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Abstract. In this paper we consider the Bayesian inference of Markovian

queueing model with two heterogeneous servers with service rate µ1 and µ2

where µ1 > µ2. Assuming Mckays bivariate gamma prior distribution for ser-

vice rates (µ1, µ2) and gamma prior distribution for arrival rate λ, closed form

expressions for the Bayes estimates of the queue parameters under squared er-
ror loss function are obtained. Bayes estimates and bootstrap credible interval

for queue parameters are computed for different set of simulated data. Also

we apply Markov Chain Monte Carlo method using the same prior distribu-
tion and computed Bayes estimates and credible interval of queue parameters

for different set of hyper parameters and compare the values with bootstrap

estimates.

1. Introduction

Statistical inference plays an extremely vital role in any use of queueing as an aid
to decision-making. The statistical inference problems can be generally divided
into two types, viz. ”parameter estimation” and ”distribution selection”. The
pioneer work in the problem of statistical inference for queuing models dates back
to 1957, when Clarke[10] proposed the problem of obtaining maximum likelihood
estimates (MLE) for the parameters involved in the stationary M/M/1 queue.
Bene[7] presented a similar exposition for M/M/∞. A general overview of the
statistical inference for Markov processes can be found in Billingsley [8] and Basawa
and Rao [6]. Dave and Shah [11] discussed the maximum likelihood estimates of
the parameters of a stationary M/M/2 queue with heterogeneous serves. Jain and
Templeton [17] obtained the confidence interval for an M/M/2 queue from the
MLE. Wang et al. [27] derived the MLE and confidence intervals of an M/M/c
queue.

The queue parameters λ and µ may not be deemed to be constants in real
life situations, but they are random variables. Combining the prior informa-
tion about these parameters with the current data on the queueing system, we
can improve the estimates of the queue characteristics. This can be done by the
Bayesian analysis. McGrath and Singpurwalla [20] and McGrath et al.[21] used
the subjective Bayesian approach to the statistical inference in queues. Armero
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and Bayarri [2] developed the Bayesian prediction on M/M/1 queue. Armero and
Conesa [4] studied Bayesian inference and prediction for Markovian queues with
bulk arrivals. David et al.[12] described Bayesian inference and prediction for
some M/G/1 queueing models. Choudhury and Borthakur [9] also discussed the
Bayesian inference for an M/M/1 queue in detail using system size data. Mukhar-
jee and Chowdhury [23] derived the Bayes estimates of traffic intensity and mea-
sures of effectiveness using beta distribution as prior. Jose and Manoharan [18]
obtained the Bayes estimate of queue parameters using bivariate prior distribution
for λ and µ with order restriction λ < µ.

The Bayesian estimation of Markovian queueing system with heterogeneous
servers has not been addressed in literture. In this paper we discuss Bayesian
estimation of M/M/2 queueing model with two heterogeneous servers. That is
we have a two-server queue under the assumption of Poisson arrivals with rate λ
and exponentially distributed service times with different service rates µi (i= 1,
2) for each of the two servers. The service rates are such that µ1 > µ2. Thus, µ1

corresponds to the faster server and µ2 to the slower server. An arriving customer
finding both servers free, chooses for his service the faster one. Mckay’s bivariate
gamma distribution [22] satisfying the order restriction µ1 > µ2, as the joint prior
distribution for µ1 and µ2 and gamma distribution as the prior for λ.

This paper is organized as follows. In section 2, we obtain the posterior joint
and marginal distribution of queue parameters. Bayes estimates of queue char-
acteristics under squared error loss function and its numerical analysis are also
obtained in section 2. In section 3 , we apply Markov Chain Monte Carlo method
to obtain Bayes estimates of queue parameters.

In the derivation of posterior marginal distribution of λ, µ1, µ2 and the Bayes
estimates of λ, µ1 and µ2, we use various results on special functions such as
confluent hyper geometric function and Gauss hyper geometric function. Confluent
hyper geometric function is defined as

F (a; b;x) =
∞∑

k=0

(a)kxk

(b)kk!
(1.1)

and the Gauss hyper geometric function is defined as

G(a, b; c;x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!
, (1.2)

where (a)k = a(a + 1)(a + 2)...(a + k − 1) denotes the ascending factorial.

