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Abstract. We study a system of two special equations with mean derivatives
on the group of Sobolev diffeomorphisms of the flat n-dimensional torus that

leads to a flow on the torus, described by a system of two equations, one
of which is the Burgers equation, and the second one is a continuity-type
equation. We prove the existence of solution theorem and interpret this flow
as a flow of a special viscous fluid.

Introduction

The paper is devoted to the Lagrangiaan approach to hydrodynamics initiated
by the well-known works by V.I. Arnold [1] and then by D. Ebin and J. Mars-
den [2]. In [2], in the language of infinite-dimensional Riemanninan geometry on
the Sobolev group of volume-preserving diffeomorphisms and the group of all the
Sobolev group of diffeomorphisms of the compact manifolds there was given the
description of ideal fluids. In particular, it was shown that the flow of ideal in-
compressible fluid is described by the second order ordinary differenetial equation
with covariant derivatives of weak Riemannian metric on the group of volume pre-
serving diffeomorphisms. In the case of zero external force the flow is described
by the equation of geodesic. For the flows generated by the Hops equation, it was
shown the same on the group of all Sobolev diffeomorphisms.

We show that the flows of viscous fluids are described by stochastic analogues
of the Ebin and Marsden equations, in which the covariant derivatives are replaced
by the second order backward mean derivatives. The concept of mean derivatives
was introduced by E. Nelson (see, e.g., [3]). We use the extended version of this
machinery, see, e.g., [4].

In spite of the fact that the construction is based on the Stochastic Analysis,
the results are obtained for deterministic (not random) fluids. Unlike Ebin and
Marsden, we consider the hydrodynamics only on the flat n-dimensional torus
and we essentially use the properties of the torus in our constructions. Note that
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the investigation of fluid motion on the torus is a well-known problem in the
hydrodynamics.

We study a system of two special equations with mean derivatives on the group
of Sobolev diffeomorphisms of the flat n-dimensional torus that leads to a flow
on the torus, described by a system of two equations, one of which is the Burgers
equation, and the second one is a continuity-type equation. We prove the existence
of solution theorem and interpret this flow as a flow of a special viscous fluid.

1. Mean derivatives

For simplicity of presentation, we describe the theory of mean derivatives for
processes in Rn. However, due to the fact that the geometry on the torus is
inherited from the Euclidean geometry on Rn, this presentation is unchanged
applied to the torus.

Consider a random process ξ(t) in Rn (where we specify the σ-algebra of Borel
sets), t ∈ [0, T ], defined on some probability space (Ω,F ,P) and such that ξ(t)
belongs to the space L1(Ω,Rn) for every t.

Denote by N ξ
t the σ-subalgebra “presence” in F generated by preimages of

Borel sets from Rn under the mapping ξ(t) : Ω → Rn. N ξ
t is assumed to be

complete, i.e. containing all zero probability sets.

For convenience, we denote by Eξ
t the conditional mathematical expectation of

E(·|N ξ
t ) relative to the “presence” N ξ

t of ξ(t).
Following E. Nelson, we introduce the concepts of forward backward and sym-

metric mean derivative.
The forward mean derivative Dξ(t) of the process ξ(t) at time t is an L1 random

element of the form

Dξ(t) = lim
△t→+0

Eξ
t (

ξ(t+△t)− ξ(t)

△t
), (1.1)

where the limit is assumed to exist in L1(Ω,F ,P), and the symbol △t → +0 means
that △t tends to zero 0 and △t > 0.

The backward mean derivative D∗ξ(t) of the process ξ(t) at the time instant t
is an L1-random element

D∗ξ(t) = lim
∆t→+0

Eξ
t (

ξ(t)− ξ(t−∆t)

∆t
) (1.2)

where (as in (i)) the limit is assumed to exist in L1(Ω,F ,P), and the symbol
∆t → +0 means that ∆t → 0 and ∆t > 0.

The symmetric mean derivative DS is given by the formula 1
2 (D + D∗). The

derivative DSξ(t) is called the current velocity of ξ(t).
We mainly need to work with D∗ and DS . That’s why let’s take a closer look

at their properties.
It follows from the properties of the conditional expectation that D∗ξ(t) can be

represented as a superposition of ξ(t) and a measurable Borel vector field (regres-
sion)

a(t, x) = lim
∆t→+0

E(
ξ(t)− ξ(t−∆t)

∆t
|ξ(t) = x) (1.3)
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on Rn. This means that D∗ξ(t) = a(t, ξ(t)).
We introduce the symbol vξ for the regression of current velocity.
Let Z(t, x) be a C2-smooth vector field on Rn, and ξ(t) be a stochastic process

in Rn.
The L1-limit of the form

D∗Z(t, ξ(t)) = lim
∆t→+0

Eξ
t (L

Z(t, ξ(t))− Z(t−∆t, ξ(t−∆t))

∆t
) (1.4)

is called backward mean derivative of Z along ξ(·) at the time instant t.
Of course, D∗Z(t, ξ(t)) can be represented as the superposition of ξ(t) with a

certain Borel measurable vector field (regression). This vector field (if this does
not lead to a confusion) we will denote by the same symbol D∗Z.

