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Abstract. Over the years, Octagonal Fuzzy Numbers have shown optimal
solutions in real applications over triangular and trapezoidal fuzzy numbers.

In this paper, variations in the k - levels of Octagonal Fuzzy Numbers are

introduced which yield a More General Class of Linear Octagonal Fuzzy
Numbers (MGLOFNs) - MGLOFN of the LH type or MGLOFN of the HL
type. The α - cut, measure and arithmetic operations of both the classes

are studied in detail and its application in a Fuzzy Multi Attribute Decision
Making Problem (FMADM) is explored with a secondary data. The problem

of choosing the best bicycle helmet is discussed by modeling it as a FMADM

involving MGLOFNs.

1. Introduction

In order to cope with inaccurate quantitative data in a practical way, Lotfi A.
Zadeh [9],[10],[11] introduced the idea of fuzzy sets in 1965 and fuzzy numbers in
1975 and established its applications in various fields (to cite a few [1],[6]). R. E.
Bellman and L. A. Zadeh [2] pioneered decision making in a fuzzy environment in
1970, paving the path for the creation of several multi-attribute decision making
approaches. Fuzzy Multiple Attribute Decision Making Problem (FMADM) with
different methods and applications was studied in 1992 by Chen et al. [4]. There
has been a wide usage of various fuzzy numbers such as triangular fuzzy numbers,
trapezoidal fuzzy numbers in almost every field, to solve problems in hand [8],[3].
Over the decade, Octagonal Fuzzy Numbers(OFNs) have shown optimum results
than triangular, trapezoidal fuzzy numbers in several real life applications[1],[5].

The uniform spread in octagonal and trapezoidal fuzzy numbers caters to only
specific varieties of problems. Therefore, we need a better quantifier than OFNs,
since the need for mathematical modeling is more demanding. This study analyzes
the non-uniform spreads of OFNs, which give rise to a new class of OFNs known
as ”A More General Class of Linear Octagonal Fuzzy Numbers” that perform
optimally in a number of practical circumstances.

This paper is arranged as follows: Section 2 introduces a More General class of
Linear Octagonal Fuzzy Number (MGLOFN) and its types namely, MGLOFN of
LH type and MGLOFN of HL type. In Section 3, the problem of selecting a best
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helmet based on various factors is discussed. In Section 4, we give the computation
and outcome of the problem. Section 5 gives the conclusion.

2. A More General Linear Octagonal Fuzzy Number

In this section, we formally define a more general linear octagonal fuzzy number
(MGLOFN) and study its properties.

Definition 2.1. A fuzzy number Ã is said to be a more general linear octagonal

fuzzy number (MGLOFN) denoted Ã† whose membership function µ
Ã† is given by

µ
Ã†(x) =



k(1)(
x− a1
a2 − a1

) a1 ≤ x ≤ a2

k(1) a2 ≤ x ≤ a3

k(1) + (1− k(1))(
x− a3
a4 − a3

) a3 ≤ x ≤ a4

1 a4 ≤ x ≤ a5

k(2) + (1− k(2))(
a6 − x

a6 − a5
) a5 ≤ x ≤ a6

k(2) a6 ≤ x ≤ a7

k(2)(
a8 − x

a8 − a7
) a7 ≤ x ≤ a8

0 otherwise

where a1, a2, a3, a4, a5, a6, a7, a8, k
(1), k(2) are real numbers such that a1 ≤ a2 ≤

a3 ≤ a4 ≤ a5 ≤ a6 ≤ a7 ≤ a8, k
(1), k(2) ∈ [0, 1]

Remark 2.2. The collection of all MGLOFNs is denoted by F†(R). It consists
of two types.
MGLOFN of LH type:
If 0 < k(1) < k(2) < 1, then the MGLOFN is said to be of LH type (lower k(1)

higher k(2)) and is represented as
˜

A†
LH = (a1, a2, a3, a4, a5, a6, a7, a8; k

(1), k(2)).

We denote such collection to be F†
LH(R). The diagrammatic representation is

shown in Figure 1
MGLOFN of HL type:
If 0 < k(2) < k(1) < 1 (1 > k(1) > k(2) > 0), then the MGLOFN is said to be of HL
type (higher k(1) lower k(2)) and is represented as

˜
A†

HL = (a1, a2, a3, a4, a5, a6, a7
, a8; k

(1), k(2)). We denote such collection to be F†
HL(R). The diagrammatic

representation is shown in Figure 2
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Figure 1. MGLOFN of the LH type
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Figure 2. MGLOFN of the HL type

Remark 2.3. 1.If k(1) = k(2) = k, then the MGLOFN reduces to an octagonal
fuzzy number (a1, a2, a3, a4, a5, a6, a7, a8; k) defined in [3]
2. If k(1) = 0 and k(2) = 0, the MGLOFN reduces to the trapezoidal fuzzy number
(a3, a4, a5, a6)
3. If k(1) = 1 and k(2) = 1, the MGLOFN reduces to the trapezoidal fuzzy number
(a1, a2, a7, a8)
4. If k(1) = 0 and k(2) = 1, the MGLOFN reduces to the trapezoidal fuzzy number
(a3, a4, a7, a8)
5. If k(1) = 1 and k(2) = 0, the MGLOFN reduces to the trapezoidal fuzzy number
(a1, a2, a5, a6)

