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Abstract. In this paper, the problem of continuation of the solution of the

ill-posed Cauchy problem for matrix factorizations of the Helmholtz equa-
tion in a two-dimensional bounded domain is studied. It is assumed that the

solution to the problem exists and is continuously differentiable in a closed

domain with exactly given Cauchy data. For this case, an explicit formula
for the continuation of the solution is established, as well as a regulariza-

tion formula for the case when, under the indicated conditions, instead of

the Cauchy data, their continuous approximations with a given error in the
uniform metric are given. A stability estimate for the solution of the Cauchy

problem in the classical sense is obtained.

1. Introduction

The paper studies the construction of exact and approximate solutions to the ill-
posed Cauchy problem for matrix factorizations of the Helmholtz equation. Such
problems naturally arise in mathematical physics and in various fields of natural
science (for example, in electro-geological exploration, in cardiology, in electrody-
namics, etc.). In general, the theory of ill-posed problems for elliptic systems of
equations has been sufficiently formed thanks to the works of A.N. Tikhonov, V.K.
Ivanov, M.M. Lavrent’ev, N.N. Tarkhanov of many other famous mathematicians.
Among them, the most important for applications are the so-called conditionally
well-posed problems, characterized by stability in the presence of additional infor-
mation about the nature of the problem data. One of the most effective ways to
study such problems is to construct regularizing operators. For example, this can
be the Carleman-type formulas (as in complex analysis) or iterative processes (the
Kozlov-Maz’ya-Fomin algorithm, etc.).

The work is devoted to the main problem for partial differential equations,
which is the Cauchy problem. There are classes of equations for which this problem
behaves well - the so-called hyperbolic equations. The main attention is paid to
the regularization formulas for solutions of the Cauchy problem. The question
of the existence of a solution to the problem is not considered - it is assumed
a priori. At the same time, it should be noted that any regularization formula
leads to an approximate solution of the Cauchy problem for all data, even if there
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is no solution in the usual classical sense. Moreover, for explicit regularization
formulas, one can indicate in what sense the approximate solution turns out to
be optimal. In this sense, exact regularization formulas are very useful for real
numerical calculations. There is good reason to hope that numerous practical
applications of regularization formulas are still ahead.

This problem concerns ill-posed problems, i.e., it is unstable. It is known that
the Cauchy problem for elliptic equations is unstable relatively small change in
the data, i.e., incorrect (example Hadamard, see, for instance [7], p. 39). There
is a sizable literature on the subject (see, e.g. [1]-[2], [4]-[5], [24] and [33]). N.N.
Tarkhanov [31] has published a criterion for the solvability of a larger class of
boundary value problems for elliptic systems. In unstable problems, the image
of the operator is not is closed, therefore, the solvability condition can not be is
written in terms of continuous linear functionals. So, in the Cauchy problem for
elliptic equations with data on part of the boundary of the domain the solution
is usually unique, the problem is solvable for everywhere dense a set of data, but
this set is not closed. Consequently, the theory of solvability of such problems is
much more difficult and deeper than theory of solvability of Fredholm equations.
The first results in this direction appeared only in the mid-1980s in the works of
L.A. Aizenberg, A.M. Kytmanov, N.N. Tarkhanov (see, for instance [32]).

The uniqueness of the solution follows from Holmgren’s general theorem (see
[4]). The conditional stability of the problem follows from the work of A.N.
Tikhonov (see [33]), if we restrict the class of possible solutions to a compactum.

We note that when solving applied problems, one should find the approximate

values of U(x) and
∂U(x)

∂xj
, x ∈ G, j = 1, 2.

In this paper we construct a family of vector-functions U(x, fδ) = Uσ(δ)(x) and

∂U(x, fδ)

∂xj
=
∂Uσ(δ)(x)

∂xj
, (j = 1, 2) depending on a parameter σ, and prove that

under certain conditions and a special choice of the parameter σ = σ(δ), at δ → 0,

the family Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
converges in the usual sense to a solution U(x)

and its derivative
∂U(x)

∂xj
, x ∈ G at a point x ∈ G.

