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Abstract. We investigate the boundary value problem for second order
functional differential inclusion of the form D

dt
ṁ(t) ∈ F (t,mt(θ), ṁt(θ)) on

a complete Riemannian manifold for a continuous curve φ : [−h, 0] → M
and point m1 which is non-conjugate with φ(0) along at least one geodesic

of Levi-Civita connection, where D
dt

is the covariant derivative of Levi-Civita

connection and F (t,m(θ), X(θ)) is a set-valued vector field (it is either con-
vexvalued and satisfies the upper Caratheodory condition or it is lower semi-
continuous) such that: ∥F (t,m,X)∥ < f(∥X∥) where f : [0,∞) → [0,∞) is
an arbitrary continuous function, increasing on [0,∞). Some conditions on

certain geometric characteristics, on the distance between points and on the
length of time interval, under which the problem is solvable, are found. A
generalization to inclusions of the same sort subjected to a non-holonomic
constraint, is also presented.

1. Introduction

Let M be a finite-dimensional complete Riemannian manifold and TM be its
tangent bundle with natural projection π : TM → M . For I = [−h, 0] denote by
D(I, TM) the space of couples (m(θ), X(θ)) where m(θ) is a continuous curve in
M and X(θ) is a vector field along m(θ) being continuous from the left and having
the limit from the right. Consider a set-valued mapping F : R×D(I, TM) ( TM
such that for any (m(θ), X(θ)) the relation πF (t,m(θ), X(m(θ))) = m(0) holds.
We call such F a set-valued force field.

Specify l > 0. We investigate the differential inclusion of the form

D

dt
ṁ(t) ∈ F (t,mt(θ), ṁt(θ)), (1.1)

where as usual for a curve m(·) : [−h, l] → M and t ∈ [0, l], we set mt(θ) = m(t+θ)
where θ ∈ I. We suppose that F satisfies the condition:

max
(t,m)∈I×Ξ

∥F (t,m,X)∥ ≤ f(∥X∥) (1.2)
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where f is an arbitrary continuous function, increasing on [0,∞). Also we assume
that F satisfies the so called upper Carathéodory condition (see Definition 3.1)
and has convex closed values, or is lower semi-continuous.

The main aim of the paper is to find conditions that guarantee the solvability
for some t1 ∈ (0, l) of the boundary value problem for (1.1) with right-hand sides
as mentioned above, i.e., to find a C0 – curve m(t), t ∈ [−h, t1], satisfying (1.1)
on (0, t1] and such that m(t) = φ(t) for t ∈ [−h, 0] and m(t1) = m1 where φ(t) is
a given C1-curve with t ∈ I and m1 is a given point. Note that for such a solution
the couple (mt(θ), ṁt(θ)) belongs to D(I, TM) for every t ∈ [0, t1].

It should be pointed out that even the two-point boundary value problem for
ordinary second order differential equations may not be solvable at all for smooth
uniformly bounded single-valued F (see, e.g., [1]) if the boundary points are con-
jugate along all geodesics of Levi-Civita connection joining them. That is why we
suppose that the points φ(0) and m1 are not conjugate along at least one geodesic.
We find some conditions on certain geometric characteristics of M , on t1, and on
the distance between φ(0) and m1, under which the problem is solvable. Note
that there are examples of second order equations with non-bounded continuous
right-hand sides where for a given couple of points the problem is solvable on a
sufficiently small time interval but is not solvable on larger intervals. Besides, the
problem can be solvable for points rather close to each other and not solvable at
all for points with greater distance between them (see examples in [1]).

We construct the solutions of problem under consideration from fixed points of
special integral type operators, that act in the space of continuous curves in the
tangent space Tφ(0)M .

The special particular case of f(x) = x2 was investigated and a condition for
solvability was obtained in [2]. In [3] similar problem was considered for second-
order differential inclusions.

Note that a single-valued continuous field f is a particular case of set-valued
fields F mentioned above. Thus the conditions found here for inclusion (1.1) are
also valid for second order functional differential equation D

dtṁ(t) = f(t,mt, ṁt)
with continuous right-hand side. We do not formulate the results for equations
separately.

The author is indebted to Yu.E. Gliklikh for setting up the problem and very
much useful discussions.