The necessity of the more general class of octagonal fuzzy numbers is explained
by a real life situation involving subjective assessment of temperature in a fuzzy
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setup.
Example:
To express ‘felt temperature’ in a clinical laboratory with few individuals, for
medical testing purposes, they are questioned as to how they felt about their body
temperature in this setting. Some people may react with extremes of cold, warmth
or heat. MGLOFNs can be used to express these perceptions in a more realistic
way.

Linguistic terms MGLOFNs

Very Cold (VC) (33.5,34.5,35.5,36.5,37.5,38.5,39.5,40.5;0.85,0.15)

Cold (C) (33.5,34.5,35.5,36.5,37.5,38.5,39.5,40.5;0.65,0.35)

Normal (N) (33.5,34.5,35.5,36.5,37.5,38.5,39.5,40.5;0.5,0.5)

Warm (W) (33.5,34.5,35.5,36.5,37.5,38.5,39.5,40.5;0.35,0.65)

Very Warm (VW) (33.5,34.5,35.5,36.5,37.5,38.5,39.5,40.5;0.15,0.85)

Table 1. Representation of Subjective Temperature

32 34 36 38 40 42

0.2

0.4

0.6

0.8

1

Temp(◦C)

Membership Values

Very Cold
Cold

Normal

Figure 3. MGLOFNs of HL type

14



32 34 36 38 40 42

0.2

0.4

0.6

0.8

1

Temp(◦C)

Membership Values

Very Warm
Warm
Normal

Figure 4. MGLOFNs of LH type

In the Table 1, representation of linguistic terms of subjective temperature are
expressed in MGLOGNs for different values of k(1) and k(2). In Figure 3, ‘very
cold’, ‘cold’ are represented by MGLOFNs of HL type and in Figure 4, ‘very
warm’, ‘warm’ are represented by MGLOFNs of LH type. Note that the normal
temperature is represented by Linear Octagonal Fuzzy Number as k(1) = k(2).

The structural properties built on the above said classes is unique. Henceforth,
there is a need to study these classes seperately and the same is developed further.

2.1. MGLOFN of the LH type. In this section, we introduce the α - cut of

MGLOFN of the LH type and a measure on F†
LH(R). The arithmetic operations

of addition and scalar multiplication are defined using both α - cut approach and
coordinate-wise approach and are compared.

Definition 2.4. The α - cut of a MGLOFN of the LH type is defined as follows:

If Ã†
LH = (a1, a2, a3, a4, a5, a6, a7, a8; k

(1), k(2)), where k(1) < k(2) then

[Ã†
LH]α = [(Ã†

LH)Lα, (Ã
†
LH)Mα ] =


[((Ã†

LH)Lα)1, ((Ã
†
LH)Mα )1] for α ∈ (0, k(1)]

[((Ã†
LH)Lα)2, ((Ã

†
LH)Mα )2] for α ∈ (k(1), k(2)]

[((Ã†
LH)Lα)3, ((Ã

†
LH)Mα )3] for α ∈ (k(2), 1]

where

((Ã†
LH)Lα)1 =

a1k
(1) + αa2 − αa1

k(1)
((Ã†

LH)Mα )1 =
a8k

(2) − αa8 + αa7
k(2)

((Ã†
LH)Lα)2 =

−a3 − αa4 + αa3 + k(1)a4
k(1) − 1

((Ã†
LH)Mα )2 =

a8k
(2) − αa8 + αa7

k(2)

((Ã†
LH)Lα)3 =

−a3 − αa4 + αa3 + k(1)a4
k(1) − 1

((Ã†
LH)Mα )3 =

−a6 − αa5 + αa6 + k(2)a5
k(2) − 1
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Example 2.5. If Ã†
LH = (2, 3, 4, 6, 8, 9, 11, 12; 0.3, 0.8) then the α - cut of [Ã†

LH]α,

for k(1) = 0.3, k(2) = 0.8 is given by

[Ã†
LH]α =


[ 10α+6

3 , 48−5α
4 ] for α ∈ (0, 0.3]

[ 20α+22
7 , 48−5α

4 ] for α ∈ (0.3, 0.8]

[ 20α+22
7 , 13− 5α] for α ∈ (0.8, 1]

When α = 0.1, [Ã†
LH]α = [ 73 ,

95
8 ]; When α = 0.5, [Ã†

LH]α = [ 327 , 91
8 ];

When α = 0.9, [Ã†
LH]α = [ 407 , 17

2 ].