Following A.N. Tikhonov (see [33]), a family of vector-valued functions Uσ(δ)(x)

and
∂Uσ(δ)(x)

∂xj
is called a regularized solution of the problem. A regularized solu-

tion determines a stable method of approximate solution of the problem.
Formulas that allow finding a solution to an elliptic equation in the case when

the Cauchy data are known only on a part of the boundary of the domain are
called Carleman type formulas. In [5], Carleman established a formula giving a
solution to the Cauchy - Riemann equations in a domain of a special form. Devel-
oping his idea, G.M. Goluzin and V.I. Krylov [6] derived a formula for determining
the values of analytic functions from data known only on a portion of the bound-
ary, already for arbitrary domains. A multidimensional analogue of Carleman’s
formula for analytic functions of several variables was constructed in (see [1]). A
formula of the Carleman type, in which the fundamental solution of a differential
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operator with special properties (the Carleman function) is used, was obtained
by M.M. Lavrent’ev (see, for instance [23]-[24]). Using this method, Sh. Ya.
Yarmukhamedov (see, for instance [34]-[37]) constructed the Carleman functions
for the Laplace and Helmholtz operators with n(x, y) ≡ 1 for spatial domains of a
special form, when the part of the boundary of the domain where the data is un-
known is a conical surface or a hyper surface {x3 = 0}. In [32] an integral formula
is proved for systems of equations of elliptic type of the first order, with constant
coefficients in a bounded domain. Using the methodology of works [34]-[37], Ike-
hata [8] was considered the probe method and Carleman functions for the Laplace
and Helmholtz equations in the three-dimensional domain. Using exponentially
growing solutions, Ikehata [9] was obtained a formula for solving the Helmholtz
equation with a variable coefficient for regions in space where the unknown data
are located on a section of the hypersurface {x · s = t}. Carleman type formulas
for various elliptic equations and systems were also obtained in works [3], [6], [8]-
[9], [10]-[21], [38], [25]-[37]. In work [3] it was considered the Cauchy problem for
the Helmholtz equation in an arbitrary bounded plane domain with Cauchy data,
known only on the region boundary. The solvability criterion the Cauchy problem
for the Laplace equation in the space Rm it was considered by Shlapunov in work
[27]. In work [22], was be continuation the problem for the Helmholtz equation is
investigated and the results of numerical experiments are presented.

The construction of the Carleman matrix for elliptic systems was carried out
by: Sh. Yarmukhamedov, N.N. Tarkhanov, A.A. Shlapunov, I.E. Niyozov, D.A.
Juraev and others (see, for instance [34]-[37], [27]-[28], [25]-[26] and [10]-[21], [38]).
The system considered in this paper was introduced by N.N. Tarkhanov. For this
system, he studied correct boundary value problems and found an analogue of the
Cauchy integral formula in a bounded domain (see, for instance [32]).

In many well-posed problems for systems of equations of elliptic type of the
first order with constant coefficients that factorize the Helmholtz operator, it is
not possible to calculate the values of the vector function on the entire boundary.
Therefore, the problem of reconstructing the solution of systems of equations of
first order elliptic type with constant coefficients, factorizing the Helmholtz oper-
ator (see, for instance [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]
and [38]), is one of the topical problems in the theory of differential equations.

For the last decades, interest in classical ill-posed problems of mathematical
physics has remained. This direction in the study of the properties of solutions
of the Cauchy problem for the Laplace equation was started in [22]-[23], [33]-[36]
and subsequently developed in [3], [6], [29]-[32], [8]-[9], [25]-[28] and [10]-[21], [38].

Let R2 be the two-dimensional real Euclidean space,

x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2.

G ⊂ R2 is a bounded simply-connected domain with piecewise smooth boundary
consisting of the plane T : y2 = 0 and some smooth curve S lying in the half-space
y2 > 0, i.e., ∂G = S

⋃
T .