2. Technical statements

In this section we modify some constructions from [4] for the problem under
consideration.

Take m0 ∈ M , and let v : [0, 1] → Tm0M be a continuous curve. It is shown in
[4] that there exists a unique C1–curve m : [0, 1] → M such that m(0) = m0 and
the vector ṁ(t) is parallel along m(·) to the vector v(t) ∈ Tm0M at any t ∈ [0, 1].

Denote the curve m(t) constructed above from the curve v(t), by the symbol
Sv(t). Thus we have defined a continuous operator S that sends the Banach space
C0([0, 1], Tm0M) of continuous maps (curves) from [0, 1] to Tm0M into the Banach
manifold C1([0, 1],M) of C1– maps from [0, 1] to M . Let a point m1 ∈ M be non-
conjugate to the point m0 ∈ M along a geodesic g(·) of the Levi-Civita connection.
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BOUNDARY VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL INCLUSIONS 3

Everywhere below denote by UR a ball in C0([0, t1], Tφ(0)M) with center at the
origin.

Lemma 2.1. There exists a ball Uε ⊂ C0([0, 1], Tm0M) of a radius ε > 0 centered
at the origin such that for any curve û(t) ∈ Uε ⊂ C0([0, 1], Tm0M) there exists
a unique vector Cû, belonging to a certain bounded neighborhood V of the vector
ġ(0) in Tm0M , that is continuous in û and such that S(û+Cû)(1) = m1

Introduce the notation supC∈V ∥C∥ = C, where V is from Lemma 2.1.

Remark 2.2. One can easily show that ε < C. Note that C characterizes the dis-
tance between m0 and m1 while ε characterizes some properties of the Riemannian
geometry on M .

Lemma 2.3. Under conditions and notation of Lemma 2.1, let R > 0 and t1 > 0
be such that t−1

1 ε > R. Then for any curve u(t) ∈ UR ⊂ C0([0, t1], Tm0M) there
exists a unique vector Cu in a neighborhood t−1

1 V of the vector t−1
1 ġ(0) in Tm0M ,

continuously depending on u and such that S(u+ Cu)(t1) = m1

Lemmas 2.1 and 2.3 are modifications of theorem 3.3 from [4].
For the given curve φ(·) we introduce the operator Sφ : C0([0, t1], Tφ(0)M)

→ C0([−h, t1],M), defined as follows: Sφ(v(·))(t) = φ(t) for t ∈ [−h, 0] and
Sφ(v(·))(t) = S(v(·))(t) for t ∈ [0, t1].

Lemma 2.4. For specified t1 > 0, R > 0 as above and φ(·) ∈ C1(I,M) all curves
Sφ(v + Cv)t(θ) with v(·) ∈ UR ⊂ C0([0, t1], Tφ(0)M) take values in a compact set
Ξ ⊂ M that depends on the curve φ, ε and C, introduced above, and does not
depend on t1.

Proof. Obviously the length of Sφ(v + Cv)(·) is a sum of lengths of φ(·) and of
S(v + Cv)(·). Since the parallel translation preserves the norm of a vector, for
any curve v(·) ∈ C0([0, t1], Tφ(0)M)) the length of S(v + Cv)(·) is not greater

than
∫ t1
0
(R + ∥Cv∥)dt ≤

∫ t1
0

t−1
1 (ε + C)dt =

∫ 1

0
(ε + C)dt = ε + C. Denote N =

supt∈I ∥φ̇(t)∥. It is easy to see that the length of φ(·) is not greater than Nh.
Hence all curves ∥Sφ(v + Cv)t(·)∥ lie in a bounded subset Ξ of M . Since M is
complete, by Hopf-Rinow theorem any bounded set is compact. �
Lemma 2.5. Let the inequality f(εt−1

1 +Ct−1
1 ) < εt−2

1 hold where f is an arbitrary,
increasing on [0,∞] function. Then there exists a small enough positive number ϕ
such that (εt−1

1 − ϕ) > 0 and the inequality f((εt−1
1 − ϕ) + Ct−1

1 ) < εt−2
1 − ϕt−1

1

holds.

