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ABSTRACT: It is very necessary and applicable to optimize 

all disciplines. In practical engineering problems the 

optimization has been a significant component. This article 

presents the implementation of modified approach 

combined with two novel techniques during the early bees 

of employed bees and the determination of a new location 

for scout bees. Modified Artificial Bee Colony (MABC) 

Algorithm was responsible for resolving well-known 

unconstrained engineering design problems like Three-Bar 

Truss Design Problem, Tension / Compression Spring 

Design Problem and Belleville Spring Design Problem.  

Statistical results of MABC Algorithm were compared with 

those of previous ABCs and many methods from previous 

studies. Comparisons have shown that MABC Algorithm 

has improved on its competing with accuracy, consistency 

and speed of reliability.  

 

Keywords: Optimization, Artificial bee colony algorithm, 

Constraint optimization problems, engineering designs 

problem. 

 

INTRODUCTION 

In many programs, in general, the problem of optimization is 
defined as 

Min 𝑓𝑟(x); x∈ 𝑅𝑑 and  1 ≤ 𝑟 ≤  𝑀 

Such that 

ℎ𝑙(x) = 0, 1 ≤  𝑙 ≤ 𝑝 

𝑔𝑚(x) < 0, 1 ≤  𝑚 ≤ 𝑞 

where 𝑓𝑟 , ℎ𝑙and 𝑔𝑚 are real-valued functions defined on 𝑅𝑑.   

In this problem 𝑥1 ,𝑥2,𝑥3,… , 𝑥𝑑 are called the design 

variables, the functions 𝑓𝑟 is considered as the cost function 

or objective function, 𝑔𝑚 and ℎ𝑙 are known as the problem 

constraints. And the space it covers is recognized as the 

search space or design space [1]. Objective function may also 

be constructed as a problem of maximization and inequality 

can be stated as a greater or equal form [2]. Meanwhile the 

introduction of algorithms such as the annealing (SA) 
algorithm and genetic algorithm (GA), adaptation has been an 

effective and efficient part of the development of practical 

and efficient strategies [3, 4]. Particle swarm optimization 

(PSO) algorithm is constructed on the concept of swarm 

behavior [5]. Other examples of PSO type algorithms are bats 

algorithm (BA), Firefly algorithm (FA), Artificial bee colony 

(ABC), and krill swarm (KH) [6-9]. Comparisons show that 

ABC offers better performance than PSO, DE, EA and can be 

successfully hired to solve engineering problems [10, 11]. 

Similarly, the Differential Evolution (DE) algorithm is based 

on the idea of improving the quality of a member of society 

with social and other differences [12]. The Mine Blast 

Algorithm (MBA) and the Grenade Explosion Method 

(GEM) promote the explosion of grenades and mines, 

respectively [13, 14]. Bee Colony Optimization Algorithm 

(BCOA) is proposed to solve numerical problems such as 

mobile retailer, traffic, and transportation [15]. Encouraging 

results have been reported in complex engineering problems 

using the BCOA [16]. Yang proposed a virtual bee algorithm 

(VBA) and proved its effectiveness in solving problems with 

two-dimensional numbers [17]. The first BA [18] suffers 
from a serious lack of proper programming of many 

parameters. 

One of the serious problems of the ABC is its lack of search-

related content, which is sufficiently accurate during the 

search space exploration but is limited compared to the 

exploitation process [19]. Some useful modifications from 

previous studies are available to address such shortcomings 

of ABC. Wei-Feng et al. have proposed an improved version 

of ABC based on the orthogonal learning (OL) program [19]. 

A global best artificial bee colony (GABC) was introduced 

[20] to improve ABC's level of convergence. Promoted by 
DE, modified ABC used to conduct local searches [21]. The 

concepts of best information, inertial weight and acceleration 

coefficient were used as in Improved Artificial Bee Colony 

(IABC) [22]. The idea of Rosenbrock's rotational method is 

hybridized with that of ABC [23]. In the onlooker bee phase, 

a memory board-based mechanism for the selection of 

neighboring solutions has been proposed [24]. 