Definition 2.6. A measure on the MGLOFN of the LH type Ã†
LH is defined as

follows:

M(Ã†
LH) =

1

2

∫ k(1)

0

(
((Ã†

LH)Lα)1 + ((Ã†
LH)Mα )1

)
dα+

1

2

∫ k(2)

k(1)

(
((Ã†

LH)Lα)2 + ((Ã†
LH)Mα )2

)
dα+

1

2

∫ 1

k(2)

(
((Ã†

LH)Lα)3 + ((Ã†
LH)Mα )3

)
dα, 0 < k(1) < k(2) < 1

Computing, we get

M(Ã†
LH) =

1

4
{(a1+a2−a3−a4)k

(1)+(a3+a4+a5+a6)− (a5+a6−a7−a8)k
(2)}

Remark 2.7. Any two MGLOFNs of LH type Ã†
LH and B̃†

LH could be compared
using the following:

1. Ã†
LH ≺ B̃†

LH if M(Ã†
LH) < M(B̃†

LH)

2. Ã†
LH ≈ B̃†

LH if M(Ã†
LH) = M(B̃†

LH)

3. Ã†
LH ≻ B̃†

LH if M(Ã†
LH) > M(B̃†

LH)

Arithmetic Operations:
We introduce the arithmetic operations on MGLOFNs of the LH type having same

k(1) and k(2) values. Let Ã†
LH ≈ (a1, a2, ..., a8; k

(1), k(2)), B̃†
LH ≈ (b1, b2, ..., b8;

k(1), k(2)) be two MGLOFNs of the LH type. The arithmetic operations are defined
using both α - cut approach and coordinate-wise approach.
Using extension principle, the α - cut approach for addition and
scalar multiplication are given below:
Addition:

For Ã†
LH, B̃†

LH ∈ F†
LH(R), the addition is calculated by adding their corresponding
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α - cuts using interval arithmetic, we have

[Ã†
LH]α ⊕ [B̃†

LH]α =



[a1 + b1 +
α

k(1) (a2 − a1 + b2 − b1), a8 + b8 − α
k(2) (a8 − a7 + b8 − b7)]

for α ∈ (0, k(1)]

[a3 + b3 +
α−k(1)

1−k(1) (a4 − a3 + b4 − b3), a8 + b8 − α
k(2) (a8 − a7 + b8 − b7)]

for α ∈ (k(1), k(2)]

[a3 + b3 +
α−k(1)

1−k(1) (a4 − a3 + b4 − b3), a6 + b6 − α−k(2)

1−k(2) (a6 − a5 + b6 − b5)]

for α ∈ (k(2), 1]

and the membership function is given by

µ(
Ã†

LH⊕B̃†
LH

)(x) =



k(1)
( x− (a1 + b1)

(a2 + b2)− (a1 + b1)

)
a1 + b1 ≤ x ≤ a2 + b2

k(1) a2 + b2 ≤ x ≤ a3 + b3

k(1) + (1− k(1))
( x− (a3 + b3)

(a4 + b4)− (a3 + b3)

)
a3 + b3 ≤ x ≤ a4 + b4

1 a4 + b4 ≤ x ≤ a5 + b5

k(2) + (1− k(2))
( (a6 + b6)− x

(a6 + b6)− (a5 + b5)

)
a5 + b5 ≤ x ≤ a6 + b6

k(2) a6 + b6 ≤ x ≤ a7 + b7

k(2)
( (a8 + b8)− x

(a8 + b8)− (a7 + b7)

)
a7 + b7 ≤ x ≤ a8 + b8

0 otherwise

Scalar Multiplication:

Let Ã†
LH = (a1, a2, ..., a8; k

(1), k(2)) be a MGLOFN of the LH type. The scalar

multiplication of Ã†
LH by a scalar, λ ≥ 0 is given by

λ[Ã†
LH]α =


[λa1 +

α
k(1) (λa2 − λa1), λa8 − α

k(2) (λa8 − λa7)], α ∈ (0, k(1)]

[λa3 +
α−k(1)

1−k(1) (λa4 − λa3), λa8 − α
k(2) (λa8 − λa7)], α ∈ (k(1), k(2)]

[λa3 +
α−k(1)

1−k(1) (λa4 − λa3), λa6 − α−k(2)

1−k(2) (λa6 − λa5)], α ∈ (k(2), 1]

Definition 2.8. If Ã†
LH be a MGLOFN of the LH type, then the scalar

multiplication denoted λÃ†
LH is defined to have the membership function µ

λÃ†
LH
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corresponding to the α - cut given by equation (2.1)

µ
λÃ†

LH
(x) =



k(1)

λ

(
x−a1λ
a2−a1

)
λa1 ≤ x ≤ λa2

k(1) λa2 ≤ x ≤ λa3
(1−k(1))(x−λa3)+k(1)λ(a4−a3)

λ(a4−a3)
λa3 ≤ x ≤ λa4

1 λa4 ≤ x ≤ λa5
(1−k(2))(λa6−x)+k(2)λ(a6−a5)

λ(a6−a5)
λa5 ≤ x ≤ λa6

k(2) λa6 ≤ x ≤ λa7
k(2)