2. Bayesian Inference

Consider a stationary M/M/2 queue with heterogeneous servers. The mean
arrival rate is λ and mean service rates are µ1 and µ2, where µ1 > µ2 and the traffic
intensity is ρ = λ

µ1+µ2
. The steady state condition for the queue is λ < µ1 + µ2.

Here we assume that customers wait in a line in order of their arrival and those
arriving when both servers are idle go to the faster one for service. Otherwise,
they enter service in the order of their arrival as and when servers become free
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i.e. the queue is in front of the faster server. Assume that the queue begins
operation with n0 customers present and the queue is being observed for a fixed
amount of time T, where T is sufficiently large enough to give adequate number
of observations. Suppose that during T, there are na number of arrivals to the
queue and nd number of departures from the queue.

When the queue is empty, the servers of an M/M/2 queue is idle and the amount
of time during which both the servers are idle is Te. If there is one customer in the
queue, only the faster server is busy. Tfb denotes the time during which only one
customer in the queue. When there are more than one customers in the queue then
both the servers are busy and the amount of time during which both the servers
are busy is denoted by Tsb. If both the servers are busy, the queue is empty and nc

be the number of arrivals to an empty queue. When the faster server is busy, then
the queue is said to be partially busy and the number of arrivals to a partially busy
queue is denoted by nfu.The number of departures from a partially busy queue is
denoted as nfd. The number of arrivals to a completely busy queue is nsu and the
number of departures from a partially busy queue is nsd. Then we have

T = Te + Tfb + Tsb (2.1)
na = ne + nfu + nsu (2.2)
nd = nsd + nfd (2.3)

The corresponding likelihood function is made up of the following four basic com-
ponents: The probability that there are initial n0 customers in the system, p(n0),
n0 ≥ 2. The probability density function of ne arrivals occurring during time Te is
given by p1 = λnee−λTe. The probability density function of nfu arrivals occurring
and nfd departures occurring during Tfb is given by p2=λnfue−λTfbµ1

nfde−µ1Tfb .
The probability density function of nsu arrivals occurring and nsd departures oc-
curring during time Tsb is given by p3=λnsue−λTsb(µ1 + µ2)nsde−(µ1+µ2)Tsb .

Combining the respective components, the corresponding likelihood function
becomes

L(λ, µ1, µ2) = λnae−λT e−µ1Tfbµ1
nfd(µ1 + µ2)nsde−(µ1+µ2)Tsbp(n0) (2.4)

Under Bayesian setup the assumption µ1 > µ2 of M/M/2 queueing system with
heterogeneous servers is incorporated by using Mckay’s bivariate gamma distribu-
tion as the joint prior for µ1 and µ2, which is given by

π1(µ1, µ2) =
cα+γ

ΓαΓγ
µ2

α−1(µ1 − µ2)
γ−1

e−cµ2 , 0 < µ2 < µ1 <∞, α > 0, γ > 0

(2.5)
We use gamma distribution as the prior distribution for arrival rate λ with prob-
ability density function

π2(λ) =
mp

Γp
e−mλλp−1, λ > 0,m > 0, p > 0. (2.6)

Hence the joint prior distribution of λ, µ1 and µ2 is

π(λ, µ1, µ2) = π1(µ1, µ2)π2(λ)

=
cα+γ

ΓαΓγ
µ2

α−1(µ1 − µ2)
γ−1

e−cµ2
mp

Γp
e−mλλp−1 (2.7)
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Using the likelihood function given in (2.4) and the joint prior distribution of
(λ, µ1, µ2) given in (2.7), we can obtain the joint likelihood function of (λ, µ1, µ2)
and x=(Te, Tfb, Tsb, ne, nfu, nsu, nfd, nsd) as

h(x, λ, µ1, µ2) = L(x, λ, µ1, µ2)π(λ, µ1, µ2)

