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Abstract. In this paper, we consider the problem of recovering solutions
for matrix factorizations of the Helmholtz equation in a three-dimensional
bounded domain from their values on a part of the boundary of this do-
main, i.e., the Cauchy problem. An approximate solution to this problem is
constructed based on the Carleman matrix method.

1. Introduction

Many scientific and applied problems, studied at the world level, in many cases
are reduced to the study of ill-posed boundary value problems for partial differen-
tial equations. Applied research on conditional correctness and construction of an
approximate solution for given values on a part of the boundary of the region, for
equations of elliptical type, are especially important in hydrodynamics, geophysics
and electrodynamics. The study of a family of regularizing solutions to ill-posed
problems served as an impetus for the beginning of studies of the well-posedness
class when narrowed to a compact set. Therefore, the study of ill-posed problems
for linear elliptic systems of the first order is one of the topical problems in the
theory of partial differential equations. At present, in the world, in the study of
ill-posed boundary value problems for linear elliptic systems of the first order, the
construction of a regularized solution plays a special role. The Cauchy problem
for elliptic equations is ill-posed (example Hadamard, see for instance [9], p. 39).

At present, special attention is paid to topical aspects of differential equations
and mathematical physics, which have scientific and practical applications in the
fundamental sciences. In particular, special attention is paid to the study of vari-
ous ill-posed boundary value problems for partial differential equations of elliptic
type, which have practical application in applied sciences. As a result, significant
results were obtained in studies of ill-posed boundary value problems for partial
differential equations, that is, approximate solutions were constructed using Carle-
man matrices in explicit form from approximate data in special domains, estimates
of conditional stability and solvability criteria were established. The first results,
from the point of view of practical importance, for ill-posed problems and for re-
ducing the class of possible solutions to a compact set and reducing problems to
stable ones were obtained in the works of A.N. Tikhonov (see [31]). In the works
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of M.M. Lavrent’ev, estimates were obtained that characterize the stability of the
spatial problem in the class of bounded solutions of the Cauchy problem for the
Laplace equation and some other ill-posed problems of mathematical physics in
a straight cylinder, as well as for an arbitrary spatial domain with a sufficiently
smooth boundary (see, for instance [26]-[27]).

In this work, based on the results of works [26]-[27], [32]-[35], based on the
Cauchy problem for the Laplace and Helmholtz equations, an explicit Carleman
matrix was constructed and, on its basis, a regularized solution of the Cauchy
problem for the matrix factorization of the Helmholtz equation. In work [10], the
calculation of double integrals with the help of some connection between wave
equation and ODE system was considered.

The problem of reconstructing the solution for matrix factorization of the
Helmholtz equation (see, for instance [12], [13], [14], [15], [16], [17], [18], [19],
[20] and [21]), is one of the topical problems in the theory of differential equations.

At present, there is still interest in classical ill-posed problems of mathematical
physics. This direction in the study of the properties of solutions of Cauchy
problem for Laplace equation was started in [6], [26]-[27], [4], [32]-[35] and
subsequently developed in [3]-[8], [2], [29]-[30], [28], [12]-[21].

2. Basic information and statement of the Cauchy problem

Let Rm, (m = 2k + 1, k ≥ 1) be a m−dimensional real Euclidean space,

x = (x1, ..., xm) ∈ Rm, y = (y1, ..., ym) ∈ Rm,

x′ = (x1, ..., xm−1) ∈ Rm−1, y′ = (y1, ..., ym−1) ∈ Rm−1.

We introduce the following notation:

r = |y − x| , α = |y′ − x′| , w = iτ
√

u2 + α2 + β, w0 = iτα + β,

β = τym, τ = tg
π

2ρ
, ρ > 1, u ≥ 0, s = α2,

Gρ = {y : |y′| < τym, ym > 0} , ∂Gρ = {y : |y′| = τym, ym > 0} ,

∂

∂x
=

(
∂

∂x1
, ...,

∂

∂xm

)T

,
∂

∂x
= ξT , ξT =




ξ1

...
ξm


 - transposed vector ξ,

U(x) = (U1(x), ... , Un(x))T , u0 = (1, ... , 1) ∈ Rn, n = 2m, m ≥ 3,

E(z) =

∥∥∥∥∥∥∥∥∥

z1 0 · · · 0
0 z2 · · · 0

· · · · · · . . . · · ·
0 0 0 zn

∥∥∥∥∥∥∥∥∥
- diagonal matrix, z = (z1, ... , zn) ∈ Rn.