λ

(
λa8−x
a8−a7

)
λa7 ≤ x ≤ λa8

0 otherwise

Definition 2.9. Let Ã†
LH = (a1, a2, ..., a8; k

(1), k(2)) and B̃†
LH = (b1, b2, ..., b8;

k(1), k(2)), 0 < k(1) < k(2) < 1 be two MGLOFNs of LH type and let λ ≥ 0 be
any real number, then the coordinate-wise addition and scalar multiplication are
defined as follows:

Ã†
LH+B̃†

LH = (a1+b1, a2+b2, a3+b3, a4+b4, a5+b5, a6+b6, a7+b7, a8+b8; k
(1), k(2))

λÃ†
LH = (λa1, λa2, λa3, λa4, λa5, λa6, λa7, λa8; k

(1), k(2))

Theorem 2.10. The α - cut approach and coordinate-wise approach of addition
and scalar multiplication of MGLOFNs of LH type yield the same result.

Proof. Addition: Let Ã†
LH = (a1, a2, ..., a8; k

(1), k(2)) and B̃†
LH = (b1, b2, ..., b8;

k(1), k(2)) be the two MGLOFNs of the LH type with α - cuts denoted by [Ã†
LH]α

and [B̃†
LH]α. Then,

[Ã†
LH]α ⊕ [B̃†

LH]α = [(Ã†
LH)Lα, (Ã

†
LH)Mα ] + [(B̃†

LH)Lα, (B̃
†
LH)Mα ]

=



[
((Ã†

LH)Lα)1 + ((B̃†
LH)Lα)1, ((Ã

†
LH)Mα )1 + ((B̃†

LH)Mα )1

]
for α ∈ (0, k(1)][

((Ã†
LH)Lα)2 + ((B̃†

LH)Lα)2, ((Ã
†
LH)Mα )2 + ((B̃†

LH)Mα )2

]
for α ∈ (k(1), k(2)][

((Ã†
LH)Lα)3 + ((B̃†

LH)Lα)3, ((Ã
†
LH)Mα )3 + ((B̃†

LH)Mα )3

]
for α ∈ (k(2), 1]

=



[a1 + b1 +
α

k(1) (a2 − a1 + b2 − b1), a8 + b8 − α
k(2) (a8 − a7 + b8 − b7)]

for α ∈ (0, k(1)]

[a3 + b3 +
α−k(1)

1−k(1) (a4 − a3 + b4 − b3), a8 + b8 − α
k(2) (a8 − a7 + b8 − b7)]

for α ∈ (k(1), k(2)]

[a3 + b3 +
α−k(1)

1−k(1) (a4 − a3 + b4 − b3), a6 + b6 − α−k(2)

1−k(2) (a6 − a5 + b6 − b5)]

for α ∈ (k(2), 1]

= [(a1 + b1, a2 + b2, ..., a8 + b8; k
(1), k(2))]α

= [Ã†
LH + B̃†

LH]α
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Scalar Multiplication: Let Ã†
LH = (a1, a2, ..., a8; k

(1), k(2)) be a MGLOFN with
α - cut given by Equation (2.1) and λ ≥ 0, then

λ[Ã†
LH]α

= [λ(Ã†
LH)Lα, λ(Ã

†
LH)Mα ]

=


[(λ(Ã†

LH)Lα)1, (λ(Ã
†
LH)Mα )1] for α ∈ (0, k(1)]

[(λ(Ã†
LH)Lα)2, (λ(Ã

†
LH)Mα )2] for α ∈ (k(1), k(2)]

[(λ(Ã†
LH)Lα)3, (λ(Ã

†
LH)Mα )3] for α ∈ (k(2), 1]

=


[λa1 +

α
k(1) (λa2 − λa1), λa8 − α

k(2) (λa8 − λa7)], α ∈ (0, k(1)]

[λa3 +
α−k(1)

1−k(1) (λa4 − λa3), λa8 − α
k(2) (λa8 − λa7)], α ∈ (k(1), k(2)]

[λa3 +
α−k(1)

1−k(1) (λa4 − λa3), λa6 − α−k(2)

1−k(2) (λa6 − λa5)], α ∈ (k(2), 1]

= [(λa1, λa2, ..., λa8; k
(1), k(2))]α = [λÃ†

LH]α

□

2.2. MGLOFN of HL type. In this section, we introduce the α - cut and a

measure on F†
HL(R). The arithmetic operations of addition and scalar

multiplication are defined using both α - cut approach and coordinate-wise
approach are compared.