Proof. From the hypothesis of lemma we get f(εt−1
1 +Ct−1

1 ) < εt−2
1 . From continu-

ity of both sides of this inequality it follows that there exists a small enough number
ϕ > 0 such that (εt−1

1 −ϕ) > 0 and the inequality f((εt−1
1 −ϕ)+Ct−1

1 ) < εt−2
1 −ϕt−1

1

holds. �

3. The main results

Everywhere below M is a complete Riemannian manifold. Denote ∥X(·)∥ =
supθ∈I∥X(θ)∥. Introduce the norm of F (t,m,X) ∈ TmM by usual formula:

∥F (t,m(·), X(·))∥ = supy∈F (t,m(·),X(·))∥y∥.
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4 P.S. ZYKOV

On D(I, TM) we consider Skorohod’s topology (see for example [5], where it is
described for the space of functions continuous from the right and having limits
from the left, in our case the construction is quite analogous).

Definition 3.1. We say that F (t,m(θ), X(θ))) satisfies upper Carathéodory con-
ditions if:

(1) for every couple (m(·), X(·))) ∈ D(I, TM) the map F (·,m(·), X(·))) :
[0, l] ( TmM is measurable,

(2) for almost all t ∈ I the map F (t, ·, ·) : D(I, TM) ( TM is upper semicon-
tinuous.

Definition 3.2. Let I = [0, l] ⊂ R. The set-valued force field F (t,m(θ), X(θ))) is
called almost lower semicontinuous if there exists a countable sequence of disjoint
compact sets In, In ⊂ I such that: (i) the measure of I\

∪
n In is equal to zero;

(ii) the restriction of F on each In × TM is lower semicontinuous.

Consider a curve φ(θ) ∈ C1(I,M) and a point m1 ∈ M .

Theorem 3.3. Let φ(0) and m1 be not conjugate along at least one geodesic
of Levi-Civita connection joining them and let F (t,m(·), X(·)) satisfy the upper
Caratheodory condition, have convex closed values and for a certain t1 > 0 satisfy
condition (1.2) on [0, t1]× Ξ where Ξ is compact from Lemma 2.4. If

f(εt−1
1 + Ct−1

1 ) ≤ εt−2
1 , (3.1)

there exists a solution m(t) of (1.1), for which m(t) = φ(t) for t ∈ I and m(t1) =
m1.

Proof. Since φ(0) and m1 are not conjugate along a geodesic of Levi-Civita con-
nection, the numbers ε and C from Lemma 2.1 are well-posed. Denote by Θ the
subset in D(I, TM) such that all curves from πΘ belong to the compact Ξ from
Lemma 2.4.

Consider a continuous curve v : [0, t1] → Tφ(0)M . Construct the C1-curve
γ(t) = Sφv(t) for t ∈ [0, t1].

Note that the vector filed γ̇(t) along γ(t) is discontinuous at t = 0 but the
couple (γt(·), γ̇t(·)) belongs to D(I, TM) for all t ∈ [0, l]. Hence the set-valued
vector field F (t, γt(·), γ̇t(·)) is well-posed for all t ∈ [0, t1].

Denote by Γ the operator of parallel translation of vectors along γ(·) at the point
γ(0) = φ(0). Apply operator Γ to all sets F (t, γt(θ), γ̇t(θ)) along γ(·). As a result
for any v(·) ∈ C0(I, Tm0M) we obtain a set-valued map ΓFSφv : [0, t1] → Tm0M
that has convex values. It follows from the results of [6] that this map satisfies
upper Carathéodory conditions. Denote by PΓFSφv the set of all measurable
selections of ΓFSφv (such selections do exist, see e.g., [7]). Define the set-valued
operator

∫
PΓFSφ : C0([0, t1], Tm0M) ( C0([0, t1], Tm0M) by the formula∫

PΓFSφ = {
∫ t

0

f(τ)dτ |f(·) ∈ PΓFSφ}.

In complete analogy with [6], it can be shown that
∫
PΓFSφ is upper semicon-

tinuous, has convex values and sends bounded sets from C0([0, t1], Tφ(0)M) into
compact ones.
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BOUNDARY VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL INCLUSIONS 5

For φ(0) and m1, the numbers ε and C introduced above, are well-defined.
Consider the ball UR ∈ C0([0, t1], Tm0M), where R = (εt−1

1 − ϕ) and ϕ is the
number from Lemma 2.5. Since εt−1

1 > R, by Lemma 2.3 for any v(·) ∈ UR

the vector Cv is well-posed. Thus we can introduce the operator Z : UR (
C0([0, t1], Tm0

M) by formula:

Z(v) =

∫
PΓFSφ(v + Cv).