Some recent studies like [25] also investigate these kinds of 

developments. Most of the methods like traditional analytical 

and finite difference schemes does not handle the properties 

of the model like boundedness, positivity, feasibility. There 

is the dire need of developing such a method that may be 
capable of handling these properties and give true insights 

into model dynamics.  

In recent years a lot of sophisticated meta-heuristics have 

been introduced to solve the most complex problems by 

transforming them into problems of optimization [26-28]. 

Improvisations to differential equations of these suggested 

metaheuristics can be seen in [29] as well, but the application 

of these meta-heuristics [30-33] to widely distributed and 

disease models are difficult to see. The study conducted by 

Farhan et al. for the treatment of the HIV/AIDS epidemic 

model with vertical transmission, Hepatitis-B Model [34] and 

19

mailto:farhanuet12@gmail.com


MODIFIED ARTIFICIAL BEE COLONY ALGORITHM FOR ENGINEERING DESIGN PROBLEMS 

 

 

Copyrights @Muk Publications  Vol. 14 No.1 June, 2022 

International Journal of Computational Intelligence in Control 

Smoking Model by using evolutionary Pad´e-approximation, 

extend this work to solve under line measles dynamical 

model. Unfortunately, previous modifications are not very 
specific to improve on two very important components of 

ABC, namely the initialization phase and the phase of scout-

bees. The concepts of reflection and effective radius, 

respectively, have been incorporated to improve the 

initialization process and the scout-bees phase. The resulting 

method is called as Radial Artificial Bee Colony Algorithm 

(RABC). The main objective of the current work is to 

improve the improved and more efficient version of ABC by 

improving the two mentioned components. 

 

MARTIALS AND METHODS 

Artificial bee colony algorithm: The Artificial Bee Colony 
(ABC) categories are structured as follows [7]. 

Initialization phase: This category should start with a user-

defined size that can vary from problem to problem. Half of 

the population consisted of employed bees and the rest were 

treated as onlooker bees. Each randomly generated area 

describes a food source provided by the employed bee and is 

constructed using the following equation. 

𝑥𝑢,𝑣 = 𝑥𝑣
𝑚𝑖𝑛 +  𝜆( 𝑥𝑣

𝑚𝑎𝑥 -𝑥𝑣
𝑚𝑖𝑛  ) 

u= 1,2, 3…, P and v = 1,2, 3…, Q 

here 𝑥𝑢,𝑣 represented the 𝑣𝑡ℎ limit of the 𝑢𝑡ℎ food source or 

an employed bee,  

𝑥𝑣
𝑚𝑎𝑥 and 𝑥𝑣

𝑚𝑖𝑛   were the bound on the 𝑣𝑡ℎ constraints, 

respectively, λ was a randomly selected number between 0 
and 1, P represented the number of employed bees and Q was 

the magnitude of the problem to be optimized. In addition, in 

this section, the reset counter (AC) counter for each food 

source also occurred. After that, the following formula was 

used to calculate the suitability of each food source. 

fi𝑡𝑢= {

1

1+𝑓𝑢
                   𝑖𝑓(𝑓𝑢 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑢)        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                (1) 

Where fi𝑡𝑢 denoted the fitness of 𝑢𝑡ℎ employed bee at its 

relevant food source and 𝑓𝑢 was the objective function value 

of 𝑢𝑡ℎ food source. 