For a process with diffusion coefficient σ2I in Rn the following formula holds

D∗Z =
∂

∂t
Z + (Y 0

∗ · ∇)Z − σ2

2
∆Z, (1.5)

where ∇ = ( ∂
∂x1 , . . . ,

∂
∂xn) , ∆ is Laplacian, dot denotes scalar product in Rn and

the vector field Y 0
∗ (t, x) is the regression of backward mean derivative.

Second order derivative D∗D∗ξ(t) we describe as the first derivative D∗ of the
regression (vector field) D∗ξ.

In the case when ξ has a diffusion coefficient σ2I, denote the regression D∗ξ by
the symbol Y . Then according to the formula (1.5) we get

D∗D∗ξ =

(
−σ2

2
∆ + Y · ∇+

∂

∂t

)
Y, (1.6)

where the right-hand side of the formula (1.6) is the same as the left-hand side of

the Burgers equations with viscosity σ2

2 .
Let the process ξ(t) have a diffusion coefficient Q, which is a smooth symmet-

ric (2, 0) non-degenerate tensor field. This means that a smooth non-degenerate
symmetric (0, 2) tensor field Q−1 is well defined, and it can be considered a new
Riemannian metric.

Note that in the case of the diffusion coefficient Q in the formula (1.6), the
expression Y · ∇ is replaced by the covariant derivative of the Riemannian metric
Q−1 with respect to Y .

Denote by the symbol ρξ(t, x) the probabilistic density of element ξ(t) with
respect to the volume form dt ∧ Λ on R × Rn, where Λ is the Euclidean form
volume on the torus, i.e., for any bounded continuous function f : [0, T ]×Rn → R
the formula ∫ T

0

E(f(t, ξ(t))) dt =

∫ T

0

(∫
Ω

f(t, ξ(t))dP

)
dt

=

∫
[0,T ]×Rn

f(t, x)ρξ(t, x)dt ∧ Λα

takes place.
Let ξ(t) be a diffusion process with diffusion coefficient Q as above and density

ρξ. For vξ(t, x) and ρξ(t, x) of this process, the following relation of the type of
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continuity equation is satisfied the following kind

∂ρξ(t, x)

∂t
= −Div(ρξ(t, x)vξ(t, x)), (1.7)

where Div denotes the divergence with respect to Riemannian metric Q−1. If the
diffusion coefficient is not autonomous, then for each t we consider the Riemannian
metric and its divergence on the corresponding level surface. For a process with
diffusion coefficient I Div is the usual divergence div.

2. The Sobolev groups of diffeomorphisms

Let T n be a flat n-dimensional torus and Ds(T n) – its Sobolev group of diffeo-
morphisms of the class Hs(s > n/2+1). Recall that for s > n/2+1 the mappings
from Hs are C1 smooth.

Ds(T n) is a Hilbert manifold and group with respect to superposition with
unity e = id. Tangent space TeDs(T n) is the space of all Hs-vector fields on T n.

In any tangent space TfDs(T n) one can define L2-scalar product by the formula

(X,Y ) =

∫
T n

⟨X(m), Y (m)⟩f(m)µ(dm) (2.1)

The family of these scalar products forms the so-called weak Riemannian metric
on Ds(T n). In particular, in TeDs(T n) (2.1) becomes

(X,Y )e =

∫
T n

⟨X(m), Y (m)⟩mµ(dm). (2.2)

Right shift Rf : Ds(Tn) → Ds(Tn), where Rf (Θ) = Θ◦f for Θ, f ∈ Ds(Tn) is a
C∞-smooth mapping. The tangent mapping to the right shift is TRf (X) = X ◦ f
for X ∈ TDs(Tn).

On the other hand, left shift Lf : Ds(Tn) → Ds(Tn), where Lf (Θ) = f ◦Θ for
Θ, f ∈ Ds(Tn), is only continuous. Let us specify the vector x ∈ Rn and denote
by lx : Tn → Tn mappinglx(m) = m+ x modulo factorization with respect to the
integer lattices of the space Rn. Note that the left shift Llx C∞-smooth.

Recall that TT n = T n × Rn. We introduce the operators

B : TT n → Rn,

projections to the second factor in T n × Rn, and

A(m) : Rn → T n
m ,

the linear isomorphism of Rn inverse toB onto the tangent space to T n form ∈ T n.
Let’s introduce

Qg(m) = A(g(m)) ◦B,

where g ∈ Ds(T n), m ∈ T n, For every Y ∈ TfDs(T n) we get that QgY =
A(g(m)) ◦B(Y (m)) ∈ TgDs(T n) for all f ∈ Ds(T n).

In complete analogy to finite-dimensional case, a geodesic is a smooth curve
g(t) in Ds(T n) such that

D̄

dt
ġ(t) = 0. (2.3)
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For such a curve g(t) we construct the vector v(t) ∈ TeDs(T n) by the formula
v(t) = ġ(t) ◦ g−1(t).