As well as
∫
PΓFSφv, this operator is upper semi-continuous, convex-valued

and sends bounded sets from C0([0, t1], Tm0M) into compact ones (see [1]). Since
t−1
1 ε − ϕ > R and parallel translation preserves the norms of vectors, from the
construction of Sφ and from Lemma 2.5 we derive that for any v(·) ∈ UR and
t ∈ [0, t1] the estimate

∥F (t, Sφ(v + Cv)t(θ),
d

dθ
Sφ(v + Cv)t(θ))∥ <

< f((εt−1
1 − ϕ) + Ct−1

1 ) < (εt−2
1 − ϕt−1

1 )

holds. Since parallel translation preserves the norms of vectors, from the last
inequality it follows that

∥Z(v + Cv)∥ = ∥
∫

PΓFSφ(v + Cv)∥C0([0,t1],Tm0M) ≤ (t−1
1 ε− ϕ) = R.

Thus Z sends the ball UR into itself and from the Bohnenblust-Karlin fixed
point theorem (see, e.g., [7, 8]) it follows that it has a fixed point u(·) ∈ UR, i.e.
u(·) ∈ Zu(·). Let us show that m(t) = Sφ(u(t) + Cu) is the desired solution. By
construction we have m(·) = φ(·) for t ∈ [−h, 0] and m(t1) = m1.

Note that u̇(·) is a selection of ΓF (t, Sφ(u + Cu)t(θ),
d
dθSφ(u + Cu)t(θ)) since

u is a fixed point of Z. In other words, the inclusion u̇(t) ∈ ΓF (t, Sφ(u +

Cu)t(θ),
d
dθSφ(u + Cu)t(θ)) holds for all points t at which the derivative exists.

Using the properties of the covariant derivative and the definition of u, one can
show that u̇(t) is parallel to D

dtṁ(t) along m(·) and ΓF (t, Sφ(u+Cu)t(θ),
d
dθSφ(u+

Cu)t(θ)) is parallel to F (t,mt(θ), ṁt(θ)). Hence, D
dtṁ(t) ∈ F (t,m(t), ṁ(t)). �

Theorem 3.4. Let φ(0) and m1 be not conjugate along at least one geodesic of
Levi-Civita connection joining them andlet F (t,m(·), X(·)) be almost lower semi-
continuous, have closed values and for a certain t1 > 0 let it satisfy condition (1.2)
on [0, t1] × Ξ where Ξ is the compact from Lemma 2.4. If (4.5) is fulfilled, there
exists a solution m(t) of (1.1), for which m(t) = φ(t) for t ∈ I and m(t1) = m1.

Proof. Here we use the same notation as in the proof of Theorem 3.3. No-
tice that from the hypothesis it follows that for all v ∈ C0([0, t1], Tm0M) the
curves from PΓFSφv are integrable. Hence the set-valued map PΓFSφv sends
C0([0, t1], Tm0M) into L1(([0, t1],A, µ), Tm0M), where A is Borel σ-algebra and
µ is the normalized Lebesgues measure. Since F is almost lower semicontinuous,
in complete analogy with [8] one can easily show that the operator PΓFSφv :

5



6 P.S. ZYKOV

C0([0, t1], Tm0M) → L1(([0, t1],A, µ), Tm0M) is lower semicontinuous and has de-
composable images (for the definition see, e.g., [7, 9] ). Then by Fryszkowski-
Bressan-Colombo theorem (see, e.g., [7]) it has a continuous selection that we
denote by pΓFS.