Employed bee phase: In this stage, each food source was 
improved by waggle dance of corresponding employed bee 

by using following equation: 

𝑦𝑢,𝑣 = 𝑥𝑢,𝑣 + ∅( 𝑥𝑢,𝑣 − 𝑥𝑤,𝑣 )    u, w ϵ 1, 2,…,P ,  v ϵ 1,2,…,Q  

and  u ≠ w 

Here 𝑦𝑢,𝑣  was 𝑣𝑡ℎ part of the 𝑢𝑡ℎ solution vector, 𝑥𝑢,𝑣 was 

𝑣𝑡ℎ  part of the 𝑢𝑡ℎ  food source, 𝑥𝑤.𝑣 was 𝑣𝑡ℎ   component of 

𝑤𝑡ℎ  source and ∅ act as a randomly selected number between 

− 1 and +1. In addition, the component (j) and the neighboring 

candidate (k) solution were randomly selected from the 

remaining members. 

Using the figure (1) the suitability of a new location 𝑦𝑢,𝑣was 

obtained and assigned as 𝑥𝑢,𝑣, as long as the suitability of the 

new resource was high. The AC value is reset to zero if it is 
successful and rises by 1 in case of a failure. 

 Onlooker bee phase: At this stage, the waggle dance of the 

employed bees helped to make the better position. The 

onlooker bees were then selected by food sources according 

to the selection probability (𝑝𝑢) calculated by the following 

equation: 

𝑝𝑢= 
𝑓𝑢𝑡𝑢

∑ 𝑓𝑢𝑡𝑣
𝑁
𝑣=1

 

 

 Later, onlooker bees aiming for improvement in shared food 

sources shared with employed bees using the waggle dance 
equation. If the solution obtained by the observer was better 

than the employed bees, the newly found solution for the 

onlooker category was returned to the used bee and the AC 

was reset. 

 

Scout bee phase: In this step, the discarded counter with 

maximum content matched the predefined limit value. When 

the amount of high AC content was greater than the original 

value, the corresponding bee was converted into a scout bee 

and a new food source was produced randomly. AC reset. 

Having found a new solution, the scout bee is back to normal 
as a employed bee. 

 

PROPOSED MODIFICATIONS 

In the original ABC format, random searches are performed 

in the search field to select food sources. However, this 

startup method did not guarantee the correct availability of 

search space. In response to this challenge algorithm change 

was introduced according to review # 1 of the introduction of 

N food sources in the search area. 

 

Modification # 1: 
Step-1      u=1  

Step-2     for v= 1, 2, 3…, P/2  ,         𝑥𝑣 = L + rand (0, 1) (U-

L)   ,   𝑥𝑢+1 = 𝑥𝑢 + 2((L+U)/2-𝑥𝑢) 

Step-3     u = u+ 2, go to step-4 

Step-4     if u<P go to step-2 else stop   

The third line of step 2 has done the job of identifying the 

location of the search space that does not allow the solution 

and its indicated point to occur in the same search area. 
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Fig.1: The initial locations N are randomly distributed in 2-dimensional search space 

 

Modification 2:  

The second modification was to determine the proper position 

of the scout bee and its waggle dance budget has expired. 

With the use of employed bee, the scout bee explores the 
search space while taking on a new location listed in equation 

2. 

𝑥𝑛𝑒𝑤 = 𝑥𝑑  + Rad × rand (-1, 1)                                                       (2) 

Here                   Rad = max {|𝑥𝑢
𝑑 − 𝑙𝑢| , |𝑥𝑢

𝑑 − ℎ𝑢|: 1 ≤
𝑢 ≤ 𝑛}                      (3) 

Continuous rand (-1, 1) indicates the vector of random 

numbers generated by the interval (-1, 1). 

Due to the effect of eqn. (6), each scout bee is introduced into 

the space listed in equation 3 next to the current solution in a 

random way. The RABC algorithm emerged embedded in 

modification 1 and 2 in the original ABC. The full RABC 

algorithm was stated below. 

 

MABC Algorithm  
Step 1: Selected parameters. 
 Step 2: The initialization population is created using 

modification # 1. 

Step 3: Employed Bees Phase was activated. 

Step 4: Onlooker bee stage is created. 