Gρ ⊂ Rm, (m = 2k + 1, k ≥ 1) be a bounded simply-connected domain, the
boundary of which consists of the surface of the cone ∂Gρ, and a smooth piece
of the surface S, lying in the cone Gρ, i.e., ∂Gρ = S

⋃
T, T = ∂Gρ\S. Let

(0, 0, ..., xm) ∈ Gρ, xm > 0.
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Let D(ξT ) be a (n× n)− dimensional matrix with elements consisting of a set
of linear functions with constant coefficients of the complex plane for which the
following condition is satisfied:

D∗(ξT )D(ξT ) = E((|ξ|2 + λ2)u0),

where D∗(ξT ) is the Hermitian conjugate matrix D(ξT ), λ− is a real number.
We consider a system of differential equations in the region G

D

(
∂

∂x

)
U(x) = 0, (2.1)

where D

(
∂

∂x

)
is the matrix of first-order differential operators.

We denote by A(Gρ) the class of vector functions in the domain Gρ continuous
on Gρ = Gρ

⋃
∂Gρ and satisfying system (2.1).

3. Construction of the Carleman matrix and the Cauchy problem

Formulation of the problem. Suppose U(y) ∈ A(Gρ) and

U(y)|S = f(y), y ∈ S. (3.1)

Here, f(y) a given continuous vector-function on S. It is required to restore the
vector function U(y) in the domain Gρ, based on it’s values f(y) on S.

If U(y) ∈ A(Gρ), then the following integral formula of Cauchy type is valid

U(x) =
∫

∂Gρ

N(y, x; λ)U(y)dsy, x ∈ G, (3.2)

where

N(y, x; λ) =
(

E
(
ϕm(λr)u0

)
D∗

(
∂

∂x

))
D(tT ).

Here t = (t1, ... , tm)− is the unit exterior normal, drawn at a point y, the
surface ∂Gρ, ϕm(λr)− is the fundamental solution of the Helmholtz equation in
Rm, (m = 2k + 1, k ≥ 1), where ϕm(λr) defined by the following formula:

ϕm(λr) = Pmλ(m−2)/2
H

(1)
(m−2)/2(λr)

r(m−2)/2
,

Pm =
1

2i(2π)(m−2)/2
, m = 2k + 1, k ≥ 1.

(3.3)

Here H
(1)
(m−2)/2(λr)− is the Hankel function of the first kind of (m − 2)/2− th

order (see, for instance [25]).
We denote by K(w) is an entire function taking real values for real w, (w =

u + iv, u, v−real numbers) and satisfying the following conditions:

K(u) 6= 0, sup
v≥1

∣∣vpK(p)(w)
∣∣ = B(u, p) < ∞,

−∞ < u < ∞, p = 0, 1, ..., m.

(3.4)
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We define the function Φ(y, x; λ) at y 6= x by the following equality

Φ(y, x;λ) =
1

cmK(xm)
∂k−1

∂sk−1

∞∫

0

Im
[

K(w)
w − xm

]
cos(λu)√
u2 + α2

du,

m = 2k + 1, k ≥ 1,

(3.5)

where cm = (−1)k2−k(2k − 1)!(m − 2)πωm; ωm− area of a unit sphere in space
Rm.

In the formula (3.5), choosing

K(w) = Eρ(σ
1/ρw), K(xm) = Eρ(σ

1/ργ), γ = τxm, σ > 0, (3.6)

we get

Φσ(y, x; λ) =
Eρ(σ

1/ργ)
cm

∂k−1

∂sk−1

∞∫

0

Im

[
Eρ(σ

1/ρw)
w − xm

]
cos(λu)√
u2 + α2

du. (3.7)

Here Eρ(σ
1/ρw)− is the entire Mittag-Leffler function (see [7]). In [1], using the

S-generalized beta function, a new generalization of the Mittag-Leffler function
and its properties is presented.

The formula (3.2) is true if instead ϕm(λr) of substituting the function

Φσ(y, x; λ) = ϕm(λr) + gσ(y, x; λ), (3.8)

where gσ(y, x)− is the regular solution of the Helmholtz equation with respect to
the variable y, including the point y = x.

