimal solutions
for the suggested problem. An example in order to illustrate the validity of

the main results.

1. Introduction

The idea of fractional calculus (FC) has been appearanced by G. W. Leibniz
and G. de l’Hôpital in 1695 where an issue about the 1/2 derivative was taken up.
Numerous scientists and researchers as of late focused on fractional derivatives
(FDs), principally because of their advantage in modeling fractional differential
equations (FDEs) for physical and engineering processes. At this crossroads, it is
significant that the mathematical models of classical differential equations do not
work satisfactorily much of the cases.

Subsequently, as of late FC is utilized in many fields including mechanics, pop-
ulation dynamics, image processing, and different scientific areas like electrochem-
istry, viscoelasticity, fluid flow, and engineering [1, 2, 3, 4, 5].

The theory and applications of FC extended enormously over the nineteenth and
twentieth hundreds of years, and various contributors and authors have introduced
definitions for FDs and fractional integrals (FIs). The most used FDs are the
Riemann-Liouville, Caputo and Hilfer types. There are other types of FDs as
well, we refer to some of them, see [6, 7, 8, 9] and references therein.

Besides, the above FDs have a singularity at the beginning since the solution
representations contain exponential and Mittag-Leffler function (MLF). This con-
straint reduces the practical applicability, additionally to utilize Caputo’s FD of
a function, one should evaluate its derivative, it requests regularity on differenti-
ation. To realize the physical basis of the FC with various memory, Caputo and
Fabrizio [10] presented a new definition on FD of order without a nonsingular
kernel.
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This operator contains a non-singular kernel yet still conserves the most sub-
stantial peculiarity of the classical fractional operators. Utilizing this operator
created better outcomes compared with the FDs singular kernel.

However, an encumbrance of this FD emerged in view of the fact that the
associated integral can be written in terms of an integral of integer order. To
avoid this obstacle, Atangana and Baleanu [11] introduced a new version of FDs,
so-called AB operators which allows the generalized MLF as the non-singular and
non-local kernel and responds to most of the properties of FDs. Many authors
contributed to growing the AB-type FC, see [12, 13, 14], also, many of its uses
appeared in the field of epidemiological modeling and the qualitative theory of
FDEs, see Koca [15], Atangana and Gomez-Aguilar in [16], Toufik and Atangana
[17], Khan et al. [18], Jarad et al. [19]. Abdo et al. [20, 21, 22, 23, 24].

Fractional integrodifferential equations (FIDEs) are generalizations of FDEs,
Fredholm and Volterra integral equations. These sorts of equations emerge in
numerous modeling problems in mathematical physics, like heat conduction in
materials with memory, we refer here to some recent contributions on this type of
problems, see [25, 26, 27, 28, 29].

On the other hand, the investigation of the existence of solutions of different
types of FDEs by the using of different techniques of fixed point and upper and
lower solutions methods can be found in [30, 31, 32, 33].

Motivated by above papers, and inspired by [11, 31], we investigate the sufficient
conditions of existence of maximal and minimal solutions for the following AB-type
FIDE { ABCDµa+ψ(%) = f(%, ψ(%),AB Iµa+ψ(%)), % ∈ [a, b],

ψ(a) = ψa,
(1.1)

where 0 < µ < 1, 0 < a < b <∞, ABCDµa+ and ABIµa+ are AB-type FD and FI of
order µ, respectively, f : [a, b]× R× R→ R is a continuous, and ψa ∈ R.

We give interesting results for ABC-type FIDE. Most of our derivations are
made using Schauder’s fixed point theorems, and upper/lower solution method.

The paper is structured as follows: In Section 2, we give some basic results
needed in the seque. In Section 3, we prove the existence of maximal and minimal
solutions to the problem (1.1). An example is provided in Section 4.

2. Preliminaries

In this section, we give some essential definitions and lemmas of AB-type FC
which are needed whole this paper. Assume X = C([a, b],R) be a Banach space
with the norm ‖ψ‖ = max {|ψ(%)| ; % ∈ [a, b]} ; ψ ∈ X.