=
cα+γ

ΓαΓγ

mp

Γp
λna+p−1e−λ(m+T )e−µ1Tfbµ1

nfd(µ1 + µ2)nsd

× e−(µ1+µ2)Tsbµ2
α−1(µ1 − µ2)γ−1e−cµ2

(2.8)

Here the posterior joint distribution of (λ, µ1, µ2) is

π(λ, µ1, µ2/x) = k
′
λna+p−1e−λ(m+T )e−µ1Tfbµ1

nfd(µ1 + µ2)nsd

× e−(µ1+µ2)Tsbµ2
α−1(µ1 − µ2)γ−1e−cµ2 ,

(2.9)

where the normalizing constant k
′
is such that

∫ ∞

λ=0

∫ ∞

µ1=0

∫ µ1

µ2=0

π(λ, µ1, µ2/x)dµ2dµ1dλ = 1

Using the result (Equation(2.3.6.1), Volume 1 of Prudnikov et al.(1986))

∫ a

0

xα−1(a− x)β−1e−pxdx = β(α, β)aα+β−1F (α;α + β;−ap), α > 0, β > 0

(2.10)
we get

1
k′

=
Γ(na + p)

(m + T )na+p

mα!
(Tfb + Tsb)mα

nsd∑
x=0

(
nsd

x

)
β(xα, γ)G(xα,mα;xα + γ;−ξT ),

(2.11)
where mα = nfd + nsd + α + γ, xα = x + α and ξT = c+Tsb

Tfb+Tsb
.
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2.1. Posterior marginal distribution of λ, µ1 and µ2. Posterior marginal
distribution of λ is

π(λ/x) =
∫ ∞

µ1=0

∫ µ1

µ2=0

π(λ, µ1, µ2/x)dµ1dµ2

= k
′
λna+p−1e−λ(m+T )

nsd∑
x=0

(
nsd

x

)
β(xα, γ)

×
∫ ∞

µ1=0

e−µ1(Tfb+Tsb)µ1
mα−1F (xα;xα + γ;−µ1(c + Tsb))

= k
′
λna+p−1e−λ(m+T )

nsd∑
x=0

(
nsd

x

)
β(xα, γ)

×
∞∑

k=0

(xα)k

(xα + γ)k
− (c + Tsb)k

k!
Γ(mα + k)

(Tfb + Tsb)mα+k

=
(m + T )na+p

Γ(na + p)
λna+p−1e−λ(m+T ) (2.12)

Posterior marginal distribution of µ1 is

π(µ1/x) =
∫ ∞

λ=0

∫ µ1

µ2=0

π(λ, µ1, µ2/x)dλdµ2

= k
′
e−µ1(Tfb+Tsb)µ1

nfd

∫ ∞

λ=0

λna+p−1e−λ(m+T )dλ

×
∫ µ1

µ2=0

(µ1 + µ2)nsdµ2
α−1(µ1 − µ2)γ−1e−µ2(c+Tsb)dµ2

= k
′′

nsd∑
x=0

(
nsd

x

)
β(xα, γ)e−µ1(Tfb+Tsb)µ1

mα−1F (xα;xα + γ;−µ1(c + Tsb))

= k
′′
e−µ1(Tfb+Tsb)µ1

mα−1
nsd∑
x=0

(
nsd

x

)
β(xα, γ)F (xα;xα + γ;−µ1(c + Tsb)),

(2.13)

where k
′′

= (Tsb+Tfb)
mα

mα!
1∑nsd

x=0

 nsd

x

β(xα,γ)G(xα,mα;xα+γ;− c+Tsb
Tfb+Tsb

)
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Posterior marginal distribution of µ2 is

π(µ2/x) =
∫ ∞

λ=0

∫ ∞

µ1=µ2

π(λ, µ1, µ2/x)dλdµ1

= k
′
e−µ2(c+Tsb)µ2

α−1

∫ ∞

λ=0

λna+p−1e−λ(m+T )