Step 5: The AC parameter is tested and the scout bees are 

introduced using modification # 2. 

 

RESULTS AND DISCUSSION 

Engineering benchmark constrained problems: The 

success of the proposed new and dynamic algorithm MABC 

is shown by the resolution of various problems in 

optimization, which are commonly used to validate 

optimization approaches and are known as benchmarks in the 

literature. These test cases consist of three practical 

benchmarks for optimization of design problems [13]. 

Three-Bar Truss Design Problem 

This problem has been taken from, which has two types of 

design variables, 𝑥1and 𝑥2 for cross-sectional areas, and has 

one linear objective function of minimization with three 

nonlinear inequality constraints [13]. The graphical 

representation of the three-bar truss design problem is shown 

in Figure 2. 

 

 
Figure2. The three-bar truss design problem 

𝑚𝑖𝑛𝑓(𝑥) = (2√2𝑥1 + 𝑥2) × 𝑙 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
  
 

  
 𝑔1(𝑥) =

√2𝑥1 + 𝑥2

√2𝑥1
2+ 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0

𝑔2(𝑥) =
𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0

𝑔3(𝑥) =
1

√2𝑥2 + 𝑥1
𝑃 − 𝜎 ≤ 0

 

0 ≤  𝑥1, 𝑥2  ≤ 1 
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𝑫𝒂𝒕𝒂: 

𝑙𝑒𝑛𝑔𝑡ℎ =  𝑙 = 100𝑐𝑚, 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑙𝑜𝑎𝑑 = 𝑃 = 2
𝐾𝑁

𝑐𝑚2
, 𝑠𝑡𝑟𝑒𝑠𝑠 = 𝜎 = 2

𝐾𝑁

𝑐𝑚2
 

 

Abbreviations use in this problem are as follows: MBA [13] 

Mine Blast Algorithm, DEDS [12] Differential Evolution 

with Dynamic Stochastic PSO-DE [5], Particle Swarm 

Optimization with Differential Evolution, Modified Artificial 

Bee Colony. 

Table 1 shows the comparison of the best solution between 

different optimizers and the variability of the corresponding 

design. The results obtained by MABC are compared to 3 

advanced algorithms. Differential Evolution with Dynamic 

Stochastic, Particle Swarm Optimization with Differential 

Evolution and Mine Blast Algorithm which is the first 

constraint to the final solution violated but MABC satisfies 

all the barriers to the final solution. 

 

Table1.Reported results for three-bar truss design problem from different optimizers 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 
𝑫𝒆𝒔𝒊𝒈𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒇(𝒙) 𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 
𝒙𝟏 𝒙𝟐  𝒉𝟏(𝒙)                              𝒉𝟐(𝒙) 𝒉𝟑(𝒙) 

𝐷𝐸𝐷𝑆 0.78867513 0.40824828 263.895841 1.77797𝐸 − 08 −1.464101618 −0.535898364 
𝑃𝑆𝑂 − 𝐷𝐸 0.7886751 0.4082482 263.8958245 1.42718𝐸 − 07 −1.464101647 −0.535898211 
𝑀𝐵𝐴 0.788565 0.4085597 263.8958336 1.41887𝐸 − 07 −1.463747582 −0.536252276 
𝑴𝑨𝑩𝑪 𝟎. 𝟕𝟖𝟖𝟔𝟕𝟓𝟏𝟑𝟓 𝟎. 𝟒𝟎𝟖𝟐𝟒𝟖𝟐𝟗 𝟐𝟔𝟑. 𝟖𝟗𝟓𝟖𝟒𝟑 𝟎 −𝟏. 𝟒𝟔𝟒𝟏𝟎𝟏𝟔𝟏𝟔 −𝟎. 𝟓𝟑𝟓𝟖𝟗𝟖𝟑𝟖𝟒 

 

It is clear from Table 1 that the proposed MABC algorithm 

works best and is superior to all high-quality methods without 

breaking the law. The convergence curve shows the 

performing values compared to the number of generations of 

the three bar-truss design problem. 30 trials of the best 

solution found in the MABC algorithm are given in Figure 3. 

