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LYAPUNOV FUNCTIONALS AND EXPONENTIAL
STABILITY AND INSTABILITY IN MULTI DELAY
DIFFERENTIAL EQUATIONS

MEGAN CABLE AND YOUSSEF RAFFOUL

ABSTRACT. We use Lyapunov functionals to obtain sufficient conditions
that guarantee exponential decay of solutions to zero of the multi delays
differential equation

Z'(t) = a(t)z(t) + Z bi(t)z(t — hi).

The highlight of the paper is allowing a(t) to change signs. Instability
criteria of the zero solution is obtained. Moreover, we will provide an
example, in which we show that our theorems provide an improvement
of some of the recent literature.

1. Introduction

In this paper we consider the scalar linear differential equation with multiple
delays

2 (t) = a(t)z(t) + Z bi(t)z(t — hy) (1.1)

where a, b are continuous with 0 < h; < h* for i = 1, --, n, for some positive
constant h*. We will use Lyapunov functionals and obtain some inequalities
regarding the solutions of (1.1) from which we can deduce exponential as-
ymptotic stability of the zero solution. Also, we will provide a criteria for
the instability of the zero solution of (1.1) by means of Liapunov functional.
There are many results concerning equations similar to (1.1). In this paper
we will compare our results to the recent paper [9] by Wang and show that
the results of this research are better in some cases. Due to the choice of the
Lyapunov functionals, we will deduce some inequalities on all solutions. As
a consequence, the exponential decay of all solutions to zero is concluded.
The main task in achieving this is to be able to relate the solutions back to
V. That is, to find a lower bound on V in terms of x, where x is a solution
of (1.1). For more on the stability of (1.1) when the delay is constant and
the sign condition on a(t) is required, we refer the reader to [4]. Also, for a
general reading on stability delay differential equations, we refer the reader
to [1], [2], [3], [5], [6], [7] and [9]. In the case n = 1, equation (1.1) reduces
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to the equation that was studied in [9]. Later on, we set n =1 in (1.1) and
show our work improve the results of [9].

Let 9 : [—=70,0] — (—00,00) be a given continuous initial function with
ol = max fu(s).

It should cause no confusion to denote the norm of a continuous function
@ [—r,00) = (—00,00) with

el = sup [o(s)].

—r<s<oo

The notation z; means that z,(7) = z(t+7),7 € [-h*,0] as long as z(t + 1)
is defined. Thus, z; is a function mapping an interval [—h*, 0] into R. We
say z(t) = x(t,to,v) is a solution of (1.1) if z(¢) satisfies (1.1) for ¢t >ty and

Tty = x(to +5) = P(s), s € [-h*,0].
In preparation for our main results, we notice that (1.1) is equivalent to

+Zb t+h)) Zdt/th (s + h)z(s)ds  (1.2)

2. Exponential Stability

Now we turn our attention to the exponential decay of solutions of equa-
tion (1.1). For simplicity, we let

= bi(t + hi) +alt).
i=1
Lemma 1. Assume for 6 > 0,

Zb (t+h;) +a(t) < —5h*zn:b?(t+hi), (2.1)

5+1 i=1

hold. If

n

t
V() = [z(t)+ Z/ bi(s + hi)x(s) als]2

+ (52/ / b2 (2 + hi)a?(z)dzds (2.2)
then, along the solutions of (1.1) we have
VI(t) < QU)V (1).

Proof. First we note that due to condition (2.1), Q(¢) < 0 for all ¢ > 0. Let
x(t) = x(t, to, 1) be a solution of (1.1) and define V' (¢) by (2.2). Then along



solutions of (1.2) we have

V'(t) =

IN

IN

IN

_|_

+Z / i(s + hi)z(s)ds)Q(t)z(t)
2 ; .’E2 S
5;/_}” b3 (t + hy)z?(t)d
n_ .0
52/ b (t + s+ hy)z*(t + s)ds
+Z/ i(s + hi)z(s) ds]Q(t)z(t)
oh* Z b2 (t 4 hi)a?(t)
711210 2 2
(5;/_hibi(t+8+hi)x (t + s)ds

n

Q(t)[2%(t) + 2x(t )Z/t . bi(s + hi)z(s)ds]

=1
Sh* i b2 (t 4 hi)a?(t)
nz:lo
52/ b2(t + s + b))z (t + s)ds + Q(t)z?(t)
Q(1) Z/t N (s—h )ds]
2 z zZaS8
Z/ /+sb + hy)z?(2)dzd
2 S ‘1)2 s)as
6;/hibi(t+ + hy)a?(t + s)d

(6n* Zn: b7 (t+ h) + Q(t))2%(t).