×
∫ ∞

µ1=µ2

e−µ1(Tfb+Tsb)µ
nfd

1 (µ1 + µ2)nsd(µ1 − µ2)γ−1dµ1dλ

= k
′

1

nsd∑
x=0

(
nsd

x

)
e−µ2(c+Tsb)µ2

α+x−1

×
∫ ∞

µ1=µ2

e−µ1(Tfb+Tsb)(µ1 − µ2)γ−1µ1
nfd+nsd−xdµ1

= k
′

1

msd∑
x=0

(
nsd

x

) nfd+nsd−x∑
y=0

(
nfd + nsd − x

y

)
Γτxy

(Tfb + Tsb)τxy

×
{
e−µ2cτ µ2

x+y+α−1
}

, (2.14)

where τxy = nfd + nsd + γ − x− y, cτ = c + 2Tsb + Tfb and
k
′

1 = 1∑nsd
x=0

 nsd

x

 ∑nsd+nfd−x

y=0

 nsd + nfd − x
y

 Γτxy

(Tfb+Tsb)τxy
Γ(x+y+α)
cτ

x+y+α

2.2. Bayes Estimator of queue characteristics under squared error loss
function. The Bayes estimates of λ, µ1 and µ2 under squared error loss function
are obtained as

λ∗ =
∫ ∞

0

λπ(λ/x)dλ

=
∫ ∞

λ=0

(m + T )na+p

Γna + p
λna+pe−λ(m+T )dλ=

(
na + p

m + T

)
(2.15)

µ1
∗ =

∫ ∞

µ1=0

µ1π(µ1/x)dµ1

= k
′ Γ(na + p)
(m + T )na+p

nsd∑
x=0

(
nsd

x

)
β(xα, γ)

×
∞∑

k=0

(xα)k

(xα + γ)k

−(c + Tsb)k

k!

∫ ∞

0

e−µ1(Tfb+Tsb)µ1
mα+kdµ1

= c1

∑nsd

x=0

(
nsd

x

)
β(xα, γ)G(xα,mα + 1;xα;− c+Tsb

Tfb+Tsb
)

∑nsd

x=0

(
nsd

x

)
β(xα, γ)G(xα,mα;xα + γ;− c+Tsb

Tfb+Tsb
)
, (2.16)

where c1 =
(

mα+1
Tfb+Tsb

)
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µ2
∗ =

∫ ∞

µ2=0

µ2π(µ2/x)dµ2

= k
′

1

Γ(na + p)
(m + T )na+p

nsd∑
x=0

(
nsd

x

) nfd+nsd−x∑
y=0

(
nfd + nsd − x

y

)
×

{
Γ(y + γ)

(Tfb + Tsb)y+γ

∫ ∞

0

e−µ2cτ µ2
τy

}

=

∑nsd

x=0

(
nsd

x

) ∑nfd+nsd−x
y=0

(
nfd + nsd − x

y

)
Γ(y+γ)

(Tfb+Tsb)y+γ

Γ(τy+1)

c
τy+1
τ∑nsd

x=0

(
nsd

x

) ∑nfd+nsd−x
y=0

(
nfd + nsd − x

y

)
Γ(y+γ)

(Tfb+Tsb)y+γ

Γτy

c
τy
τ

(2.17)

where τy = nfd + nsd + α− y

2.3. Numerical Analysis. We simulate data on M/M/2 queueing system with
two heterogeneous servers for different set of hyper parameters. Using the simu-
lated data, we have computed Bayes estimates for λ, µ1 and µ2 using the expres-
sions obtained in subsection 2.2. Confidence intervals for arrival and service rate
parameters are also computed using bootstrap method. The algorithm for gen-
erating samples from Markovian queueing model with two heterogeneous servers
and the computation of bootstrap sampling distribution and the credible interval
of the Bayes estimates of the queue parameters are as follows.