Then the integral formula has the form:

U(x) =
∫

∂Gρ

Nσ(y, x;λ)U(y)dsy, x ∈ G, (3.9)

where

Nσ(y, x;λ) =
(

E
(
Φσ(y, x; λ)u0

)
D∗

(
∂

∂x

))
D(tT ).

Recall the basic properties of the Mittag-Leffler function. The entire function of
Mittag-Leffler is defined by a series

∞∑
n=1

wn

Γ(1 + ρ−1n)
= Eρ(w), w = u + iv,

where Γ(s)− is the Euler gamma function.
We denote by γε(β0)(ε > 0, 0 < β0 < π) the contour in the complex plane ζ,

run in the direction of non-decreasing arg ζ and consisting of the following parts:
1. The beam arg ζ = −β0, |ζ| ≥ ε;
2. The arc −β0 < arg ζ < β0 of circle |ζ| = ε;
3. The beam arg ζ = β0, |ζ| ≥ ε.
The contour γε(β0) divides the plane ζ into two unbounded simply connected

domains G−ρ and G+
ρ lying to the left and to the right of γε(β0), respectively.
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Let ρ > 1,
π

2ρ
< β0 <

π

ρ
.

Denote

ψρ(w) =
1

2πi

∫

γε(β0)

exp(ζρ)
ζ − w

dζ, (3.10)

Then the following integral representations are valid:

Eρ(w) = ψρ(w), z ∈ G−ρ , (3.11)

Eρ(w) = ρ exp(wρ) + ψρ(w), z ∈ G+
ρ , (3.12)

From these formulas we find

|Eρ(w)| ≤ ρ exp(Re wρ) + |ψρ(w)| , |arg w| ≤ π

2ρ
+ η0,

|Eρ(w)| ≤ |ψρ(w)| , π

2ρ
+ η0 ≤ |arg w| ≤ π, η0 > 0



 (3.13)

|ψρ(w)| ≤ M

1 + |w| , M = const (3.14)

Eρ(w) ≈ ρ exp(wρ), w > 0, w →∞, (3.15)
Further, since Eρ(w) is real with real w, then

Reψρ(w) =
ρ

2πi

∫

γε(β0)

2ζ − Re w

(ζ − w)ζ − w)
exp(ζρ)dζ,

Imψρ(w) =
ρIm (w)

2πi

∫

γε(β0)

exp(ζρ)
(ζ − w)ζ − w)

dζ,

The information given here concerning the function Eρ(w) is taken from (see,
[17], [20]).

In what follows, to prove the main theorems, we need the following estimates
for the function Φσ(y, x; λ.

Lemma 3.1. Let x = (x1, ..., xm) ∈ Gρ, y 6= x, σ ≥ λ + σ0, σ0 > 0, then
1) at β ≤ α inequalities are satisfied

|Φσ(y, x; λ)| ≤ C(ρ, λ)
σm−2

rm−2
exp(−σγρ) , σ > 1, x ∈ Gρ, (3.16)

∣∣∣∣
∂Φσ(y, x; λ)

∂yj

∣∣∣∣ ≤ C(ρ, λ)
σm

rm−1
exp(−σγρ) , σ > 1, x ∈ Gρ, j = 1, ...,m. (3.17)

∣∣∣∣
∂Φσ(y, x; λ)

∂xj

∣∣∣∣ ≤ C(ρ, λ)
σm

rm−1
exp(−σγρ) , σ > 1, x ∈ Gρ, j = 1, ...,m. (3.18)

2) at β > α inequalities are satisfied

|Φσ(y, x; λ)| ≤ C(ρ, λ)
σm−2

rm−2
exp(−σγρ + σRe wρ

0) , σ > 1, x ∈ Gρ, (3.19)
∣∣∣∣
∂Φσ(y, x;λ)

∂yj

∣∣∣∣ ≤ C(ρ, λ)
σm

rm−1
exp(−σγρ + σRe wρ

0) , σ > 1, x ∈ Gρ, j = 1, ..., m.