We introduce the following notation:

r = |y − x| , α = |y1 − x1| , w = i
√
u2 + α2 + y2, u ≥ 0,

3
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∂

∂x
=

(
∂

∂x1
,
∂

∂x2

)T
,
∂

∂x
→ ξT , ξT =

(
ξ1
ξ2

)
be a transposed vector ξ,

U(x) = (U1(x), ... , Un(x))T , u0 = (1, ... , 1) ∈ Rn, n = 2m, m = 2,

E(z) =

∥∥∥∥∥∥
z1 ... 0
.......
0 ...zn

∥∥∥∥∥∥− diagonal matrix, z = (z1, ... , zn) ∈ Rn.

LetD(ξT ), (n×n)−dimensional matrix with elements consisting of a set of linear
functions with constant coefficients of the complex plane for which the following
condition is satisfied:

D∗(ξT )D(ξT ) = E((|ξ|2 + λ2)u0),

where D∗(ξT ) is the Hermitian conjugate matrix D(ξT ), λ is a real number.
We consider in the region G a system of differential equations

D

(
∂

∂x

)
U(x) = 0, (1.1)

where D

(
∂

∂x

)
is the matrix of first-order differential operators.

We denote by A(G)−the class of vector functions in the domain G continuous
on G = G

⋃
∂G and satisfying system (1.1).

2. Construction of the Carleman matrix and the Cauchy problem

Formulation of the problem. Suppose U(y) ∈ A(G) and

U(y)|S = f(y), y ∈ S. (2.1)

Here, f(y) a given continuous vector-function on S. It is required to restore the
vector function U(y) in the domain G, based on it’s values f(y) on S.

If U(y) ∈ A(G), then the following integral formula of Cauchy type is valid

U(x) =

∫
∂G

N(y, x;λ)U(y)dsy, x ∈ G, (2.2)

where

N(y, x;λ) =

(
E
(
ϕ2(λr)u0

)
D∗
(
∂

∂y

))
D(tT ).

Here t = (t1, t2)−is the unit exterior normal, drawn at a point y, the curve
∂G, ϕ2(λr)− is the fundamental solution of the Helmholtz equation in R2, where
ϕ2(λr) defined by the following formula:

ϕ2(λr) = − i
4
H

(1)
0 (λr). (2.3)
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We denote by K(w) is an entire function taking real values for real w,
(w = u+ iv, u, v−real numbers) and satisfying the following conditions:

K(u) 6= 0, sup
v≥1

∣∣vpK(p)(w)
∣∣ = B(u, p) <∞,

−∞ < u <∞, p = 0, 1, 2.

(2.4)

We define the function Φ(y, x;λ) at y 6= x by the following equality

Φ(y, x;λ) = − 1

2πK(x2)

∞∫
0

Im

[
K(w)

w − x2

]
uI0(λu)√
u2 + α2

du, (2.5)

where I0(λu) = J0(iλu)−is the Bessel function of the first kind of zero order [4].
In the formula (2.5), choosing

K(w) = exp(σw), K(x2) = exp(σx2), σ > 0, (2.6)

we get

Φσ(y, x;λ) = −e
−σx2

2π

∞∫
0

Im

[
exp(σw)

w − x2

]
uI0(λu)√
u2 + α2

du. (2.7)

The formula (2.2) is true if instead ϕ2(λr) of substituting the function

Φσ(y, x;λ) = ϕ2(λr) + gσ(y, x;λ), (2.8)

where gσ(y, x)− is the regular solution of the Helmholtz equation with respect to
the variable y, including the point y = x.

Then the integral formula has the form:

U(x) =

∫
∂G

Nσ(y, x;λ)U(y)dsy, x ∈ G, (2.9)

where

Nσ(y, x;λ) =

(
E
(
Φσ(y, x;λ)u0

)
D∗
(
∂

∂y

))
D(tT ).

3. The continuation formula and regularization according to M.M.
Lavrent’ev’s

Theorem 3.1. Let U(y) ∈ A(G) it satisfy the inequality

|U(y)| ≤M, y ∈ T. (3.1)

If

Uσ(x) =

∫
S

Nσ(y, x;λ)U(y)dsy, x ∈ G, (3.2)
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then the following estimates are true

|U(x)− Uσ(x)| ≤ C(λ, x)σMe−σx2 , σ > 1, x ∈ G, (3.3)

∣∣∣∣∂U(x)

∂xj
− ∂Uσ(x)

∂xj

∣∣∣∣ ≤ C(λ, x)σMe−σx2 , σ > 1, x ∈ G, j = 1, 2. (3.4)

Here and below functions bounded on compact subsets of the domain G, we
denote by C(λ, x).