Definition 2.1. [11] Let 0 < µ < 1, and ψ ∈ H1(a, b), a < b. The ABC FD for
function ψ of order µ is given by

ABCDµa+ψ(%) =
N(µ)

1− µ

∫ %

a

ψ′(ξ)Eµ

(
−µ(%− ξ)µ

1− µ

)
dξ. (2.1)

Further, the ABR FD is defined by

ABRDµa+ψ(%) =
N(µ)

1− µ
d

d%

∫ %

a

ψ(ξ)Eµ

(
−µ(%− ξ)µ

1− µ

)
dξ. (2.2)
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Here, N(µ) > 0 is a normalization function satisfies N(0) = N(1) = 1 and Eµ
represents the MLF.

Definition 2.2. [11] Let 0 < µ < 1 and ψ be function, then AB FI of order µ is
given by

ABIµa+ψ(%) =
1− µ
N(µ)

ψ(%) +
µ

N(µ)
RLIµa+ ψ(%)

=
1− µ
N(µ)

ψ(%) +
µ

N(µ)Γ(µ)

∫ %

a

ψ(ξ)(%− ξ)µ−1dξ, (2.3)

where
RLIµa+ ψ(%) =

1

Γ(µ)

∫ κ

a

ψ(ξ)(κ − ξ)µ−1dξ

is called the Riemman-Liouville FI [1].

Definition 2.3. [14] Let n < µ ≤ n + 1, n ∈ N and ψ be a function such that
ψ(n) ∈ H1(a, b). Then ABC FD satisfies ABCDµa+ψ(%) = ABCDηa+ ψ(n)(t), where
η = µ− n.

Lemma 2.4. [14] For n < µ ≤ n+ 1, n ∈ N,
ABIµa+

ABCDµa+ ψ(%) = ψ(%) + d0 + d1 (%−a) + d2 (%−a)
2

+ · · ·+ dn (%−a)
n
,

where di( i = 0, 1, 2, ..., n) is an arbitrary constant.

Theorem 2.5. [34] (Arzela-Ascoli’s Theorem). Let X be a Banach space. A
subset F in X is relatively compact iff it is uniformly bounded and equicontinuous.

3. Main results

In this section, we prove the existence of maximal and minimal solutions for
(1.1).

Lemma 3.1. [11] Let 0 < µ < 1 and h : [a, b]→ R is a continuous with h(a) = 0.
Then the linear ABC-type FDF

ABCDµa+ψ(%) = h(%), % ∈ [a, b],
ψ(a) = ψa

(3.1)

is equivalent to

ψ(%) = ψa +
1− µ
N(µ)

h(%) +
µ

N(µ)Γ(µ)

∫ %

0

h(ξ)(%− ξ)µ−1dξ. (3.2)

As result of Lemma 3.1, we get the following Lemma:

Lemma 3.2. Assume that f : [a, b]× R× R→ R is a continuous with
f(a, ψ(a),AB Iµa+ψ(a)) = 0. Then the nonlinear ABC-type FIDF (1.1) is equivalent
to the fractional integral equation (FIE)

ψ(%) = ψa +
1− µ
N(µ)

f(%, ψ(%),AB Iµa+ψ(%))

+
µ

N(µ)Γ(µ)

∫ %

a

(%− ξ)µ−1f(ξ, ψ(ξ),AB Iµa+ψ(ξ))dξ. (3.3)
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Now, we shall introduce the concept of upper and lower solutions for the FIE
(3.3), which play an important role in our forthcoming analysis.

Definition 3.3. A pair of functions (ψ,ψ) ∈ X×X is called to be upper and lower
solutions of FIE (3.3), respectively, if

ψ(%) ≤ ψa +
1− µ
N(µ)

f(%, ψ(%),
ABIµa+ψ(%))

+
µ

N(µ)Γ(µ)

∫ %

a

(%− ξ)µ−1f(ξ, ψ(ξ),
ABIµa+ψ(ξ))dξ

and

ψ(%) ≥ ψa +
1− µ
N(µ)

f(%, ψ(%),
ABIµa+ψ(%))

+
µ

N(µ)Γ(µ)

∫ %

a

(%− ξ)µ−1f(ξ, ψ(ξ),
ABIµa+ψ(ξ))dξ.