(3.20)
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∣∣∣∣
∂Φσ(y, x;λ)

∂xj

∣∣∣∣ ≤ C(ρ, λ)
σm

rm−1
exp(−σγρ + σRe wρ

0) , σ > 1, x ∈ Gρ, j = 1, ..., m.

(3.21)

Here C(ρ, λ) is the function depending on ρ and λ.
For a fixed x ∈ Gρ we denote by S∗ the part of S on which β ≥ α. If x ∈ Gρ,

then S = S∗ (in this case, β = τym and the inequality β ≥ α means that y lies
inside or on the surface cone).

4. The continuation formula and regularization according to M.M.
Lavrent’ev’s

Theorem 4.1. Let U(y) ∈ A(Gρ) it satisfy the inequality

|U(y)| ≤ M, y ∈ T = ∂Gρ\S∗. (4.1)

If

Uσ(x) =
∫

S∗

Nσ(y, x; λ)U(y)dsy, x ∈ Gρ, (4.2)

then the following estimates are true

|U(x)− Uσ(x)| ≤ MCρ(λ, x)σk+1 exp(−σγρ) , σ > 1, x ∈ Gρ. (4.3)
∣∣∣∣
∂U(x)
∂xj

− ∂Uσ(x)
∂xj

∣∣∣∣ ≤ MCρ(λ, x)σk+1 exp(−σγρ) , σ > 1, x ∈ Gρ, j = 1, ..., m.

(4.4)

Here and below functions bounded on compact subsets of the domain Gρ, we
denote by Cρ(λ, x).

Proof. Let us first estimate inequality (4.3). Using the integral formula (3.9) and
the equality (4.2), we obtain

U(x) =
∫

S∗

Nσ(y, x; λ)U(y)dsy +
∫

∂Gρ\S∗
Nσ(y, x;λ)U(y)dsy =

= Uσ(x) +
∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy, x ∈ Gρ.

Taking into account the inequality (4.1), we estimate the following

|U(x)− Uσ(x)| ≤

∣∣∣∣∣∣∣

∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣∣
≤

≤
∫

∂Gρ\S∗
|Nσ(y, x; λ)| |U(y)| dsy ≤ M

∫

∂Gρ\S∗
|Nσ(y, x;λ)| dsy, x ∈ Gρ.

(4.5)
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To prove this, we estimate the following integrals∫

∂Gρ\S∗
|Φσ(y, x; λ)| dsy,

∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂yj

∣∣∣∣ dsy, (j = 1, 2, ...,m − 1) and

∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂ym

∣∣∣∣ dsy on the part ∂Gρ\S∗ of the plane ym = 0.

Separating the imaginary part of (3.7), we obtain

Φσ(y, x; λ) =
Eρ(σ

1/ργ)
cm


 ∂k−1

∂sk−1

∞∫

0

(ym − xm)ImEρ(σ
1/ρw)

u2 + r2

cos(λu)√
u2 + α2

du−

− ∂k−1

∂sk−1

∞∫

0

ReEρ(σ
1/ρw)

u2 + r2
cos(λu)du


 , y 6= x, xm > 0.

(4.6)
Given equality (4.6), we have

∫

∂Gρ\S∗
|Φσ(y, x; λ)| dsy ≤ Cρ(λ, x)σk+1 exp(−σγρ) , σ > 1, x ∈ Gρ, (4.7)

To estimate the second integral, we use the equality

∂Φσ(y, x;λ)
∂yj

=
∂Φσ(y, x; λ)

∂s

∂s

∂yj
= 2(yj − xj)

∂Φσ(y, x; λ)
∂s

,

s = α2, j = 1, 2, ..., m− 1.

(4.8)

Given equality (4.6) and equality (4.8), we obtain
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂yj

∣∣∣∣ dsy ≤ Cρ(λ, x)σk+1 exp(−σγρ) , σ > 1, x ∈ Gρ,

j = 1, 2, ...,m− 1.

(4.9)

Now, we estimate the integral
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂ym

∣∣∣∣ dsy.