Proof. Let us first estimate inequality (3.3). Using the integral formula (2.9) and
the equality (3.2), we obtain

U(x) =

∫
S

Nσ(y, x;λ)U(y)dsy +

∫
T

Nσ(y, x;λ)U(y)dsy =

= Uσ(x) +

∫
T

Nσ(y, x;λ)U(y)dsy, x ∈ G.

Taking into account the inequality (3.1), we estimate the following

|U(x)− Uσ(x)| ≤

∣∣∣∣∣∣
∫
T

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤
≤
∫
T

|Nσ(y, x;λ)| |U(y)| dsy ≤M
∫
T

|Nσ(y, x;λ)| dsy, x ∈ G.

(3.5)

To do this, we estimate the integrals

∫
T

|Φσ(y, x;λ)| dsy,
∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂y1

∣∣∣∣ dsy,
and

∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂y2

∣∣∣∣ dsy on the part T of the plane y2 = 0.

Separating the imaginary part of (2.7), we obtain

Φσ(y, x;λ) =
eσ(y2−x2)

2π

 ∞∫
0

cosσ
√
u2 + α2

u2 + r2
uI0(λu)du−

−
∞∫
0

(y2 − x2) sinσ
√
u2 + α2

u2 + r2
uI0(λu)√
u2 + α2

du

 , x2 > 0.

(3.6)
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Given (3.6) and the inequality

I0(λu) ≤
√

2

λπu
, (3.7)

we have ∫
T

|Φσ(y, x;λ)| dsy ≤ C(λ, x)σe−σx2 , σ > 1, x ∈ G, (3.8)

To estimate the second integral, we use the equality

∂Φσ(y, x;λ)

∂y1
=
∂Φσ(y, x;λ)

∂s

∂s

∂y1
= 2(y1 − x1)

∂Φσ(y, x;λ)

∂s
,

s = α2.

(3.9)

Given equality (3.6), inequality (3.7) and equality (3.9), we obtain

∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂y1

∣∣∣∣ dsy ≤ C(λ, x)σe−σx2 , σ > 1, x ∈ G, (3.10)

Now, we estimate the integral

∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂y2

∣∣∣∣ dsy.

Taking into account equality (3.6) and inequality (3.7), we obtain

∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂y2

∣∣∣∣ dsy ≤ C(λ, x)σe−σx2 , σ > 1, x ∈ G, (3.11)

From inequalities (3.7), (3.10) and (3.11), bearing in mind (3.5), we obtain an
estimate (3.3).

Now let us prove inequality (3.4). To do this, we take the derivatives from
equalities (2.9) and (3.2) with respect to xj , (j = 1, 2) then we obtain the
following:

∂U(x)

∂xj
=

∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy +

∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy,

∂Uσ(x)

∂xj
=

∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy, x ∈ G, j = 1, 2.

(3.12)

7
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Taking into account the (3.12) and inequality (3.1), we estimate the following

∣∣∣∣∂U(x)

∂xj
− ∂σU(x)

∂xj

∣∣∣∣ ≤
∣∣∣∣∣∣
∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤
≤
∫
T

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤M
∫
T

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy,
x ∈ G, j = 1, 2.

(3.13)

To do this, we estimate the integrals

∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂x1

∣∣∣∣ dsy and∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂x2

∣∣∣∣ dsy on the part T of the plane y2 = 0.

To estimate the first integrals, we use the equality

∂Φσ(y, x;λ)

∂x1
=
∂Φσ(y, x;λ)

∂s

∂s

∂x1
= −2(y1 − x1)

∂Φσ(y, x;λ)

∂s
,

s = α2.