Definition 2.11. The α - cut of a MGLOFN of the HL type is defined as follows:

If Ã†
HL = (a1, a2, a3, a4, a5, a6, a7, a8; k

(1), k(2)), where k(1) > k(2) then

[Ã†
HL]α = [(Ã†

HL)
L
α, (Ã

†
HL)

M
α ] =


[((Ã†

HL)
L
α)1, ((Ã

†
HL)

M
α )1], for α ∈ (0, k(2)]

[((Ã†
HL)

L
α)2, ((Ã

†
HL)

M
α )2], for α ∈ (k(2), k(1)]

[((Ã†
HL)

L
α)3, ((Ã

†
HL)

M
α )3], for α ∈ (k(1), 1]

where,

((Ã†
HL)

L
α)1 =

a1k
(1) + αa2 − αa1

k(1)
((Ã†

HL)
M
α )1 =

a8k
(2) − αa8 + αa7

k(2)

((Ã†
HL)

L
α)2 =

a1k
(1) + αa2 − αa1

k(1)
((Ã†

HL)
M
α )2 =

−a6 − αa5 + αa6 + k(2)a5
k(2) − 1

((Ã†
HL)

L
α)3 =

−a3 − αa4 + αa3 + k(1)a4
k(1) − 1

((Ã†
HL)

M
α )3 =

−a6 − αa5 + αa6 + k(2)a5
k(2) − 1

Example 2.12. If Ã†
HL = (−9,−7,−6,−4, 2, 5, 7, 9; 0.8, 0.3), k(1) = 0.8 and

k(2) = 0.3 then the α - cut of Ã†
HL is given by

[Ã†
HL]α =


[ 8+5α

4 , 36− 10α] for α ∈ (0, 0.3]

[ 8+5α
4 , 66−10α

7 ] for α ∈ (0.3, 0.8]

[10α− 4, 66−10α
7 ] for α ∈ (0.8, 1]
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When α = 0.1, [Ã†
HL]α = [ 178 , 11

3 ]; When α = 0.5, [Ã†
HL]α = [ 218 , 61

7 ];

When α = 0.9, [Ã†
HL]α = [ 102 , 57

7 ].

Remark 2.13. The measure defined in Definition 2.6 and comparison in Remark
2.7 hold good with MGLOFN of LH type (0 < k(1) < k(2) < 1) is replaced by
MGLOFN of HL type (1 > k(1) > k(2) > 0).

Remark 2.14. The arithmetic operations like addition and scalar multiplication
of two MGLOFNs of HL type using α - cut approach can be defined similarly along
lines of the arithmetic operations of two MGLOFNs of LH type

Definition 2.15. Let Ã†
HL = (a1, a2, ..., a8; k

(1), k(2)) and B̃†
HL = (b1, b2, ..., b8;

k(1), k(2)), 0 < k(2) < k(1) < 1 be two MGLOFNs of HL type and let λ ≥ 0 be
any real number, then the coordinate-wise addition and scalar multiplication are
defined as follows:

Ã†
HL+B̃†

HL = (a1+b1, a2+b2, a3+b3, a4+b4, a5+b5, a6+b6, a7+b7, a8+b8; k
(1), k(2))

λÃ†
HL = (λa1, λa2, λa3, λa4, λa5, λa6, λa7, λa8; k

(1), k(2))

Remark 2.16. On similar lines of Theorem 2.10, the α - cut approach and
coordinate-wise approach of addition and scalar multiplication of MGLOFNs of
the HL type yield the same result.

3. Mathematical Formulation of a Fuzzy Multi Attribute Decision
Making Problem using MGLOFNs

In this section, we use MGLOFNs to give a mathematical model to the FMADM
Problem. A fuzzy analogue of Simple Additive Weighting (SAW) method [8]
involving MGLOFNs is formulated to solve the same.

Consider the FMADM problem having n alternatives A1, A2, ..., An and m
criteria C1, C2, ..., Cm. We assign weights w1, w2, ..., wm to each criteria. The
linguistic evaluations involved in the problem are represented using MGLOFNs.
The information obtained for n alternatives corresponading to m criteria is
represented as a decision matrix

D̃M†
HL =



x̃†
11HL x̃†

12HL · · · x̃†
1jHL · · · x̃†

1mHL

x̃†
21HL x̃†

22HL · · · x̃†
2jHL · · · x̃†

2mHL
...

...
. . .

...
...

...

x̃†
i1HL x̃†

i2HL · · · x̃†
ijHL · · · x̃†

imHL
...

...
. . .

...
...

...

x̃†
n1HL x̃†

n2HL · · · x̃†
njHL · · · x̃†

nmHL


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where i = 1, 2, ..., n and j = 1, 2, ...,m

Let W =



w1

w2

...
wj

...
wm


be the weights assigned to each criteria. The problem is to

choose the best alternative. We propose the following procedure to identify the
best alternative.

Computational Procedure:

Step1: Input the decision matrix D̃M†
HL.

Step2: Evaluate the weighted decision matrix WD̃M†
HL by assigning weights to

each criteria.

w1x̃
†
11HL + w2x̃

†
12HL + · · ·+ wj x̃

†
1jHL + · · ·+ wmx̃†

1mHL

w1x̃
†
21HL + w2x̃

†
22HL + · · ·+ wj x̃

†
2jHL + · · ·+ wmx̃†

2mHL
...

w1x̃
†
i1HL + w2x̃

†
i2HL + · · ·+ w3x̃

†
ijHL + · · ·+ wmx̃†

nmHL
...

w1x̃
†
n1HL + w2x̃

†
n2HL + · · ·+ wj x̃

†
njHL + · · ·+ wmx̃†

nmHL


=



Ã†
1HL

Ã†
2HL
...