In the sequel, we denote an admissible set of solutions for FIE (3.3) governed
by a pair of upper

and lower solutions (ψ,ψ) as follows

Π(ψ,ψ) =
{

ψ ∈ X : ψ(%) ≤ ψ(%) ≤ ψ(%), % ∈ [a, b]
}
,

where ψ is a solution of (3.3).

Theorem 3.4. Let f ∈ C([a, b],R×R,R) with f(a, ψ(a),AB Iµa+ψ(a)) = 0. Suppose

that (ψ,ψ) ∈ X×X is a pair of upper and lower solutions of FIE (3.3) with ψ(%) ≤
ψ(%) for %∈ [a, b]. If (ψ, ω) 7→ f(%, ψ, ω) is nondecreasing, that is

f(%, ψ1, ω1) ≤ f(%, ψ2, ω2), for ψ1 ≤ ψ2, and ω1 ≤ ω2,

then there exist maximal and minimal solutions ψL, ψU ∈ Π(ψ,ψ) such that for each

ψ ∈Π(ψ,ψ),

ψL(%) ≤ ψ(%) ≤ ψU (%), % ∈ [a, b].

Proof. initially, we structure two sequences {ωn} and {$n} as follows
ω0 = ψ,

ωn+1(%) = ψa + 1−µ
N(µ) f(%, ωn(%),AB Iµa+ωn(%))

+ µ
N(µ)Γ(µ)

∫ %
a

(%− ξ)µ−1f(ξ, ωn(ξ),AB Iµa+ωn(ξ))dξ, % ∈ [a, b], n = 0, 1, ...

and
$0 = ψ,

$n+1(%) = ψa + 1−µ
N(µ) f(%,$n(%),AB Iµa+$n(%))

+ µ
N(µ)Γ(µ)

∫ %
a

(%− ξ)µ−1f(ξ,$n(ξ),AB Iµa+$n(ξ))dξ, % ∈ [a, b], n = 0, 1, ...

Next, we divide the proof into several parts.
Part 1: Sequences {ωn} and {$n} satisfy

ψ(%) = ω0(%) ≤ ω1(%) ≤ ... ≤ ωn(%) ≤ ... (3.4)

... ≤ $n(%) ≤ ... ≤ $1(%) ≤ $0(%) = ψ(%),
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for % ∈ [a, b]. Now, we will prove that sequence {ωn} is nondecreasing and

ωn(%) ≤ $0(%), for % ∈ [a, b], n = 0, 1, ...

As per the assumptions, we have ψ(%) = ω0(%) ≤ ψ(%) = $0(%), for % ∈ [a, b] and

ω1(%) = ψa + 1−µ
N(µ) f(%, ω0(%),AB Iµa+ω0(%))

+ µ
N(µ)Γ(µ)

∫ %
a

(%− ξ)µ−1f(ξ, ω0(ξ),AB Iµa+ω0(ξ))dξ

≥ ω0(%), % ∈ [a, b],

As (ψ, ω) 7→ f(%, ψ, ω) is nondecreasing, then it is clear that

f(%, ω0(%),AB Iµa+ω0(%)) ≤ f(%,$0(%),AB Iµa+$0(%)).

Hence

ω1(%) ≤ ψa + 1−µ
N(µ) f(%,$0(%),AB Iµa+$0(%))

+ µ
N(µ)Γ(µ)

∫ %
a

(%− ξ)µ−1f(ξ,$0(ξ),AB Iµa+$0(ξ))dξ

≤ $0(%), % ∈ [a, b],

By induction, we suppose that

ωn−1(%) ≤ ωn(%) ≤ $0(%), % ∈ [a, b].