(3.14)

Given equality (3.6), inequality (3.7) and equality (3.14), we obtain∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂x1

∣∣∣∣ dsy ≤ C(λ, x)σe−σx2 , σ > 1, x ∈ G. (3.15)

Now, we estimate the integral

∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂x2

∣∣∣∣ dsy.

Taking into account equality (3.6) and inequality (3.7), we obtain∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂x2

∣∣∣∣ dsy ≤ C(λ, x)σe−σx2 , σ > 1, x ∈ G. (3.16)

From inequalities (3.15) and (3.16), bearing in mind (3.13), we obtain an esti-
mate (3.4).

Theorem 3.1 is proved. �

Corollary 3.2. For each x ∈ G, the equalities are true

lim
σ→∞

Uσ(x) = U(x), lim
σ→∞

∂Uσ(x)

∂xj
=
∂U(x)

∂xj
, j = 1, 2.

We denote by Gε the set

Gε =
{

(x1, x2) ∈ G, a > x2 ≥ ε, a = max
T

ψ(x1), 0 < ε < a
}
.

8
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It is easy to see that the set Gε ⊂ G is compact.

Corollary 3.3. If x ∈ Gε, then the families of functions {Uσ(x)} and
{
∂Uσ(x)

∂xj

}
converge uniformly for σ →∞, i.e.:

Uσ(x) ⇒ U(x),
∂Uσ(x)

∂xj
⇒

∂U(x)

∂xj
, j = 1, 2.

It should be noted that the set Eε = G\Gε serves as a boundary layer for this
problem, as in the theory of singular perturbations, where there is no uniform
convergence.

4. Estimation of the stability of the solution to the Cauchy problem

Suppose that the curve S is given by the equation

y2 = ψ(y1), y1 ∈ R,

where ψ(y1) is a single-valued function satisfying the Lyapunov conditions.
We put

a = max
T

ψ(y1), b = max
T

√
1 + ψ′2(y1).

Theorem 4.1. Let U(y) ∈ A(G) satisfy condition (3.10), and on a smooth surface
S the inequality

|U(y)| ≤ δ, 0 < δ < Me−σa. (4.1)

Then the following estimates are true

|U(x)| ≤ C(λ, x)σM1− x2
a δ

x2
a , σ > 1, x ∈ G. (4.2)∣∣∣∣∂U(x)

∂xj

∣∣∣∣ ≤ C(λ, x)σM1− x2
a δ

x2
a , σ > 1, x ∈ G,

j = 1, 2.
(4.3)

Proof. Let us first estimate inequality (4.2). Using the integral formula (2.9), we
have

U(x) =

∫
S

Nσ(y, x;λ)U(y)dsy +

∫
T

Nσ(y, x;λ))U(y)dsy, x ∈ G. (4.4)

We estimate the following

|U(x)| ≤

∣∣∣∣∣∣
∫
S

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
T

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ , x ∈ G. (4.5)

9
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Given inequality (4.1), we estimate the first integral of inequality (4.5).∣∣∣∣∣∣
∫
S

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

|Nσ(y, x;λ)| |U(y)| dsy ≤

≤ δ
∫
S

|Nσ(y, x;λ)| dsy, x ∈ G.

(4.6)

To do this, we estimate the integrals

∫
S

|Φσ(y, x;λ)| dsy,
∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂y1

∣∣∣∣ dsy,
and

∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂y2

∣∣∣∣ dsy on a smooth surface S.

Given equality (3.6) and the inequality (3.7), we have∫
S

|Φσ(y, x;λ)| dsy ≤ C(λ, x)σeσ(a−x2), σ > 1, x ∈ G. (4.7)

To estimate the second integral, using equalities (3.6) and (3.9) as well as
inequality (3.7), we obtain∫

S

∣∣∣∣∂Φσ(y, x;λ)

∂y1

∣∣∣∣ dsy ≤ C(λ, x)σeσ(a−x2), σ > 1, x ∈ G. (4.8)

To estimate the integral

∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂y2

∣∣∣∣ dsy, using equality (3.6) and inequal-

ity (3.7), we obtain∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂y2

∣∣∣∣ dsy ≤ C(λ, x)σeσ(a−x2), σ > 1, x ∈ G. (4.9)