Ã†
iHL
...

Ã†
nHL


Step3: Compute M(Ã†

iHL) for each i.

Step4: Choose Ai for which M(Ã†
iHL) is maximum

Remark 3.1. Step 2 is computed using addition and scalar multiplication in
Definition (2.15)

Remark 3.2. Step 3 is calculated using the measure in Remark (2.14)

4. The problem of choosing the best bicycle helmet for road style: A
Case Study

Cycling has been suggested by several countries as an environmentally beneficial,
fuel-free and healthful mode of transportation within a five-kilometer radius.
Cycling has long been a popular means of transportation in India, since it has
met the mobility needs of millions of Indians by offering efficient and cost-effective
transit. As wearing a helmet is required for cycle racing and public transportation,
it is critical and can mean the difference between life and death in the case of
an accident. The problem of choosing the best bicycle helmet to ensure safety
is valuable. In this Section, we regard such a problem using a secondary data
from website ([12]) and formulated it as a Fuzzy Multi Attribute Decision Making
(FMADM) problem using MGLOFNs and studied.
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We consider the problem of a businessman (Mr.R), who wants to become a
dealer of bicycle helmets. He wants to look into factors like safety, fit, comfort,
cost and risk during impacts etc.
Problem:
Mr.R goes through several websites and came across the website of Virginia Tech
Bicycle Helmet Ratings, which satisfies his expectations to some extent as the
ratings concentrate on reduction in concussion risk from a range of impacts, score
for better protection and cost. The information from this website are discussed in
the following.
The information gathered from the website needed for our study: The
website provides score, star ratings and cost of various helmets for road, mountain,
urban and multi-sports. The helmets used for road purpose are considered for the
study.
The problem is to identify a suitable mathematical model to incorporate the
information and choose the best helmet. The complete scenario is modeled as
FMADM problem involving MGLOFNs in the following:
Mathematical formulation of the problem :
From the website, 53 bicycle helmets of road style are considered as the alternatives
say X = A1, A2, ..., A53. The three features available in the website are considered
as three criteria.
C1 : Score for better protection
C2 : Star ratings for safety
C3 : Cost
Assessment of C1 :
A lower score offers better protection. Based on the scores given in the website
([12]), the protection level has been identified by normalizing the data wherein
score value corresponding to each alternative is divided by the lowest score and
tabulated in the table below. The protection level of the helmets are evaluated
using the linguistic states such as Best Protection (BP), Better Protection(BTP),
Good Protection (GOP), Very Fair Protection (VFP), Fair Protection (FP), Poor
Protection(PP) and Very Poor Protection(VPP).

Linguistic terms MGLOFNs

Best Protection (BP) (0.75,0.8,0.85,0.9,0.95,1,1,1;0.7,0.3)

Better Protection (BTP) (0.65,0.7,0.75,0.8,0.85,0.9,0.95,1;0.7,0.3)

Good Protection (GOP) (0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9;0.7,0.3)

Very Fair Protection (VFP) (0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8;0.7,0.3)

Fair Protection (FP) (0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7;0.7,0.3)

Poor Protection (PP) (0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7;0.7,0.3)

Very Poor Protection (VPP) (0.75,0.8,0.85,0.9,0.95,1,1,1;0.7,0.3)

Table 2. MGLOFNs of the HL type representing score
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Figure 5. MGLOFNs representing the linguistic states

Assessment of C2 :
Helmets with more stars provide a reduction in concussion risk from a range of
impacts a cyclist might experience compared to helmets with fewer stars. The
information are available as linguistic evaluations Best (B), Very Good (VG),
Good (G), Adequate (AD) and Marginal (M) in the website.
Mr.R assessed each alternative linguistically and quantified using MGLOFNs as
shown in the below Table 3.

Linguistic terms for Star Ratings Corresponding MGLOFNs

Best (B) (0.7,0.8,0.9,1,1,1,1,1;0.7,0.3)

Very Good (VG) (0.5,0.6,0.7,0.8,0.9,1,1,1;0.7,0.3)

Good (G) (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9;0.7,0.3)

Adequate (AD) (0,0,0,0.1,0.2,0.3,0.4,0.5;0.7,0.3)

Marginal (M) (0,0,0,0,0,0.1,0.2,0.3;0.7,0.3)

Table 3. MGLOFNs of the HL type representing star ratings
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Figure 6. MGLOFNs representing the Star Ratings
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Assessment of C3 :
The cost given in data for different helmets is normalizied and tabulated in the
Table 4.