Monte Carlo Simulation Method

Step 1: Fix the values of hyper parameters.
Step 2: Generate an observation (λ) from gamma distribution and observa-

tions (µ1, µ2) from Mckay’s bivariate gamma distribution.
Step 3: Generate observations from exponential distribution with rates λ, µ1

and µ2 respectively.
Step 4: Repeat step 1-3 n times.
Step 5: Generate observations from M/M/2 queue with unequal service

rates using the observations generated from exponential distribution with
rate λ as interarrival time and the observation generated from exponential
distribution with rates µ1 and µ2 as service times corresponding to server
1 and server 2 respectively.

Step 6: Compute Bayes estimates under squared error loss function using
the formula given in the subsection 2.2.

Step 7: Repeat step 1-6 N times to generate N bootstrap samples,.
Step 8: The bootstrap estimate is computed as

θ̂ =
∑N

i=1 θ̂i

N
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hist1lambda.jpg hist1mu.jpg

Figure 1. Sampling distribution of λ,µ1 and µ2when m=4,p=5,c=3,α=15,γ=2

and the rmse corresponding to the estimator of parameter θ is

rmse =

√√√√ N∑
i=1

(θ̂i − θ)2

N

Bayes estimates of the queue parameters along with the corresponding confi-
dence intervals and root mean squared error(rmse) of the sampling distribution
of the Bayes estimates of queue parameters for different set of hyper parameters
and sample of size (n=25,50) are computed and are presented in tables. We fix
m=4,p=5,c=3,α=15,γ=2 as hyper parameter values and draw the histograms cor-
responding to the sampling distribution of λ, µ1 and µ2. Bayes estimates, credible
region and rmse of λ, µ1 and µ2 under Monte Carlo simulation method are given
in table 1. The sampling distribution of λ, µ1 and µ2 are given in figure 1.

3. Markov Chain Monte Carlo Method

Markov Chain Monte Carlo(MCMC) techniques enables us to simulate random
samples from a distribution by embedding it as a limiting distribution of a Markov
chain. A detailed discussion of MCMC can be found in Gelfand and Smith[13],
Gilks and Wild [14], Tierney [26] and Gilks et al.[14]. MCMC is essentially Monte
Carlo integration using Markov chains. In frequentist as well as Bayesian meth-
ods, we need to integrate over high dimensional probability distributions to make
inference about the modal parameters. The important algorithm used in MCMC
method for sampling from arbitrary distribution are the Metropolis-Hastings sam-
pler, the Gibbs sampler, the independence sampler, and the random walk. Gibbs
sampling is one of the powerful tool in the MCMC method for drawing depen-
dent samples from complex high dimensional probability densities. In Bayesian
context, these distributions are usually posterior distribution of the modal param-
eters and samples produced by Gibbs sampler can be used directly for Bayesian
inference. A brief discussion on MCMC technique including Gibbs sampler and
the Metropolis-Hastings sampler is given in [25].

David et al.[12] described Bayesian inference and prediction for M/Er/1 and
M/Hk/1 queues. They have used Markov chain Monte Carlo methods for estima-
tion procedure. Landauskas and Valakevieius [19] presents numerical results on
modelling an M/G/1/∞ queuing system using Markov chain Monte Carlo method.
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conditional3.jpg conditional1.jpg conditional2.jpg

Figure 2. Posterior conditional densities of parameters λ, µ1 and µ2

lambda1mcmc.jpg lam1mcmc.jpg

Figure 3. Trace plot and posterior distribution of λ(m=4,p=5,c=3,α=15,γ=2)

mu1mcmc.jpg mmu1mcmc.jpg

Figure 4. Trace plot and posterior distribution of µ1(m=4,p=5,c=3,α=15,γ=2)

Wang et al.[28] described a Bayesian approach to parameter inference in queueing
networks. They used a hybrid Monte Carlo Markov Chain method to perform
inference and prediction.

In this section, we choose Metropolis-Hasting algorithm within Gibbs sampling
procedure to generate random samples from the conditional densities of the pa-
rameters and utilize them to obtain the Bayes estimates and credible intervals of
queue parameters.