Taking into account equality (4.6), we obtain
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂ym

∣∣∣∣ dsy ≤ Cρ(λ, x)σk+1 exp(−σγρ) , σ > 1, x ∈ Gρ, (4.10)

From inequalities (4.7), (4.9), (4.10) and (4.5), we obtain an estimate (4.3).
Now let us prove inequality (4.4). To do this, we take the derivatives from

equalities (3.9) and (4.2) with respect to xj , j = 1, ..., m, then we obtain the
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following:

∂U(x)
∂xj

=
∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy +
∫

∂Gρ\S∗

∂Nσ(y, x;λ)
∂xj

U(y)dsy,

∂Uσ(x)
∂xj

=
∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy, x ∈ Gρ, j = 1, ..., m.

(4.11)

Taking into account the (4.11) and inequality (4.3), we estimate the following

∣∣∣∣
∂U(x)
∂xj

− ∂σU(x)
∂xj

∣∣∣∣ ≤

∣∣∣∣∣∣∣

∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣∣
≤

≤
∫

∂Gρ\S∗

∣∣∣∣
∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤ M

∫

∂Gρ\S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ dsy,

x ∈ Gρ, j = 1, ..., m.

(4.12)

To do this, we estimate the integrals
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x;λ)

∂xj

∣∣∣∣ dsy, (j = 1, 2, ..., m−

1) and
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂xm

∣∣∣∣ dsy on the part ∂Gρ\S∗ of the plane ym = 0.

To estimate the first integrals, we use the equality

∂Φσ(y, x; λ)
∂xj

=
∂Φσ(y, x;λ)

∂s

∂s

∂xj
= −2(yj − xj)

∂Φσ(y, x;λ)
∂s

,

s = α2, j = 1, 2, ..., m− 1.

(4.13)

Given equality (4.6) and equality (4.13), we obtain
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂xj

∣∣∣∣ dsy ≤ Cρ(λ, x)σk+1 exp(−σγρ) , σ > 1, x ∈ Gρ,

j = 1, 2, ...,m− 1.

(4.14)

Now, we estimate the integral
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂xm

∣∣∣∣ dsy.

Taking into account equality (4.6), we obtain
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂xm

∣∣∣∣ dsy ≤ Cρ(λ, x)σk+1 exp(−σγρ) , σ > 1, x ∈ Gρ. (4.15)

From inequalities (4.12), (4.14) and (4.15), we obtain an estimate (4.4).
Theorem 4.1 is proved. ¤
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Corollary 4.2. For each x ∈ Gρ, the equalities are true

lim
σ→∞

Uσ(x) = U(x), lim
σ→∞

∂Uσ(x)
∂xj

=
∂U(x)
∂xj

, j = 1, ..., m.

We denote by Gε the set

Gε =
{

(x1, ..., xm) ∈ Gρ, a > xm ≥ ε, a = max
T

ψ(x′), 0 < ε < a
}

.

Here, at m = 2, ψ(x1) - is a curve, and at m = 2k, k ≥ 1, ψ(x′) - is a surface.
It is easy to see that the set Gε ⊂ Gρ is compact.

Corollary 4.3. If x ∈ Gε, then the families of functions {Uσ(x)} and
{

∂Uσ(x)
∂xj

}

converge uniformly for σ →∞, i.e.:

Uσ(x) ⇒ U(x),
∂Uσ(x)

∂xj
⇒ ∂U(x)

∂xj
, j = 1, ...,m.

It should be noted that the set Eε = Gρ\Gε serves as a boundary layer for this
problem, as in the theory of singular perturbations, where there is no uniform
convergence.

5. Estimation of the stability of the solution to the Cauchy problem

Suppose that the surface S is given by the equation

ym = ψ(y′), y′ ∈ Rm−1,

where ψ(y′) is a single-valued function satisfying the Lyapunov conditions.
We put

a = max
T

ψ(y′), b = max
T

√
1 + ψ′2(y′).

Theorem 5.1. Let U(y) ∈ A(Gρ) satisfy condition (4.1), and on a smooth surface
S the inequality

|U(y)| ≤ δ, 0 < δ < Me−σa. (5.1)

Then the following estimates are true

|U(x)| ≤ Cρ(λ, x)σk+1M1−( γ
a )ρ

δ(
γ
a )ρ

, σ > 1, x ∈ Gρ. (5.2)
∣∣∣∣
∂U(x)
∂xj

∣∣∣∣ ≤ Cρ(λ, x)σkM1−( γ
a )ρ

δ(
γ
a )ρ

, σ > 1, x ∈ Gρ, j = 1, .., m. (5.3)

Here is aρ = max
y∈S

Re wρ
0 .