Helmets Score Cost

1 1 0.7692

2 0.98 0.2083

3 0.92 0.625

4 0.91 0.2777

5 0.89 0.1831

6 0.89 0.1831

7 0.88 0.3125

8 0.85 0.2

9 0.84 0.333

10 0.83 0.25

11 0.81 0.5

12 0.81 0.5

13 0.81 0.5

14 0.81 0.2173

15 0.80 0.2

16 0.77 0.1666

17 0.76 0.5263

18 0.74 0.1960

19 0.74 0.5555

20 0.73 0.2380

21 0.73 0.1428

22 0.73 0.5

23 0.73 0.2

24 0.72 1

25 0.72 1

26 0.72 0.1538

Helmets Score Cost

27 0.71 0.2

28 0.70 0.333

29 0.7 0.1851

30 0.67 0.5

31 0.65 0.4761

32 0.65 0.5555

33 0.63 0.5

34 0.63 0.1818

35 0.61 0.5555

36 0.61 0.2222

37 0.60 0.3067

38 0.59 0.3846

39 0.58 0.5

40 0.58 0.8333

41 0.56 0.25

42 0.55 0.3333

43 0.55 0.5882

44 0.54 0.2777

45 0.53 0.2

46 0.52 0.2

47 0.5 0.5

48 0.49 0.1923

49 0.47 0.5263

50 0.46 0.2702

51 0.40 0.2083

52 0.37 0.5

53 0.36 0.7142

Table 4. Normalized value of score and cost

A MATLAB R2107b program is recorded wherein the rank in the problem of
chosing the best helmet considered is acquired.
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4.1. Solution to the Problem. The information corresponding to each

alternative and each criteria is modeled as
˜

DM†
ijHL where i = 1, 2, ..., 53 and

j = 1, 2, 3. Applying the procedure given in the previous section, the problem is
solved using a MATHLAB program, wherein the weights used are (0.2 0.7 0.1) and
MGLOFNs of HL type with k(1) = 0.7, k(2) = 0.3 are utilized and the outcome is
tabulated below:

Table 5. The weighted decision matrix

i Ã†
iHL M(Ã†

iHL) Rank
1 (0.717,0.797,0.877,0.957,0.967,0.977,0.977,0.977) 0.88925 1
2 (0.661,0.74,0.821,0.901,0.911,0.921,0.921,0.921) 0.83325 6
3 (0.703, 0.783 ,0.863, 0.943, 0.953, 0.963, 0.963, 0.963) 0.87525 2
4 (0.668, 0.748, 0.828, 0.908, 0.918, 0.928, 0.928, 0.928) 0.84025 5
5 (0.638, 0.718, 0.798, 0.878, 0.888, 0.898, 0.908, 0.918) 0.8125 14
6 (0.638, 0.718, 0.798, 0.878, 0.888, 0.898, 0.908, 0.918) 0.8125 14
7 (0.651, 0.731, 0.811, 0.891, 0.901, 0.911, 0.921, 0.931) 0.8255 9
8 (0.64, 0.72, 0.8, 0.88, 0.89, 0.9, 0.91, 0.92) 0.8145 13
9 (0.653, 0.733, 0.813, 0.893, 0.903, 0.913, 0.923, 0.933) 0.8275 8
10 (0.645, 0.725, 0.805, 0.885, 0.895, 0.905, 0.915, 0.925) 0.8195 11
11 (0.67, 0.75, 0.83, 0.91, 0.92, 0.93, 0.94, 0.95) 0.8445 4
12 (0.67, 0.75, 0.83, 0.91, 0.92, 0.93, 0.94, 0.95) 0.8445 4
13 (0.67, 0.75, 0.83, 0.91, 0.92, 0.93, 0.94, 0.95) 0.8445 4
14 (0.642, 0.722, 0.802, 0.882, 0.892, 0.902, 0.912, 0.922) 0.8165 12
15 (0.64, 0.72, 0.8, 0.88, 0.89, 0.9, 0.91, 0.92) 0.8145 13
16 (0.617, 0.697, 0.777, 0.857, 0.867, 0.877, 0.887, 0.897) 0.7915 21
17 (0.653, 0.733, 0.813, 0.893, 0.903, 0.913, 0.923, 0.933) 0.8275 8
18 (0.62, 0.7, 0.78, 0.86, 0.87, 0.88, 0.89, 0.9) 0.7945 19
19 (0.656, 0.736, 0.816, 0.896, 0.906, 0.916, 0.926, 0.936) 0.8305 7
20 (0.624, 0.704, 0.784, 0.864, 0.874, 0.884, 0.894, 0.904) 0.7985 18
21 (0.614, 0.694, 0.774, 0.854, 0.864, 0.874, 0.884, 0.894) 0.7885 23
22 (0.65, 0.73, 0.81, 0.89, 0.9, 0.91, 0.92, 0.93) 0.8245 10
23 (0.62, 0.7, 0.78, 0.86, 0.87, 0.88, 0.89, 0.9) 0.7945 19
24 (0.7, 0.78, 0.86, 0.94, 0.95, 0.96, 0.97, 0.98) 0.8745 3
25 (0.7, 0.78, 0.86, 0.94, 0.95, 0.96, 0.97, 0.98) 0.8745 3
26 (0.615, 0.695, 0.775, 0.855, 0.865, 0.875, 0.885, 0.895) 0.7895 22
27 (0.62, 0.7, 0.78, 0.86, 0.87, 0.88, 0.89, 0.9) 0.7945 19
28 (0.633, 0.713, 0.793, 0.873, 0.883, 0.893, 0.903, 0.913) 0.8075 15
29 (0.619, 0.699, 0.779, 0.859, 0.869, 0.879, 0.889, 0.899) 0.7935 20
30 (0.63, 0.71, 0.79, 0.87, 0.88, 0.89, 0.9,0.91) 0.8045 16
31 (0.628, 0.708, 0.788, 0.868, 0.878, 0.888, 0.898, 0.908) 0.8025 17
32 (0.496, 0.576, 0.656, 0.736, 0.816, 0.896, 0.906, 0.916) 0.72825 25
33 (0.49, 0.57, 0.65, 0.73, 0.81, 0.89, 0.9, 0.91) 0.72225 26
34 (0.458, 0.538, 0.618, 0.698, 0.778, 0.858, 0.868, 0.878) 0.69025 31
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Table 5 (continued)