We have the posterior joint distribution of λ, µ1 and µ2 (see equation(2.9))
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mu2mcmc.jpg mmu2mcmc.jpg

Figure 5. Trace plot and posterior distribution of µ2(m=4,p=5,c=3,α=15,γ=2)

π(λ, µ1, µ2/x) ∝ λna+p−1e−λ(m+T )e−µ1Tfbµ1
nfd(µ1 + µ2)nsd

× e−(µ1+µ2)Tsbµ2
α−1(µ1 − µ2)γ−1e−cµ2

The conditional posterior densities of λ, µ1 and µ2 are derived as

π(λ/x) ∝ λmu+p−1e−λ(m+T ) (3.1)

π(µ1/µ2, x) ∝ e−µ1(Tfb+Tsb)µ1
mfd(µ1 + µ2)msd(µ1 − µ2)γ−1 (3.2)

π(µ2/µ1, x) ∝ (µ1 + µ2)msde−µ2(c+Tsb)µ2
α−1(µ1 − µ2)

γ−1 (3.3)

The graph of the conditional densities of the queue parameters is given in Figure
2. The conditional densities 3.2 and 3.3 are not in the form of known distributions
and, hence, it is not possible to generate samples directly from these distributions
by standard methods.

Here we use the Metropolis-Hasting(M-H) method with chi-square distribution
as proposal distribution g(.) to generate random samples from the posterior con-
ditional densities of λ, µ1 and µ2.

Algorithm for generating samples using M-H sampler is as follows.
Step 1: Set initial values (λ0,µ1

0,µ2
0) at t=1

Step 2: Consider the proposal distribution as chi square g(λ)≡ χ2
(λt−1),λ >

0, generate λt from π(λ/data) using M-H algorithm as follows.
a)Generate Y from the proposal distribution.
b)Generate U from Uniform(0,1).
c)If U ≤ π(Y )g(λ/Y )

π(λ)g(Y/λ) accept Y and set λt = Y ; otherwise set λt=λt−1

d)Increment t.
Observe that in step (2c) the candidate point Y is accepted with proba-
bility α(λt−1, Y ) = min

(
1, π(Y )g(λ/Y )

π(λ)g(Y/λ)

)
Step 3: For a bivariate distribution, Generate (µt

1,µ
t
2) from the correspond-

ing conditional distribution using M-H method with the proposal distri-
bution g(µ1) ≡ χ2

(µt−1
1 )

, µ1 > 0 and g(µ2) ≡ χ2
(µt−1

2 )
, µ2 > 0.

a)Sets (µ1, µ2) = µ(t− 1).
b)Generate µ∗1 from π(µ1/µ2, data).
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c)Update µ1=µ∗1(t).
d)Generate µ∗2 from π(µ2/µ1, data).
e)Set µ(t) = (µ∗1(t), µ

∗
2(t)).

Step 4: Repeat Steps 2-3, N times, and obtain λt, µt
1, µt

2 for t=1,2,...,N.

Then by using the generated samples, the Bayes estimates of the parameters λ, µ1

and µ2 become λ∗ =
∑N

t=1 λt

N , µ∗1 =
∑N

t=1 µt
1

N and µ∗2 =
∑N

t=1 µt
2

N respectively.
For computation of equal tailed credible region, N estimates are arranged in

increasing order. Then from the ordered estimates, upper and lower credible limits
are obtained. Bayes estimates, credible region and rmse of λ, µ1 and µ2 under
Markov Chain Monte Carlo method for different set of hyper parameters are given
in table 2. Trace plot and posterior distribution of λ, µ1 and µ2 are given in 3-5.