Proof. Let us first estimate inequality (5.1). Using the integral formula (3.9), we
have

U(x) =
∫

S∗

Nσ(y, x; λ)U(y)dsy +
∫

∂Gρ\S∗
Nσ(y, x;λ))U(y)dsy, x ∈ Gρ. (5.4)

9
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We estimate the following

|U(x)| ≤
∣∣∣∣∣∣

∫

S∗

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣∣
, x ∈ Gρ. (5.5)

Given inequality (5.1), we estimate the first integral of inequality (5.5).
∣∣∣∣∣∣

∫

S∗

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
≤

∫

S∗

|Nσ(y, x; λ)| |U(y)| dsy ≤

≤ δ

∫

S∗

|Nσ(y, x; λ)| dsy, x ∈ Gρ.

(5.6)

To do this, we estimate the integrals
∫

S∗

|Φσ(y, x;λ)| dsy,

∫

S∗

∣∣∣∣
∂Φσ(y, x;λ)

∂yj

∣∣∣∣ dsy,

(j = 1, 2, ...,m− 1) and
∫

S∗

∣∣∣∣
∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy on a smooth surface S.

Given equality (4.6), we have
∫

S∗

|Φσ(y, x; λ)| dsy ≤ Cρ(λ, x)σk+1 exp σ(τρaρ − γρ), σ > 1, x ∈ Gρ. (5.7)

To estimate the second integral, using equalities (4.6) and (4.8), we obtain
∫

S∗

∣∣∣∣
∂Φσ(y, x;λ)

∂yj

∣∣∣∣ dsy ≤ Cρ(λ, x)σk+1 expσ(τρaρ − γρ), σ > 1, x ∈ Gρ,

j = 1, ...,m− 1.

(5.8)

To estimate the integral
∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂ym

∣∣∣∣ dsy, using equality (4.6), we obtain

∫

S∗

∣∣∣∣
∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy ≤ Cρ(λ, x)σk+1 expσ(τρaρ − γρ), σ > 1, x ∈ Gρ. (5.9)

From (5.6), (5.7) - (5.9), we obtain
∣∣∣∣∣∣

∫

S∗

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣
≤ Cρ(λ, x)σk+1δ exp σ(τρaρ − γρ), σ > 1, x ∈ Gρ.

(5.10)
The following is known∣∣∣∣∣∣∣

∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣∣
≤ Cρ(λ, x)σk+1M exp(−σγρ), σ > 1, x ∈ Gρ.

(5.11)

10
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Now taking into account (5.10) - (5.11), we have

|U(x)| ≤ Cρ(λ, x)σk+1

2
(δ exp(στρaρ) + M) exp(−σγρ), σ > 1, x ∈ Gρ. (5.12)

Choosing σ from the equality

σ =
1
aρ

ln
M

δ
, (5.13)

we obtain an estimate (5.2).
Now let us prove inequality (5.3). To do this, we find the partial derivative

from the integral formula (3.9) with respect to the variable xj , j = 1, ...,m− 1:

∂U(x)
∂xj

=
∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy +
∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy +

+
∂Uσ(x)

∂xj
+

∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy, x ∈ Gρ, j = 1, ..., m.

(5.14)

Here
∂Uσ(x)

∂xj
=

∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy. (5.15)

We estimate the following

∣∣∣∣
∂U(x)
∂xj

∣∣∣∣ ≤
∣∣∣∣∣∣

∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

∂Gρ\S∗

∂Nσ(y, x;λ))
∂xj

U(y)dsy

∣∣∣∣∣∣∣
≤

≤
∣∣∣∣
∂Uσ(x)

∂xj

∣∣∣∣ +

∣∣∣∣∣∣∣

∫

∂Gρ\S∗

∂Nσ(y, x; λ))
∂xj

U(y)dsy

∣∣∣∣∣∣∣
, x ∈ Gρ, j = 1, ...,m.

(5.16)
Given inequality (5.1), we estimate the first integral of inequality (5.16).

∣∣∣∣∣∣

∫

S∗

∂Nσ(y, x;λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
≤

∫

S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤

≤ δ

∫

S∗

∣∣∣∣
∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy, x ∈ Gρ, j = 1, ..., m.

