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ABSTRACT. The main objective of this study is to develop a new algorithm based on
diffusion equation using wavelets. We solved the diffusion equation by using finite dif-
ference method by taking noisy image as initial guess. After that we applied wavelet
denoising scheme based on soft thresholding on the image which we obtain as a solution
of diffusion equation. The idea behind this study is that, the linear diffusion equation is
not capable to capture the edges during denoising process, so the edges are restored by
using wavelets denoising process. To validate the developed scheme we compared peak
signal to noise ratio (PSNR) with wavelet method, diffusion equation method and wavelet
coefficients via diffusion equation method.

1. Introduction

Images are very powerful and widely used medium of communication and it is an easy
way to present our physical world. A digital image comes from continuous world. It is
obtained from an analogue image by sampling and quantization. The process depends
upon quantization devices, for instance on compact disk for digital camera. The applica-
tions of images are very helpful in the field of computer science, for example robotics,
video games, data compression, scanners and data transmission, etc. Also, images are
very important in geophysics and geographical point of view such as oil exploration, nu-
clear test monitoring, earthquake measurement and remote sensing, aerial photography
for detection of crop damage or forest fires, deep space probes and weather forecasting.
Images are very useful in the field of medical science. In medical science many devices
exist which produce images such as ultra-sounds and X-rays. Medical imaging has made
substantial use of images from the earliest days. More interestingly, images are also useful
in television transmission from lunar, video surveillance, road traffic analysis, water sup-
plies, pollution, urbanization, etc. Image processing provides tools to track and quantify
changes in above mentioned areas. A typical camera can give an image of size 320×320
to 3060× 2036. In general, for digital camera we consider images of size 720× 576 as
standard format, 1920× 1440 as high definition (HD) and 128× 128 for medical imag-
ing. Clearly higher the resolution, closer the digital image to physical world obtained. An
image is a compactly supported real valued function in L2(R2) ([15], [22]).

It is well known to scientists and engineers with real world data that signal do not exist
without noises, there are many cases when images corrupted. Images get corrupted dur-
ing capture, transmission or imperfection of image acquisition. Natural noise degrades
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the quality of images. The challenge is to denoise or restore the image so that it can be
clearly visible by human eye. Image processing and computer vision bring to mathemat-
ics a host of very challenging new problems and fascinating applications. Methods based
on functional analysis, probability theory, statistics, wavelet analysis, linear and nonlin-
ear filtering and partial differential equations are very useful in image processing, such
as how to restore a degraded image or denoise and how to segment it into meaningful
regions. Methods based on partial differential equations have been presented by many re-
searchers such as, piecewise smooth image model by C Liu et al.[5], variable coefficient
linear filter minimizing strictly convex non-quadratic functionals by Schnorr [7], method
for total variation by Chang and Chern [34], nonlinear primal dual method by Chan et al
[36], denoising with higher order derivatives by Scherzer [32], PDE based de-convolution
by Welk [27], wavelet coefficient via Diffusion equation by Kumar et al [38], etc. Meth-
ods based on wavelets have been proposed by many researchers such as iterative shrinkage
thresholding algorithm by A. Beck and M teboulle [1], single and multiband image de-
noising algorithm by A. Pizurrica and Philips[2], interscale and intrascale method by F
Yan et al [14], Adaptive wavelet thresholding by Chang et al [35] and local contrast and
adaptive mean in wavelet transform domain by Sharma et al [33]. Advanced algorithm
based on wavelet have been discussed by Donoho ([10], [11]) , Donoho and Johnstone
([12], [13]),Johnstone and Silverman [18], Birge and Massart [23].

In this paper, we described diffusion equation and its existence and uniqueness of solu-
tion in section 2. In section 3, we described wavelet, wavelet transform, discrete wavelet
transform, two dimensional discrete wavelet transform, and thresholding. In section 4, we
proposed the method based on diffusion equation and wavelet. In section 5, we demon-
strate four examples to show the superiority of our method and compared PSNR values
with diffusion equation method, wavelet method and method presented by Kumar et al
[38]. The conclusion is given in section 6.

2. Diffusion Equation

Partial differential equations (PDE) encounter in physics, biology, mechanics, finance
and now in images. The theory of PDE is well established and belong to the mathemat-
ical analysis and very closely related to physical world. The oldest and most popular
equation in image processing is heat equation, i.e., parabolic partial differential equation.
Scientists and researchers pointed out that one parameter family of derived image can be
equivalently viewed as the solution of the diffusion equation.
We consider the following linear diffusion equation:

∂u(t,x,y)
∂ t

= c4u(t,x,y) = c
(∂ 2u(t,x,y)

∂x2 +
∂ 2u(t,x,y)

∂y2

)
, t ≥ 0,(x,y) ∈ R2 (2.1)

with initial condition

u(0,x,y) = φ(x,y). (2.2)

We consider that φ(x,y) is defined on [0,1]× [0,1] and c is the diffusivity constatnt. This
way of extending φ(x,y) is classical in image processing. In this manner it satisfies∫