According to the definition of {ωn}, we have

ωn(%) = ψa + 1−µ
N(µ) f(%, ωn−1(%),AB Iµa+ωn−1(%))

+ µ
N(µ)Γ(µ)

∫ %
a

(%− ξ)µ−1f(ξ, ωn−1(ξ),AB Iµa+ωn−1(ξ))dξ, % ∈ [a, b], n = 0, 1, ...

and

ωn+1(%) = ψa + 1−µ
N(µ) f(%, ωn(%),AB Iµa+ωn(%))

+ µ
N(µ)Γ(µ)

∫ %
a

(%− ξ)µ−1f(ξ, ωn(ξ),AB Iµa+ωn(ξ))dξ, % ∈ [a, b], n = 0, 1, ...

From the monotonicity of f, we get

ωn(%) ≤ ωn+1(%) ≤ $0(%), % ∈ [a, b].

Now, by induction, we assume that ωn(%) ≤ $n(%), for % ∈ [a, b].
Similarly, we facilely conclude from the monotonicity of f that

ωn+1(%) ≤ $n+1(%), for % ∈ [a, b].

Moreover, the sequence {$n} is nonincreasing.
Part 2: Sequences {ωn} and {$n} are relatively compact in X.
From the continuity of f and since ϕ,ψ ∈ X along with Part 1, we conclude that

ωn,$n ∈ X.
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It follows from (3.5) that {ωn} and {$n} are uniformly bounded. Now, for any
%1, %2 ∈ [a, b] with %1 ≤ %2, we have

|ωn+1(%2)− ωn+1(%1)|

=
1− µ
N(µ)

∣∣f(%2, ωn(%2),AB Iµa+ωn(%2))− f(%1, ωn(%1),AB Iµa+ωn(%1))
∣∣

+
µ

N(µ)Γ(µ)

∣∣∣∣∫ %2

a

(%2 − ξ)µ−1f(ξ, ωn(ξ),AB Iµa+ωn(ξ))dξ

−
∫ %1

a

(%1 − ξ)µ−1f(ξ, ωn(ξ),AB Iµa+ωn(ξ))dξ

∣∣∣∣
≤ 1− µ

N(µ)

∣∣f(%2, ωn(%2),AB Iµa+ωn(%2))− f(%1, ωn(%1),AB Iµa+ωn(%1))
∣∣

+
µ

N(µ)Γ(µ)

∣∣∣∣∫ %1

a

[
(%2 − ξ)µ−1 − (%1 − ξ)µ−1

]
f(ξ, ωn(ξ),AB Iµa+ωn(ξ))dξ

∣∣∣∣
+

µ

N(µ)Γ(µ)

∣∣∣∣∫ %2

%1

(%2 − ξ)µ−1f(ξ, ωn(ξ),AB Iµa+ωn(ξ))dξ

∣∣∣∣
≤ 1− µ

N(µ)

∣∣f(%2, ωn(%2),AB Iµa+ωn(%2))− f(%1, ωn(%1),AB Iµa+ωn(%1))
∣∣

+
M

N(µ)Γ(µ)
[(%2 − a)µ − (%1 − a)µ + 2(%2 − %1)µ]

→ 0, as |%1 − %2| → 0,

where M > 0. This means that {ωn} is equicontinuous in X. From Theorem 2.5,
we infer that {ωn} is relatively compact in X. Analogically, we get {$n} is also
relatively compact in X.

Part 3: There exist minimal and maximal solutions in Π(ψ,ψ).

Part 1 and Part 2 indicate that {ωn} and {$n} are monotone and relatively
compact in X. Clearly, there exist continuous functions ω and $ with

ωn(%) ≤ ω(%) ≤ $(%) ≤ $n(%), ∀% ∈ [a, b], n ∈ N

such that {ωn} and {$n} converge uniformly to ω and $ in X, respectively.
Therefore, ω and $ are two solutions of (3.3), i.e.,

ω(%) = ψa +
1− µ
N(µ)

f(%, ω(%),AB Iµa+ω(%))

+
µ

N(µ)Γ(µ)

∫ %

a

(%− ξ)µ−1f(ξ, ω(ξ),AB Iµa+ω(ξ))dξ,

$(%) = ψa +
1− µ
N(µ)

f(%,$(%),AB Iµa+$(%))