(5.17)

To do this, we estimate the integrals
∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂xj

∣∣∣∣ dsy, (j = 1, 2, ..., m− 1)

and
∫

S∗

∣∣∣∣
∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy on a smooth surface S.

11
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Given equality (4.6) and equality (4.13), we obtain
∫

S∗

∣∣∣∣
∂Φσ(y, x;λ)

∂xj

∣∣∣∣ dsy ≤ Cρ(λ, x)σk+1 expσ(τρaρ − γρ), σ > 1, x ∈ Gρ,

j = 1, 2, ...,m− 1.

(5.18)

Now, we estimate the integral
∫

S∗

∣∣∣∣
∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy.

Taking into account equality (4.6), we obtain
∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂xm

∣∣∣∣ dsy ≤ Cρ(λ, x)σk+1δ exp σ(τρaρ − γρ), σ > 1, x ∈ Gρ, (5.19)

From (5.17), (5.18) - (5.19), we obtain∣∣∣∣∣∣

∫

S∗

∂Nσ(y, x;λ)
∂xj

U(y)

∣∣∣∣∣∣
≤ Cρ(λ, x)σk+1δ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ,

j = 1, ..., m.
(5.20)

The following is known∣∣∣∣∣∣∣

∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣∣
≤ Cρ(λ, x)σk+1M exp(−σγρ), σ > 1, x ∈ Gρ,

j = 1, ..., m.
(5.21)

Now taking into account (5.20) - (5.21), we have
∣∣∣∣
∂U(x)
∂xj

∣∣∣∣ ≤
Cρ(λ, x)σk+1

2
(δ exp(στρaρ) + M) exp(−σγρ), σ > 1, x ∈ Gρ,

j = 1, ..., m.
(5.22)

Choosing σ from the equality (5.13) we obtain an estimate (5.3).
Theorem 5.1 is proved. ¤

Let U(y) ∈ A(Gρ) and instead U(y) on S with its approximation fδ(y), respec-
tively, with an error 0 < δ < Me−σa,

max
S
|U(y)− fδ(y)| ≤ δ. (5.23)

We put

Uσ(δ)(x) =
∫

S∗

Nσ(y, x;λ)fδ(y)dsy, x ∈ Gρ. (5.24)

Theorem 5.2. Let U(y) ∈ A(Gρ) on the part of the plane ym = 0 satisfy condition
(4.1).

Then the following estimates is true
∣∣U(x)− Uσ(δ)(x)

∣∣ ≤ Cρ(λ, x)σk+1M1−( γ
a )ρ

δ(
γ
a )ρ

, σ > 1, x ∈ Gρ. (5.25)

12
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∣∣∣∣
∂U(x)
∂xj

− ∂Uσ(δ)(x)
∂xj

∣∣∣∣ ≤ Cρ(λ, x)σk+1M1−( γ
a )ρ

δ(
γ
a )ρ

, σ > 1, x ∈ Gρ,

j = 1, ..., m.
(5.26)

Proof. From the integral formulas (3.9) and (5.24), we have

U(x)− Uσ(δ)(x) =
∫

∂Gρ

Nσ(y, x;λ)U(y)dsy−

−
∫

S∗

Nσ(y, x; λ)fδ(y)dsy =
∫

S∗

Nσ(y, x; λ)U(y)dsy+

+
∫

∂Gρ\S∗
Nσ(y, x;λ)U(y)dsy −

∫

S

Nσ(y, x; λ)fδ(y)dsy =

=
∫

S∗

Nσ(y, x;λ) {U(y)− fδ(y)} dsy +
∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy.

and

∂U(x)
∂xj

− ∂Uσ(δ)(x)
∂xj

=
∫

∂Gρ

∂Nσ(y, x;λ)
∂xj

U(y)dsy−

−
∫

S∗

∂Nσ(y, x; λ)
∂xj

fδ(y)dsy =
∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy+

+
∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy −
∫

S∗

∂Nσ(y, x;λ)
∂xj

fδ(y)dsy =

=
∫

S∗

∂Nσ(y, x; λ)
∂xj

{U(y)− fδ(y)} dsy +
∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy,

j = 1, ...,m.