Table 1: Bayes estimates of queue characteristics under Monte-Carlo method

n Hyper λ∗ µ∗1 µ∗2
parameter

25

m=4,p=5,c=3 1.088 5.634 3.094
α = 15,γ = 2 (0.686,1.616) (3.807,8.317) (2.206,4.203)

rmse=0.237 rmse= 1.151 rmse=0.516
m=8,p=9,c=12 1.055 1.311 0.580
α = 10,γ = 8 (0.580,1.448) (0.872,1.946) (0.401, 0.803)

rmse=0.180 rmse=0.274 rmse=0.102
m=1,p=2,c=10 1.214 1.759 0.722
α = 10,γ = 10 (0.477,2.181) (1.175, 2.603) (0.499,1.000)

rmse=0.4304 rmse=0.365 rmse=0.128
m=2,p=3,c=10 1.120 2.541 1.050
α = 15,γ = 10 (0.593,1.817) (1.732,3.685) (0.762,1.391)

rmse=0.309 rmse=0.505 rmse=0.162

50

m=4,p=5,c=3 1.051 4.909 2.781
α = 15,γ = 2 ( 0.744,1.431) (3.646,6.586) (6.586,6.586)

rmse=0.175 rmse=0.742 rmse=0.368
m=8,p=9,c=12 1.035 1.009 0.536
α = 10,γ = 8 (0.786,1.341) (0.755,1.341) ( 0.405,0.697)

rmse=0.141 rmse=0.148 rmse= 0.074
m=1,p=2,c=10 1.126 1.334 0.677,
α = 10,γ = 10 (0.536,1.797) (1.004,1.755) (0.509,0.877)

rmse=0.316 rmse=0.192 rmse=0.094
m=2,p=3,c=10 1.071 1.934 0.964
α = 15,γ = 10 (0.664,1.553) (1.457,2.550) (0.745, 1.227)

rmse=0.228 rmse=0.278 rmse=0.123
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Table 2: Bayes estimates under Markov Chain Monte-Carlo method

n Hyper λ∗ µ∗1 µ∗2
parameter

25

m=4,p=5,c=3 1.089 5.666 3.686
α = 15,γ = 2 (0.718,1.535) (3.964,7.766) (2.257,5.394)

rmse=0.202 rmse=0.977 rmse=0.783
m=8,p=9,c=12 1.259 1.631 0.461
α = 10,γ = 8 (0.900,1.691) (1.105,2.267) (0.238,0.740)

rmse=0.212 rmse=0.289 rmse=0.289
m=1,p=2,c=10 0.782 1.963 0.504
α = 10,γ = 10 (0.520, 1.111) (1.407,2.630) (0.249,0.828)

rmse=0.155 rmse=0.319 rmse=0.146
m=2,p=3,c=10 0.704 2.271 0.855
α = 15,γ = 10 (0.465,0.994) (1.665,2.997) (0.498,1.289)

rmse= 0.129 rmse=0.345 rmse=0.201

50

m=4,p=5, c=3 1.011 5.369 3.839
α = 15,γ = 2 (0.775, 1.297) (4.126,6.845) ( 2.490,5.340)

rmse=0.140 rmse=0.696 rmse=0.739
m=8,p=9,c=12 0.972 1.114 0.377
α = 10,γ = 8 ( 0.750,1.222) (0.847,1.413) ( 0.197,0.603)

rmse=0.125 rmse=0.143 rmse=0.103
m=1,p=2,c=10 0.705 1.558 0.482
α = 10,γ = 10 ( 1.052,1.771) (1.153,2.011) (0.254,0.782)

rmse=0.125 rmse=0.205 rmse=0.135
m=2,p=3,c=10 1.006 1.726 0.714
α = 15,γ = 10 (0.729,1.291) (1.336,2.174) (0.440, 1.051)

rmse=0.138 rmse=0.209 rmse=0.156

4. Conclusion

The Bayes estimate of queue parameters, arrival rate and service rates of
M/M/2 queueing model with heterogeneous servers under squared error loss func-
tion are obtained assuming the prior distributions as Mckay’s bivariate gamma
distribution for service rates and gamma distribution for arrival rate. Closed form
expressions of the Bayes estimates are derived using the properties of some special
function. We obtained bootstrap estimates and estimates using MCMC method
along with credible interval and rmse. It is observed from the simulation study
that the rmse associated with all the estimates decrease with increase in the sample
size. Bayes estimate of µ1, µ2 and the corresponding rmse increase with increase
in hyper parameter α and decrease in hyper parameter c and γ under both the
method.
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