From (4.7) - (4.9), bearing in mind (4.6), we obtain∣∣∣∣∣∣
∫
S

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤ C(λ, x)σδ eσ(a−x2), σ > 1, x ∈ G. (4.10)

The following is known∣∣∣∣∣∣
∫
T

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤ C(λ, x)σMe−σx2 , σ > 1, x ∈ G. (4.11)

Now taking into account (4.10) - (4.11), bearing in mind (4.5), we have

|U(x)| ≤ C(λ, x)σ

2
(δ eσa +M)e−σx2 , σ > 1, x ∈ G. (4.12)

10
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Choosing σ from the equality

σ =
1

a
ln
M

δ
, (4.13)

we obtain an estimate (4.2).
Now let us prove inequality (4.3). To do this, we find the partial derivative

from the integral formula (2.9) with respect to the variable xj , j = 1, 2:

∂U(x)

∂xj
=

∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy +

∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy =

=
∂Uσ(x)

∂xj
+

∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy, x ∈ G, j = 1, 2.

(4.14)

Here

∂Uσ(x)

∂xj
=

∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy. (4.15)

We estimate the following

∣∣∣∣∂U(x)

∂xj

∣∣∣∣ ≤
∣∣∣∣∣∣
∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤

≤
∣∣∣∣∂Uσ(x)

∂xj

∣∣∣∣+

∣∣∣∣∣∣
∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ , x ∈ G, j = 1, 2.

(4.16)

Given inequality (4.1), we estimate the first integral of inequality (4.16).∣∣∣∣∣∣
∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤

≤ δ
∫
S

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy, x ∈ G, j = 1, 2.

(4.17)

To do this, we estimate the integrals

∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂x1

∣∣∣∣ dsy, and∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂x2

∣∣∣∣ dsy on a smooth curve S.

11
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Given equality (3.6), inequality (3.7) and equality (3.14), we obtain∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂x1

∣∣∣∣ dsy ≤ C(λ, x)σeσ(a−x2), σ > 1, x ∈ G, (4.18)

Now, we estimate the integral

∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂x2

∣∣∣∣ dsy.

Taking into account equality (3.6) and inequality (3.7), we obtain∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂x2

∣∣∣∣ dsy ≤ C(λ, x)σeσ(a−x2), σ > 1, x ∈ G, (4.19)

From (4.18) - (4.19), bearing in mind (4.17), we obtain∣∣∣∣∣∣
∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤ C(λ, x)σδe−σx2 , σ > 1, x ∈ G,

j = 1, 2.

(4.20)

The following is known∣∣∣∣∣∣
∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤ C(λ, x)σMe−σx2 , σ > 1, x ∈ G,

j = 1, 2.

(4.21)

Now taking into account (4.20) - (4.21), bearing in mind (4.16), we have∣∣∣∣∂U(x)

∂xj

∣∣∣∣ ≤ C(λ, x)σ

2
(δ eσa +M)e−σx2 , σ > 1, x ∈ G,

j = 1, 2.
(4.22)

Choosing σ from the equality (4.13) we obtain an estimate (4.3).
Theorem 4.1 is proved. �

Let U(y) ∈ A(G) and instead U(y) on S with its approximation fδ(y),
respectively, with an error 0 < δ < Me−σa,

max
S
|U(y)− fδ(y)| ≤ δ. (4.23)

We put

Uσ(δ)(x) =

∫
S

Nσ(y, x;λ)fδ(y)dsy, x ∈ G. (4.24)

12
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Theorem 4.2. Let U(y) ∈ A(G) on the part of the plane y2 = 0 satisfy condition
(3.1)

Then the following estimates is true

∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ C(λ, x)σM1− x2

a δ
x2
a , σ > 1, x ∈ G. (4.25)

∣∣∣∣∂U(x)

∂xj
−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ C(λ, x)σM1− x2
a δ

x2
a , σ > 1, x ∈ G,

j = 1, 2.
(4.26)