13
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Using conditions (4.1) and (5.23), we estimate the following:

∣∣U(x)− Uσ(δ)(x)
∣∣ =

∣∣∣∣∣∣

∫

S∗

Nσ(y, x; λ) {U(y)− fδ(y)} dsy

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣

∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣∣
≤

∫

S∗

|Nσ(y, x;λ)| |{U(y)− fδ(y)}| dsy+

+
∫

∂Gρ\S∗
|Nσ(y, x; λ)| |U(y)| dsy ≤ δ

∫

S∗

|Nσ(y, x; λ)| dsy+

+M

∫

∂Gρ\S∗
|Nσ(y, x; λ)| dsy.

and

∣∣∣∣
∂U(x)
∂xj

− ∂Uσ(δ)(x)
∂xj

∣∣∣∣ =

∣∣∣∣∣∣

∫

S∗

∂Nσ(y, x;λ)
∂xj

{U(y)− fδ(y)} dsy

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣

∫

∂Gρ\S∗

∂Nσ(y, x;λ)
∂xj

U(y)dsy

∣∣∣∣∣∣∣
≤

∫

S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |{U(y)− fδ(y)} | dsy+

+
∫

∂Gρ\S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤ δ

∫

S∗

∣∣∣∣
∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy+

+M

∫

∂Gρ\S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ dsy, j = 1, ..., m.

Now, repeating the proof of Theorems 4.1 and 5.1, we obtain

∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ Cρ(λ, x)σk+1

2
(δ exp(στρaρ) + M) exp(−σγρ),

∣∣∣∣
∂U(x)
∂xj

− Uσ(δ)(x)
∂xj

∣∣∣∣ ≤
Cρ(λ, x)σk+1

2
(δ exp(στρaρ) + M) exp(−σγρ), j = 1, ...,m.

From here, choosing σ from equality (5.13), we obtain an estimates (5.25) and
(5.26).

Theorem 5.2 is proved. ¤

14
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Corollary 5.3. For each x ∈ Gρ, the equalities are true

lim
δ→0

Uσ(δ)(x) = U(x), lim
δ→0

∂Uσ(δ)(x)
∂xj

=
∂U(x)
∂xj

, j = 1, ...,m.

Corollary 5.4. If x ∈ Gε, then the families of functions
{
Uσ(δ)(x)

}
and{

∂Uσ(δ)(x)
∂xj

}
converge uniformly for δ → 0, i.e.:

Uσ(δ)(x) ⇒ U(x),
∂Uσ(δ)(x)

∂xj
⇒ ∂U(x)

∂xj
, j = 1, ...,m.

6. Conclusion

The article obtained the following results:
Using the Carleman function, a formula is obtained for the continuation of the

solution of linear elliptic systems of the first order with constant coefficients in a
spatial bounded domain Rm, (m = 2k + 1, k ≥ 1). The resulting formula is an
analogue of the classical formula of B. Riemann, W. Voltaire and J. Hadamard,
which they constructed to solve the Cauchy problem in the theory of hyperbolic
equations. An estimate of the stability of the solution of the Cauchy problem in
the classical sense for matrix factorizations of the Helmholtz equation is given. The
problem it is considered when, instead of the exact data of the Cauchy problem,
their approximations with a given deviation in the uniform metric are given and
under the assumption that the solution of the Cauchy problem is bounded on
part T , of the boundary of the domain Gρ, an explicit regularization formula is
obtained.

We note that when solving applied problems, one should find the approximate

values of U(x) and
∂U(x)
∂xj

, x ∈ Gρ, j = 1, ..., m.

In this paper, we construct a family of vector-functions U(x, fδ) = Uσ(δ)(x) and
∂U(x, fδ)

∂xj
=

∂Uσ(δ)(x)
∂xj

, j = 1, ..., m depending on a parameter σ, and prove that

under certain conditions and a special choice of the parameter σ = σ(δ), at δ → 0,

the family Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
converges in the usual sense to a solution U(x)

and its derivative
∂U(x)
∂xj

at a point x ∈ Gρ.

Following A.N. Tikhonov (see [31]), a family of vector-valued functions Uσ(δ)(x)

and
∂Uσ(δ)(x)

∂xj
is called a regularized solution of the problem. A regularized solu-

tion determines a stable method of approximate solution of the problem.

Thus, functionals Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
determines the regularization of the

solution of problem (2.1), (3.1).

15
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