Choose the number R as in the proof of Theorem 3.3. Then on the ball UR ⊂
C0([0, t1], Tm0M) the operator

Gv =

∫ t

0

pΓF (s, Sφ(v(s) + Cv),
d

ds
Sφ(v(s) + Cv))ds : UR → C0([0, t1], Tm0M)

is well posed. As a corollary to Lemma 19 of [10] we obtain that G is completely
continuous. Since parallel translation preserves the norm of a vector, from the
construction of S and from the hypothesis for any u ∈ UR with given F we get:

∥Gv∥ = ∥
∫ t

0

pΓF (s, Sφ(v(s) + Cv),
d

ds
Sφ(v(s) + Cv))ds∥C0([0,t1],Tm0M) ≤

≤ f∥(v(t) +Cv)∥t1 ≤ f((εt−1
1 − ϕ) +Ct−1

1 )t1 < (εt−2
1 − ϕt−1

1 )t1 = (εt−1
1 − ϕ) = R

Hence the completely continuous operator G sends UR into itself and by classical
Schauder’s principle it has a fixed point u ∈ UR . Using the same arguments, as
in the proof of Theorem 3.3, one can easily prove that m(t) = S(u + Cu)(t) is a
solution of (1.1) such that m(t) = φ(t) for t ∈ I and m(t1) = m1. �
Corollary 3.5. Let F (t,m(·), X(·)) either satisfy upper Caratheodory condition
and have convex closed values or be almost lower semicontinuous and have closed
values. Let also F (t,m(·), X(·)) satisfy (1.2) on the entire manifold M and the
points φ(0) and m1 be nonconjugate along a certain geodesic g(·) of the Levi-Civita
connection. If t1 > 0 is such that (4.5) is fulfilled, there exists a solution m(t) of
(1.1) such that m(t) = φ(t) for t ∈ I and m(t1) = m1.

4. Systems with linear constraints

In this section, we show how to generalize existence theorems of previous section
to systems with constraints. We refer the reader, say, to [4] for preliminary material
about systems with constraints. Here we introduce only some notions necessary
for understanding the constructions.

Definition 4.1. A linear constraint in the system is a smooth distribution (i.e.,
a subbundle of the tangent bundle) β on M.

If the distribution β is integrable, the constraint is called holonomic and non-
holonomic in the other case.

Definition 4.2. A tangent vector is called admissible if it lies in the distribution
β. A curve in M is admissible if all its tangent vectors are admissible.

A constraint β imposes a restriction on the motion of the system. Namely, all
its solutions must be admissible.

Let Q : TM → β be the operator of orthogonal projection (with respect to the
Riemannian metric on M) of tangent spaces on their subspaces β, i.e., we have
Qm : TmM → βm for every m ∈ M . Introduce the so-called reduced covariant

derivative along a curve by the formula D
dt = QD

dt . In fact it is generated by the

6
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so-called reduced connection (see [4]). Below in this section we use the parallel
translation of admissible vectors along admissible curves generated by reduced
connection.

Definition 4.3. A least constraint non-holonomic geodesic is an admissible curve

γ(t) on M that satisfies the equation D
dt γ̇(t) = 0 where γ̇ = dγ

dt .

We investigate the differential inclusion of the form

D

dt
ṁ(t) ∈ QF (t,m(θ), X(θ)), (4.1)

where right-hand side satisfies the following condition:

∥QF (t,m(θ), X(θ))∥ ≤ f(∥X∥) (4.2)

on some subset in R × M (a particular case – on the entire R × M) where f :
[0,∞) → [0,∞) is an arbitrary function increasing on [0,∞).

In complete analogy with the construction of exponential mapping by ordinary
geodesics, the least constraint non-holonomic geodesics generate the so called non-
holonomic exponential mapping expβm0

: βm0 → M .

Definition 4.4. A point m1 ∈ expβm0
(βm0) is called non-conjugate to m0 along a

least constraint geodesic γX(t) where γX(1) = m1 and γ̇X(0) = X, if the differen-
tial dexpβm0

has at X ∈ βm0 the maximal rang.

Consider m0 ∈ M , I = [0, t1], and let v : I → βm0 be a continuous curve.
It is shown in [4] that there exists unique admissible C1–curve m : [0, t1] → M
such that m(0) = m0 and the vector ṁ(t) is parallel (with respect to reduced
connection) along m(·) to the vector v(t) ∈ Tm0M at any t ∈ [0, 1]. We denote the
curve m(t) constructed in such a way from the curve v(t), by the symbol Sβv(t).

Let m(t), t ∈ I, be an admissible C1-curve and X(t,m) an admissible vector
field on M . Denote by ΓβX(t,m(t)) the curve in βm(0) such that the vector

ΓβX(t,m(t)) at m(0) is parallel to X(t,m(t)) along m(·) with respect to reduced
connection.