=1

In what to follow we perform some calculations to simplify (2.3).
we let u =t + s, then

52/ b2(t+ s+ hy)x t+sds-62/ b2 (u + hy)x
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(2.3)

First, if

(u)du. (2.4)



Also, since —Q(t) > 0, we have by the aid of Holder’s inequality that

oA (s ; s * 2(s
t)[;/thibz(—i—hz) (s)ds]” < —Q(t) hZ/ b2(s + ha)a?(s)dd2.5)

Finally, we easily observe

52/ / b?(z + hy)az*(2)dz ds < Sh* Zb23+h (s)ds. (2.6)

t—h; ;1

By invoking (2.1) and substituting expressions (2.4)-(2.6) into (2.3), yield
QMV(t) + (oh Zn: b (t+ hi) + Q(1)) 2> (t)
i=1
+ [0+ 1)h*Q(t) — 4] /th. b7 (s + hs)z*(s)ds
< Q)V(1). (2.7)

Viiy(®)

IN

Theorem 2.1. Suppose condition (2.1) hold.
Then any solution x(t) = xz(t,to,v) of (1.1) satisfies the exponential in-

equalities
2 0 bt /2 [a(s)+> 0 (s+h)ds
|x(t)‘ < 7‘/ (to)e2f ( ) 2171 bz( +hz)]d (’ )

fort>ty+h*/2 and

n t
o(t) = |||l Zim BRI [y [ e i Dimabilethdds g1 (g g)

to

fort e [to,to + h*/Q]

Proof. By changing the order of integration we have

52/ / b2 (2 4 hi)z?(2)dz ds = 52/

t—h;/2

z—t
/ b2 (2 + hy)x?(2)dsdz
h;

_52/ D2(z + h)a() (= — t + h)d=.
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Also, we observe that

3 t 2 ‘$2 ZIZ — ; yA
l§:1:/t_hi D2(x + h)a(2)(= — ¢ + hy)d
_E /tbzz+h 2(2)(z — t + hy)dz

+ Z/ A bf(z + hi)xQ(z)(z —t+ hi)dz

where we have used the fact that when ¢ — % <z<t = % <z—t+h <
h;. Let V(t) be given by (2.2). Then,

V(t)

Y

52/ / b2(z + hi)z?(z)dzds
5 ; o /t_ b2(s + hi)a*(s)ds.

Vv

Consequently,
h@' t_i 2
vit-5) = 62 /t b3 (s + hi)x?(s)ds
(2.11)
Note that since V'(t) < 0 we have for ¢t > to + h*/2 that
hi h;

0<V(t)+V(t— 5) <2V(t— 5)
We note that

1 " t i h t 2

= bi(s+ hi)z(s)ds)” < Z/ bi (s + h;) ds

2(m/ﬂw ) < 303 [ i (5)
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Using (2.10) and (2.11) we get

)

V(-
:( zn;/ i(s + hy)z(s)ds +5Z/ / b (2 + hy)x ()dzds+v(t—%)
@ﬁ)+§ilipb®+h' ds +6§: /ﬁ b2 (s + hi)z’(s)ds

+5z /thb23+h 2*(s)ds
2 [ b 3 it

v

Y

2 1 2
- = S V1 E
P (t)—i—[m )+ +6/2 / i(s + hi)z(s)ds]
2 9
> . Z
Z 550 W
Consequently,
h; h;
2(4) < - < ¢
2+51:(t)_V()+V(t 2) 2V (t — 2)

An integration of (2.7) from ¢y to ¢ yields the inequality
V(t) < V(to)eftto [a(s)+22721 bi(s+hi)lds

This implies that

V(- %) < V(t)e S [+ S b0 ds
Therefore,

()] < 2%51/(150) 1 a9, i(srholds

for t > to + h*/2.
For t € [to, to + h*/2] equation (1.1) can be written as

2! (t) —i—Z bi( ). Since 1(t) is the known initial function,

we can easily solve for x(t) using the variations of parameters formula. That
is

2(t) = 0“4 [y / ~ hy)e o 2@ gy
to

=1
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Thus for ¢ € [tg, to + h*/2], the above expression implies

t to+h*/2 t
O] < R O [T e ot
to i=1
This completes the proof.
The prove of the next corollary is a direct consequence of inequality (2.8)

Corollary 1 Suppose condition (2.1) hold and
n
Z b?(s+h;)]ds > ~ for some constant v > 0, then the zero solution of (1.1)
i=1
is exponentially stable.