 

 
Figure 3. Convergence curve and 30 best solutions for the three-bar truss design problem 

  

Tension / Compression Spring Design Problem 

This problem  is derived from [13] which has three types of 

design variables and has one linear objective function of 

minimization with four nonlinear inequality constraints. The 

detailed view of the tension/compression spring design 

problem is shown in Figure 4. The four design variables are: 

𝑑: 𝑤𝑖𝑟𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑥1,  

𝐷: 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑐𝑜𝑖𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑥2,  

𝑃: 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑖𝑙𝑠 = 𝑥3. 
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Figure 4. Tension/ compression spring design problem 

𝑓(𝑥) = (𝑥3 + 2)𝑥2𝑥1
2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{
 
 
 
 

 
 
 
 𝑔1(𝑥) = 1 − (

𝑥2
3𝑥3

71,785𝑥1
4
) ≤ 0

𝑔2(𝑥) = (4𝑥2
2 −

𝑥1𝑥2
12,566(𝑥2𝑥1

3 − 𝑥1
4)
) + (

1

5108𝑥1
2
) − 1 ≤ 0

𝑔3(𝑥) = 1 − (
140.45𝑥1
𝑥2

3𝑥3
) ≤ 0

𝑔4(𝑥) =
𝑥2 + 𝑥1
1.5

− 1 ≤ 0

 

0.05 ≤  𝑥1  ≤ 2.00, 0.25 ≤  𝑥2  ≤ 1.30, 2 ≤ 𝑥3 ≤ 15 
 

Abbreviations use in this problem are as follows: DELC [12] 

Differential Evolution with Level Comparison, CPSO [5] 

Chaotic Particle Swarm Optimization, HPSO [5] Hybrid 

Particle Swarm Optimization, NM-PSO [5] Nelder - Mead 

Particle Swarm Optimization, MBA [13] Mine Blast 

Algorithm, HEAA [35] Hybrid Evolutionary Algorithm and 

Adaptive technique, GQPSO [5]  Genetic Quantum 

particle Swarm Optimization, DEDS [12]  Differential 
Evolution with Dynamic Stochastic. 

Table 2 shows the comparison of a better solution than 

several optimizers and the variability of the corresponding 

design. Results obtained by MABC comparing 8 state-of-the-

art algorithms. DELC, DEDS, NM-PSO include two 

constraints with HPSO, G-QPSO, HEAA, one MBA violet 

facing the final the final solution but MABC satisfies all 

aspects of final solution. 

 

Table2.Reported results for tension/compression spring design problem from different optimizers. 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 
𝑫𝒆𝒔𝒊𝒈𝒏 Variables 

𝒇(𝒙) 
𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒉𝟏(𝒙) 𝒉𝟐(𝒙) 𝒉𝟑(𝒙) 𝒉𝟒(𝒙) 