Assume that m0 is not conjugate to m1 along a least constrained geodesic γX .
Let us specify a submanifold N ⊂ M , m1 ∈ N , which is transversal to expβm0

(βm0).

(In other words, the sum of spaces Tm1N and Tm1exp
β
m0

(βm0) coincides with
Tm1M .) Note that an example of such manifold is an open neighbourhood of m1

in M .

Lemma 4.5 ([4]). There exists a ball Uε ⊂ C0([0, 1], βm0) with a radius ε > 0
and center at the origin such that for any curve û(t) ∈ Uε ⊂ C0([0, 1], βm0) there
exists a unique vector Cû, belonging to a certain bounded neighborhood V of the
vector γ̇X(0) ∈ βm0 , that is continuous in û and such that Sβ(û+ Cû)(1) ∈ N

Lemma 4.6 ([4]). In conditions and notations of Lemma 4.5 let R > 0 and
t1 > 0 be such that t−1

1 ε̂ > R. Then for any curve u(t) ∈ UR ⊂ C0([0, t1], βm0)
there exists a unique vector Cu in a neighborhood t−1

1 V of the vector t−1
1 γ̇X(0) in

βm0M , continuously depending on u and such that Sβ(u+ Cu)(t1) ∈ N

7



8 P.S. ZYKOV

For the given curve φ(·) we introduce the operator Sβ
φ : C0([0, t1], βφ(0))

→ C0([−h, t1],M), defined as follows: Sβ
φ(v(·))(t) = φ(t) for t ∈ [−h, 0] and

Sβ
φ(v(·))(t) = Sβ(v(·))(t) for t ∈ [0, t1]. We investigate the functional differential

inclusion of the form
D

dt
ṁ(t) ∈ QF (t,mt(θ), ṁt(θ)), (4.3)

where as usual for a curve m(·) : [−h, l] → M and t ∈ [0, l], we set mt(θ) = m(t+θ)
where θ ∈ I and right-hand side satisfies the following condition:

∥QF (t,m,X)∥ ≤ f(∥X∥) (4.4)

on some subset in R × M (a particular case – on the entire R × M) where f :
[0,∞) → [0,∞) is an arbitrary function increasing on [0,∞).

Since the norm of orthogonal projector Q equals 1, by simple replacement of
Sφ and Γ by Sβ

φ and Γβ , respectively, by use the space C0(I, βm0) instead of

C0(I, Tm0M) and Lemmas 4.5, 4.6 instead of Lemmas 2.1 and 2.3 one can prove
the following analogues of non-constrained Theorems 3.3 and 3.4.

Theorem 4.7. Let φ(0) and m1 be not conjugate along a certain least constraint
geodesic of g and let QF (t,m(·), X(·)) satisfy the upper Caratheodory condition,
have convex closed values and for a certain t1 > 0 satisfy condition (4.4) on
[0, t1]× Ξ where Ξ is compact from Lemma 2.4. If

f(εt−1
1 + Ct−1

1 ) ≤ εt−2
1 , (4.5)

there exists a solution m(t) of (4.3), for which m(t) = φ(t) for t ∈ I and m(t1) =
m1.

Theorem 4.8. Let φ(0) and m1 be not conjugate along a certain least constraint
geodesic of g(·) and let QF (t,m(·), X(·)) be almost lower semicontinuous, have
closed values and for a certain t1 > 0 let it satisfy condition (4.4) on [0, t1] × Ξ
where Ξ is the compact from Lemma 2.4. If (4.5) is fulfilled, there exists a solution
m(t) of (4.3), for which m(t) = φ(t) for t ∈ I and m(t1) = m1.

Corollary 4.9. Let QF (t,m,X) either satisfy upper Caratheodory condition and
have convex closed values or be almost lower semicontinuous and have closed val-
ues. Let also QF (t,m,X) satisfy (4.4) on the entire manifold M and the points
φ(0) and m1 be nonconjugate along a certain least constraint geodesic g(·). If
t1 > 0 is such that (4.5) is fulfilled, there exists a solution m(t) of (4.3), for which
m(0) = m0 and m(t1) ∈ N .
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