+
µ

N(µ)Γ(µ)

∫ %

a

(%− ξ)µ−1f(ξ,$(ξ),AB Iµa+$(ξ))dξ,

for all % ∈ [a, b]. Even so, the fact (3.5) guarantees that

ψ(%) ≤ ω(%) ≤ $(%) ≤ ψ(%), for % ∈ [a, b].
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Eventually, we will show that ω and $ are the minimal and maximal solutions in
Π(ψ,ψ), respectively. For any ψ ∈ Π(ψ,ψ), we have

ψ(%) ≤ ψ(%) ≤ ψ(%), for % ∈ [a, b].

Known that f is nondecreasing, we induct

ψ(%) ≤ ωn(%) ≤ ψ(%) ≤ $n(%) ≤ ψ(%), for all % ∈ [a, b] and n ∈ N.

As n→∞, we obtain

ψ(%) ≤ ω(%) ≤ ψ(%) ≤ $(%) ≤ ψ(%), for all % ∈ [a, b] and n ∈ N.

This means that

ψL(%) = ω(%), and ψU (%) = $(%)

which are the minimal and maximal solutions in Π(ψ,ψ), respectively. This

completes the proof. �

Corollary 3.5. Suppose that assumptions of Theorem 3.4 are satisfied. Then
ABC-type FIDF (1.1) has at least one solution in X.

Proof. By the hypotheses and Theorem 3.4, we notice that Π(ψ,ψ) 6= ∅, i.e., the

solution family of the FIE (3.3) is nonempty in X. This combines along with
Lemma 3.2 to confirm that ABC-type FIDF (1.1) has at least one solution in
X. �

4. An Example

In this portion, we provide an example to enlighten our results.

Example 4.1. Consider the following ABC-type FDF

ABCD
1
2

0+ ψ(%) = 8
3
√
π
%

3
2 − %2 + ABI

1
2

0+ ψ(%), 0 ≤ % ≤ 1,

ψ(0) = 0,
(4.1)

where µ = 1
2 , and f(%, ψ, ABI

1
2

0+ ψ) = 8
3
√
π
%

3
2 − %2 + ABI

1
2

0+ ψ. It is clear that

f(0, ψ(0),AB Iµ0+ψ(0)) = 0. Then, the corresponding FIE is obtained by

ψ(%) =
4

3
√
π
%

3
2 − %2 + ABI

1
2

0+ ψ(%) (4.2)

+ ABI
1
2

0+

[
8

3
√
π
%

3
2 − %2 + ABI

1
2

0+ ψ(%)

]
, %∈ [0, 1].

In fact, we can find that ϕ(%) = 0 and ψ(%) = 8
3
√
π
%

3
2 + 1

2%
2 which are respectively

the lower and upper solutions of (4.3). Moreover, f(·, ψ, ω) is nondecreasing. So,
all assumptions of Theorem 3.4 are satisfied. so, we construct the sequences {ωn}
and {$n} by

ω0(%) = ψ,

ωn+1(%) = 1
2 f(%, ωn(%),AB I

1
2

0+ωn(%))

+ ABI
1
2

0+

[
f(%, ωn(%),AB I

1
2

0+ωn(%))
]
, for % ∈ [0, 1], and n = 0, 1, ...
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and
$0 = ψ,

$n+1(%) = 1
2 f(%,$n(%),AB I

1
2

0+$n(%))

+ ABI
1
2

0+

[
f(%,$n(%),AB I

1
2

0+$n(%))
]
, for % ∈ [0, 1], and n = 0, 1, ...

Applying Theorem 3.4 again, we have ωn → ω ∈ X and $n → $ ∈ X as n→∞.
Therefore, ψL(%) = ω(%), and ψU (%) = $(%) which are the minimal and maximal
solutions in Π(ψ,ψ), where

Π(ψ,ψ) =

{
ψ ∈ X : 0 ≤ ψ(%) ≤ 8

3
√
π
%

3
2 +

1

2
%2, % ∈ [0, 1]

}
.
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