𝐷𝐸𝐿𝐶 
0.051689 0.356717 

11.28897 0.012665176 
1.56136𝐸
− 06 

1.6457𝐸
− 06 

−4.053800957 
−0.727729333 

𝐷𝐸𝐷𝑆 
0.051689 0.356717 

11.28897 0.012665176 
1.56136𝐸
− 06 

1.6457𝐸
− 06 

−4.053800957 
−0.727729333 

𝐶𝑃𝑆𝑂 
0.051728 0.357644 

11.24454 0.012674747 
−0.000825095 −2.52741𝐸

− 05 
−4.051306652 

−0.727085333 

𝐻𝑃𝑆𝑂 
0.051706 0.357126 

11.26508 0.012665237 
−3.06754𝐸
− 06 

1.39164𝐸
− 06 

−4.054583211 
−0.727445333 

𝑁𝑀
− 𝑃𝑆𝑂 

0.05162 0.355498 
11.33327 0.012630191 

0.001010113 0.000994876 −4.061859753 
−0.728588 

𝐺
− 𝑄𝑃𝑆𝑂 

0.051515 0.352529 
11.53886 0.012666144 

4.83412𝐸
− 05 

−3.57742𝐸
− 05 

−4.045483267 
−0.730637333 

𝐻𝐸𝐴𝐴 
0.051689 0.356729 

11.28829 0.012664961 
−3.98291𝐸
− 05 

2.87099𝐸
− 05 

−4.053761789 
−0.727721333 

𝑀𝐵𝐴 
0.051656 0.35594 

11.34467 0.012674359 
−0.000933595 3.86419𝐸

− 05 
−4.047743157 

−0.728269333 

𝑹𝑨𝑩𝑪 
𝟎. 𝟎𝟓𝟏𝟔𝟖𝟖𝟏𝟖 𝟎. 𝟑𝟓𝟔𝟔𝟗𝟔𝟒𝟑 𝟏𝟏. 𝟐𝟗𝟎𝟐𝟏𝟓𝟏 

𝟎. 𝟎𝟏𝟐𝟔𝟔𝟓𝟐 −𝟐. 𝟐𝟐𝑬 − 𝟏𝟓 
−𝟏. 𝟓𝟒𝑬
− 𝟏𝟒 

−𝟒. 𝟎𝟓𝟑𝟕𝟒𝟑𝟓𝟒𝟓 −𝟎. 𝟕𝟐𝟕𝟕𝟒𝟑𝟓𝟗𝟓 

 

It is clear from Table 2 that the proposed MABC algorithm has performed better and superior to all other high-level methods without 

violation the rules others are violated the constraints than 30 trial of the best solution found in the MABC algorithm are given in 

Figure 5. 
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Figure 5.  Convergence curve and 30 best solutions for tension/compression spring design problem 

 

Belleville Spring Design Problem  

This problem has been taken from which has four types of 

design variables and has a linear objective function of 

minimization with seven non-linear inequality constraints 

[13]. The graphic view of the Belleville spring design 

problem is shown in Figure 6. This problem has the following 

four design variables: 

𝐷𝑒: 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑥1,  

𝐷𝑖: 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑥2,  

𝑡: 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑥3, and  

ℎ: 𝑡ℎ𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑥4. 

 
Figure 6. Graphic view of the Belleville spring design problem 
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𝑃𝑚𝑎𝑥 = 5400𝑙𝑏.  𝐸 = 30𝑒6𝑃𝑠𝑖,   𝛿𝑚𝑎𝑥 = 0.2𝑖𝑛,   𝜇 = 0.3, 𝑆 = 200𝐾𝑃𝑠𝑖,    𝐻 = 2𝑖𝑛, 
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  𝐷𝑚𝑎𝑥 = 12.01𝑖𝑛, 𝐾 =
𝐷𝑒
𝐷𝑖,
,     𝛿1 = 𝑓(𝑎)𝑎,    𝑎 =

ℎ

𝑡
 

Abbreviations use in this problem are as follows: Coello [36] 

Single-Objective Evolutionary Optimization, Gene AS [36] 

Combined Genetic Search Technique, Siddal [37] Optimal 

Engineering Design, ABC [38] Artificial Bee Colony, NDE 
[12] Novel Differential Evolution, Rank- iMDDE [39] 

Ranking-based Improved Dynamic Diversity Mechanism. 

Table 3 shows the best solution between the various 

optimizers and the variations of the corresponding design. 

The results obtained by MABC are compared to 6 state-of-art 

algorithms. Gene AS I and Siddal violet are the one constraint 
to find a final solution but the SABC satisfies all aspects of 

the final solution. 