If g(t) is a geodesic, the curve Rfg(t) is also geodetic.
Let g(t) be a geodesic and x ∈ Rn be some vector. then lxg(t) is a geodesic.
Consider the operator Ā : Ds(T n)×Rn → TDs(T n) such that Āe is the same as

A introduced above and for each g ∈ Ds(T n) the mapping Āg : Rn → TgDs(T n)
is constructed from Āe by right shift, i.e. for X ∈ Rn:

Āg(X) = TRg ◦Ae(X) = (A ◦ g)(X).

Every right-invariant vector field Ā(X) is C∞-smooth on Ds(T n) for every X ∈
Rn.

For any point m ∈ Tn denote by expm : TmTn → Tn the mapping that sends
the vector X ∈ TmTn to the point m+X modulo the factorization with respect to
the integer lattice on Tn. The family of such mappings generates a mapping exp :
TeDs(Tn) → Ds(Tn) that sends the vector X ∈ TeDs(Tn) into e +X ∈ Ds(Tn),
where e+X is the diffeomorphism Tn of the form: (e+X)(m) = m+X(m).

Consider the superposition exp ◦ Āe : Rn → Ds(T n). By construction for
arbitrary X ∈ Rn we get that exp ◦ Āe(X)(m) = m+X, i.e., the same the vector
X is added to each point m.

Let w(t) be a Wiener process in Rn given on some probability space (Ω,F ,P).
Construct the random process

W (σ)(t) = exp ◦ Āe(σw(t)) (2.4)

on Ds(T n). By construction, for ω ∈ Ω the corresponding sample the trajectory

W
(σ)
ω (t) is a diffeomorphism of the form W

(σ)
ω (t)(m) = m+ σwω(t). Note that for

given ω ∈ Ω and given t ∈ R we get that w(t)ω is a constant vector in Rn. This

means that for a given ω and t the action W
(σ)
ω (t) is the same as lw(s)ω .

In terms of the Wiener processW (σ)(t), one can introduce analogues of ordinary
stochastic differential equations in the Ito form. In what follows, we consider
equations for which the coefficient of W (σ)(t) is equal to I. Recall that σ is
already included in the construction of W (σ)(t).

Mean derivatives are also introduced in complete analogy to the usual definition.
We are interested in the operator of the second backward derivative D∗D∗. Recall
that we understand this expression as the application operatorD∗ to the regression
of the backward derivative of the random process (i.e. to a vector field).

3. The main result

Here and below we assume that s > n/2 + 2. So the diffeomorphisms from
Ds(T n) are C2-smooth as well as vector fields from TeDs(T n) on the torus. Ev-
erywhere below we use the same stochastic process W (σ)(t) constructed from the
Wiener process w(t) in Rn by the formula (2.4).

Consider the equation

D∗D∗ξ(t) = 0 (3.1)

We interpret the solution of this equation as a random flow, whose mathematical

expectation is the flow of a viscous fluid with viscosity coefficient σ2

2 . To make
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sure With this, we turn to the Euler description, i.e. describe the corresponding
equations in TeDs(T n).

Transferring both sides of the (3.1) equation to e, we get the finite-dimensional
equation on the torus of the form D∗D∗ξ(t) = F . Note that in this case, when
defining D∗, the conditional mathematical expectation is replaced by the usual
mathematical expectation, but nevertheless less (1.6) remains true. Let’s denote
the regression D∗ξ by v. Then from equality (1.6) we get in TeDs(T n) the Burgers
equation

∂

∂t
v + (v · ∇)v − σ2

2
∆v = 0

Consider on Ds(T n
) system of equations

D∗D∗ξ(t) = 0 (3.2)

and

DSξ(t) =
1

2
D∗ξ(t). (3.3)

From (3.3) it follows that for the solution of this system its forward mean
derivative Dξ(t) = 0. This means that ξ(t) is a martingale. In other words,
one can consider any martingale e.g. W (σ)(t). And then at the right-hand side
corresponding to this martingale (we emphasize that not for every right-hand side)
this system has a solution.

Introduce the notation D∗ξ(t) = u(t)ξ(t) and transfer by right shifts on the
group all u(t)ξ(t) to the tangebt space at the unit e. As well as above, when
defining D∗, the conditional mathematical expectation is replaced by the usual
mathematical expectation. Thus in the tangent space at e we obtain the deter-
ministic curve ue(t). It is a non-autonomus vector field on the torus.

Theorem 3.1. The curve ue(t) is a solution of the system

∂

∂t
u+ (u · ∇)u− σ2

2
∆u = 0, (3.4)

∂ρξ(t, x)

∂t
= −1

2
Div(ρξ(t, x)uξ(t, x)). (3.5)

To prove the Theorem, we transfer both equations (3.2) and (3.3) by right
shifts to e. As stated above, equation (3.2) becomes the Burgers equation (3.4)
on the torus, i.e. it describes a viscous fluid. Since W (s) is a martingale, one
can easily derive from formula (1.7) that equation (3.3) becomes the equation of
the continuity type (3.5). We interpret the ρ obtained from this equation as the
density of the fluid.
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