Proof. From the integral formulas (2.9) and (4.24), we have

U(x)− Uσ(δ)(x) =

∫
∂G

Nσ(y, x;λ)U(y)dsy−

−
∫
S

Nσ(y, x;λ)fδ(y)dsy =

∫
S

Nσ(y, x;λ)U(y)dsy+

+

∫
T

Nσ(y, x;λ)U(y)dsy −
∫
S

Nσ(y, x;λ)fδ(y)dsy =

=

∫
S

Nσ(y, x;λ) {U(y)− fδ(y)} dsy +

∫
T

Nσ(y, x;λ)U(y)dsy.

and

∂U(x)

∂xj
−
∂Uσ(δ)(x)

∂xj
=

∫
∂G

∂Nσ(y, x;λ)

∂xj
U(y)dsy−

−
∫
S

∂Nσ(y, x;λ)

∂xj
fδ(y)dsy =

∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy+

+

∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy −

∫
S

∂Nσ(y, x;λ)

∂xj
fδ(y)dsy =

=

∫
S

∂Nσ(y, x;λ)

∂xj
{U(y)− fδ(y)} dsy +

∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy,

j = 1, 2.

13
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Using conditions (3.1) and (4.23), we estimate the following:

∣∣U(x)− Uσ(δ)(x)
∣∣ =

∣∣∣∣∣∣
∫
S

Nσ(y, x;λ) {U(y)− fδ(y)} dsy

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
∫
T

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

|Nσ(y, x;λ)| |{U(y)− fδ(y)}| dsy+

+

∫
T

|Nσ(y, x;λ)| |U(y)| dsy ≤ δ
∫
S

|Nσ(y, x;λ)| dsy+

+M

∫
T

|Nσ(y, x;λ)| dsy.

and ∣∣∣∣∂U(x)

∂xj
−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ =

∣∣∣∣∣∣
∫
S

∂Nσ(y, x;λ)

∂xj
{U(y)− fδ(y)} dsy

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |{U(y)− fδ(y)}| dsy+

+

∫
T

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤ δ
∫
S

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy+

+M

∫
T

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy, j = 1, 2.

Now, repeating the proof of Theorems 4.1 and 4.2, we obtain

∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ C(λ, x)σ

2
(δ eσa +M)e−σx2 .∣∣∣∣∂U(x)

∂xj
−
Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ C(λ, x)σ

2
(δ eσa +M)e−σx2 , j = 1, 2.

From here, choosing σ from equality (4.13), we obtain an estimates (4.25) and
(4.26).

Theorem 4.2 is proved. �

Corollary 4.3. For each x ∈ G, the equalities are true

lim
δ→0

Uσ(δ)(x) = U(x), lim
δ→0

∂Uσ(δ)(x)

∂xj
=
∂U(x)

∂xj
, j = 1, 2.

14



SOLUTION OF THE ILL-POSED CAUCHY PROBLEM ... 15

Corollary 4.4. If x ∈ Gε, then the families of functions
{
Uσ(δ)(x)

}
and{

∂Uσ(δ)(x)

∂xj

}
converge uniformly for δ → 0, i.e.:

Uσ(δ)(x) ⇒ U(x),
∂Uσ(δ)(x)

∂xj
⇒

∂U(x)

∂xj
, j = 1, 2.

5. Conclusion

The article obtained the following results:
Using the Carleman function, a formula is obtained for the continuation of the

solution of linear elliptic systems of the first order with constant coefficients in a
spatial bounded domain R2. The resulting formula is an analogue of the classical
formula of B. Riemann, W. Voltaire and J. Hadamard, which they constructed to
solve the Cauchy problem in the theory of hyperbolic equations. An estimate of the
stability of the solution of the Cauchy problem in the classical sense for matrix
factorizations of the Helmholtz equation is given. The problem it is considered
when, instead of the exact data of the Cauchy problem, their approximations with
a given deviation in the uniform metric are given and under the assumption that
the solution of the Cauchy problem is bounded on part T , of the boundary of the
domain G, an explicit regularization formula is obtained.

Thus, functionals Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
determines the regularization of the

solution of problem (1.1), (2.1).
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