 

Table 3. Described results for Belleville spring design problem from distinct optimizers 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 
𝑫𝒆𝒔𝒊𝒈𝒏 Variables 𝒇(𝒙) 𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒  𝒉𝟏(𝒙) 𝒉𝟐(𝒙) 𝒉𝟑(𝒙) 𝒉𝟒(𝒙) 𝒉𝟓(𝒙) 𝒉𝟔(𝒙) 𝒉𝟕(𝒙) 
𝐶𝑜𝑒𝑙𝑙𝑜 0.208 0.2 8.751 11.067 2.121964 2145.4109 39.75018 0 1.592 0.943 2.316 0.21364 

𝐺𝑒𝑛𝑒 𝐴𝑆 𝐼 0.205 0.201 9.534 11.627 2.01807 −10.3396 2.8062 0.001 1.594 0.383 2.093 0.20397 
𝑆𝑖𝑑𝑑𝑎𝑙 0.204 0.2 10.03 12.01 1.979715 134.0816 −12.5328 0 1.596 0 1.98 0.19899 

𝐺𝑒𝑛𝑒 𝐴𝑆 𝐼𝐼 0.21 0.204 9.268 11.499 2.16256 2127.2624 194.2225 0.004 1.586 0.511 2.231 0.20856 

𝑀𝐵𝐴 
0.204143 0.2 

10.030473 
12.01 

1.9796747 
4.58𝐸
− 04 

3.04𝐸
− 07 

9.24𝐸
− 10 

1.595856 
0 1.979526 0.198965 

𝑹𝑨𝑩𝑪 
𝟎. 𝟐𝟎𝟒 𝟎. 𝟐 

𝟏𝟎. 𝟎𝟑𝟎𝟒 
𝟏𝟐. 𝟎𝟏 

1.979674 
𝟎 𝟎 𝟎. 𝟕𝟕𝟗𝟕 

𝟏. 𝟓𝟗𝟓𝟖𝟓 
𝟏. 𝟐𝟒𝑬
− 𝟏𝟒 

𝟏. 𝟗𝟕𝟗𝟓𝟐 𝟎. 𝟏𝟗𝟖𝟗𝟔 

 

The results obtained by the MABC are also compared with 5 

state-of-the-art algorithms, comparison of the statistical 

results of the Belleville spring construction problem is shown 

in Table 4. 

 

Table 4. Statistical comparison of results for the Belleville spring design problem of several algorithms 

𝑴𝒆𝒕𝒉𝒐𝒅 𝑾𝒐𝒓𝒔𝒕 𝑴𝒆𝒂𝒏 𝑩𝒆𝒔𝒕 𝑺𝑫 

𝐴𝐵𝐶 2.104297 1.995475 1.979675 0.07 

𝑀𝐵𝐴 2.005431 1.984698 1.9796747 7.78𝐸 − 03 

𝑅𝑎𝑛𝑘 − 𝑖𝑀𝐷𝐷𝐸 1.979683 1.979675 1.979675 𝑁. 𝐴 

𝑁𝐷𝐸 1.97969110 1.97967661 1.97967477 4.82𝐸 − 06 

𝑴𝑨𝑩𝑪 2.047196 2.75 𝟏. 𝟗𝟕𝟗𝟔𝟕𝟒 1.642 

 

It is clear from Tables 3 & 4 that the proposed MABC 

algorithm has done better and superior to all other forms of 

art without destruction. The convergence curve shows the 

performance rates relative to the number of generations of the 

Belleville spring problem. 30 trials of the best solution found 

in the MABC algorithm are shown in Figure 7. 

 

 
Figure 7.  Convergence curve and 30 best solutions for Belleville spring design problem 
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CONCLUSION 

Numerical comparisons of the study have witnessed that the 
MABC found better solution to the non-linear inequality 

constrains optimization problems in comparison with other 

meta-heuristic optimizers. The effectiveness and quality of 

these solutions depends on the nature and complexity of the 

problem. 
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