i Ã†
iHL M(Ã†

iHL) Rank
35 (0.496, 0.576, 0.656, 0.736, 0.816, 0.896, 0.906, 0.916) 0.72825 25
36 (0.462, 0.542, 0.622, 0.702, 0.782, 0.862, 0.872, 0.882) 0.69425 30
37 (0.471, 0.551, 0.631, 0.711, 0.791, 0.871, 0.881, 0.891) 0.70325 28
38 (0.458, 0.538, 0.618, 0.698, 0.778, 0.858, 0.868, 0.878) 0.69025 31
39 (0.47, 0.55, 0.63, 0.71, 0.79, 0.87, 0.88, 0.89) 0.70225 29
40 (0.503, 0.583, 0.663, 0.743, 0.823, 0.903, 0.913, 0.923) 0.73525 24
41 (0.445, 0.525, 0.605, 0.685, 0.765, 0.845, 0.855, 0.865) 0.67725 34
42 (0.453, 0.533, 0.613, 0.693, 0.773, 0.853, 0.863, 0.873) 0.68525 32
43 (0.479, 0.559, 0.639, 0.719, 0.799, 0.879, 0.889, 0.899) 0.71125 27
44 (0.448, 0.528, 0.608, 0.688, 0.768, 0.848, 0.858, 0.868) 0.68025 33
45 (0.44, 0.52, 0.6, 0.68, 0.76, 0.84, 0.85, 0.86) 0.67225 34
46 (0.44, 0.52, 0.6, 0.68, 0.76, 0.84, 0.85, 0.86) 0.67225 34
47 (0.47, 0.55 0.63, 0.71, 0.79, 0.87, 0.88, 0.89) 0.70225 29
48 (0.419, 0.499 0.579, 0.659, 0.739, 0.819, 0.829, 0.839) 0.65125 35
49 (0.243, 0.323 0.403, 0.483, 0.563, 0.643, 0.723, 0.803) 0.491 36
50 (0.217, 0.297 0.377, 0.457, 0.537, 0.617, 0.697, 0.777) 0.465 37
51 (0.211, 0.291 0.371, 0.451, 0.531, 0.611, 0.691, 0.771) 0.459 38
52 (0.05, 0.07 0.09, 0.18, 0.26, 0.34, 0.42, 0.5) 0.21525 40
53 (0.071, 0.091 0.111, 0.201, 0.281, 0.361, 0.441, 0.521) 0.23625 39

The first helmet is the best helmet.

Remark 4.1. Different weights can be applied to the criteria in this real-life
situation depending on an individual’s requirements and perspective.

Remark 4.2. The rank of choosing the best bicycle helmet is determined by
executing the given technique using MGLOFNs of LH type, octagonal fuzzy
numbers and trapezoidal fuzzy numbers in place of MGLOFNs of HL. When
employing trapezoidal fuzzy numbers, we note that the rank of a few helmets are
close. Because of the slight variations in the helmets, a few positions have been
changed. Using MGLOFNs of HL type and LH type the value of overall score
for a helmet at minimum level and maximum level are obtained respectively. Thus
appropriate choice of k(1) and k(2) values yeild better results.

Remark 4.3. The FMADM Problem involving MGLOFNs of HL type can be used
for any decision making problem. However, the positions of the helmets vary with
different weights and k(1) and k(2) values.

5. Conclusion

In this paper, we propose a More General Class of Linear Octagonal Fuzzy
Numbers which is a better quantifier than the existing fuzzy numbers in several
real life applications and also study its properties. The challenge of selecting the
best bicycle helmet based on various criteria is represented using MGLOGNs of
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the HL type. A new procedure for MGLOFNs is developed and solved using a
MATLAB program. We see that tackling the problem using MGLOFN of the
HL type yields more accuracy in ranking position of bicycle helmets than using
octagonal and trapezoidal fuzzy numbers.
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