Next we compare our results with the results of [9]. In [9], Wang used similar
method and showed the constant delay equation

2'(t) = a(t)z(t) + b(t)z(t — h) (2.12)
and derived similar inequalities to (2.8) and (2.9) provided that

_% < a(t) + b(t + h) < —hb*(t + h) (2.13)

hold. If n = 1 we see that our equation reduces to (2.12). For the sake of
1 2
comparison, take a(t) = —2 + V11, b(t) = —V11, h = 5 0= 3 then we

easily see that our condition (2.1) is satisfied, while condition (2.13) of [9]
is not.

We end this paper by giving a criteria for instability via Lyapunov func-
tional.

3. Criteria For Instability

In this section, we use a non-negative definite Liapunov functional and
obtain criteria that can be easily applied to test for instability of the zero
solution of (1.1).

Theorem 3.1. Suppose there exists a positive constant H > h* such that

a(t) + ib(tJrhi) — HibQ(tJr hi) > 0. (3.1)
i=1 i=1
If
V(t) = [x(t) +§ /t_hi b(s + hy)z(s)ds
— Y t 2 S 1'2 S)as
H;/t_hib( + ha)a®(s)ds, (3.2)
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then, along the solutions of (1.1) we have

n

V() > [a(t) + > bt + h)]V (1)

i=1

Proof. First we observe that condition (3.1) implies that Q(¢) > 0 for all
t > 0. Let z(t) = z(t,t0,7) be a solution of (1.1) and define V' (¢) by (3.2).
Then along solutions of (1.1) we have

Vi) = )+ Z/ b(s + h;) ds} [:c’(t) + ; bt + hy)x(t) — Z b(t)z(t — hi)}

_ [Zb2t+h (t) = b*(t)z Q(t—hi)}
- +z / bls + ho)a()ds | Q(Da()
_ HZthJrh +HZb2

=1

= Q(t){[x(t)—i-Z/t .b(s—l-h s)ds]? HZ/ 2(s 4 hy)x

4 Q(t)[HZ/t (s + ho)a?(s)ds — Z/th (5 + hy)e )dsH

+ [Q®) HZb2t+h +H2b2
i=1
> QMV()

where we have used

n

(i/th b(3+hi)$2(5)d8)2 < h*Z/th b2 (s + hi)x?(s)ds
i=1 7/t hi t—h;

=1

and (3.1). This completes the proof.

Lemma 2. Suppose condition (3.1) hold. Then the zero solution of (1.1)
is unstable, provided that

2/ b*(s + hi) ds = o0
i=1

Proof. An integration of (3.3) from ¢( to ¢ yields

V() > V(to)eho (a() 4+ b(s+ha) ds (3.4)
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Let V(t) be given by (3.2). Then

V) =

we have

2
t) + 2x(t Z/ b(s + hi)x d3+ 2/ b(s + h;)x(s)ds
t—h; t—h;

HZ/ (54 hy)z?(s)ds. (3.5)

Let p = H — h*. Then from

With this in mind we arrive at,

t) Zz; /thi b(s + h;)x(s)ds

Vhi VB o
(\/Ba \/hi-b) >0,
2ab < o2 gb?
< 2]x(t)||;/thi b(s + hi)z(s)ds|
hi B~ [!
< 5$2(t)+m[iz/t_hi b(s+hz)x(s)ds}

1
h* o 2y ~ [ e N2
< E.’L‘ () + thZ/thib (s + hy)x*(s)ds.

A substitution of the above inequality into (3.5) yields,

V(#)

IN

2% (t) + —a*(t) + (B + h* — H) /t V2 (s 4 hi)a*(s)ds
t—hi

Using inequality (3.4), we get

| (t)]

H
- H — h* Vl/Q( 2

H (a(s)+307, b(s+hy)) ds
— V1/2(t0) fto i

H — h*

H S B (s+hy)) ds
> Vl/?( )62171 fto i .
- H — h*

This completes the proof.
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