Ω

|φ(X)|dX <+∞. (2.3)
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That is φ(x,y) ∈ L1(Ω), X = (x,y) .
Solving (2.1) is equivalent to carrying out a Gaussian linear filtering, which is an impor-
tant part of signal processing and widely used. Let φ(x,y)∈L1(Ω), Ω= [−1,1]× [−1,1].
Then the explicit solution of (2.1) is given by,

u(t,x,y) =
∫
R2

G√2t(X−Y )φ(Y )dY = (G√2t ∗φ)(X), (2.4)

Gσ (X) =
1

2πσ2 e−
|X |2

2σ2 , (2.5)

where, Gσ (X) denotes the two dimensional Gaussian kernel. Convolution by a positive
kernel is the basic operation in linear image filtering. It corresponds to low pass filtering.
Equation (2.4) is the unique solution of (2.1) satisfying the following inequality:

SupX∈R2 |u(t,x,y)| ≤ c(t1)|φ(x,y)|L1(Ω), (2.6)

where c(t1) is a constant such that t ∈ [t1,∞) and t1 is a positive number.

If φ(x,y) ∈ L∞, then we have a maximum principle,

In fX∈R2
(
φ(x,y)

)
≤ u(t,x,y)≤ SupX∈R2

(
φ(x,y)

)
. (2.7)

It is well known that the equation (2.1) in (0,T )×R2 with u(0,x,y) = 0 has infinitely
many solutions and each nontrivial solution grows rapidly as |X | −→∞ to get a uniqueness
result. It suffices to impose that u satisfies the growth estimate

|u(t,X)| ≤ Aeα|X |2 , (2.8)

for some constant A and α > 0. For more details, see ( [15] and [22], [27] and [32]).

3. Wavelet Transform

One of the important application of the wavelet transform in image processing is edge
detection. While using linear diffusion equation we are left with edge that is the linear
diffusion equations are not capable to capture the edges of the images during denoising
process. In digital images, edges appear when there is an abrupt change in pixel intensi-
ties. So, this drawback can be handled by using wavelet denoising technique.

3.1. Wavelet Transform.

Definition 3.1. Wavelet is a small wave function(signal) with limited time duration and
zero-mean in amplitude. It can also be called mother wavelet that satisfies:
(i) Total area under the wavelet is zero, i.e

∫ +∞

−∞
ψ(t)dt = 0,and

(ii) Total area of |ψ(t)|2 is finite, i.e
∫ +∞

−∞
|ψ(t)|2dt < ∞ ,

where ψ is the mother wavelet.
In other words a square integrable function ψ is called a wavelet, if it satisfies the admis-
sibility condition, ∫ +∞

−∞

|ψ̂(ω)|2

|ω|
dω < ∞,

where, ψ̂ is the Fourier transform of ψ which is given as follows ([4], [28], [29], [30]):

ψ̂(ω) =
∫ +∞

−∞

ψ(t)e−iωtdt.
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Definition 3.2. Wavelet transform of a function f (t) is given by

Wa,b f =
∫ +∞

−∞

f (t)
1√
|a|

ψ
∗(

t−b
a

)dt, (3.1)

where ψ∗ is complex conjugate of mother wavelet ψ .

Definition 3.3. The inverse wavelet transform can be used to reconstruct the signal as

f (t) =
1
C

∫ +∞

−∞

∫ +∞

−∞

Wa,bψa,b(t)db
da
a2 , (3.2)

where C is given by C =
∫ +∞

−∞

|ψ(ω)|2
|ω| and ψa,b(t) = ψ( t−b

a ), see ([3], [6], [8], [17], [20],
[21] and [24].

3.2. Discrete Wavelet Transform. The discrete wavelet transform is the heart of the
signal processing which was proposed by Stephane Mallat [39] and [40] in 1989. The
discrete form of a scaling function φ and wavelet functionψ can be written as {φ j,k(t) =
2 j/2φ(2 jt − k) : k ∈ Z} and {ψ j,k(t) = 2 j/2ψ(2 jt − k) : k ∈ Z}, respectively since the
set {φ j,k(t): k ∈ Z} forms an orthonormal basis for the subspace {Vj : j ∈ Z}, see the
definition of multiresolution analysis ([8], [17], [20], [21] and [24]). Hence φ and ψ can
be expressed as follows:

φ(t) = 21/2
∑
k∈Z

hkφ(2t− k),

ψ(t) = 21/2
∑
k∈Z

gkψ(2t− k),

where gk = (−1)k+1h1−k.

Definition 3.4. Discrete wavelet transform of a function or signal f [n] is given by

f [n] =
1√
N ∑

k∈Z
hkφ j0,k[n]+

1√
N

∞

∑
j= j0

∑
k∈Z

gkψ j,k[n], (3.3)

where, f [n], φ j,k and ψ j,k are defined on [0,N−1], total N points and the coefficients hk,
gk are low pass filters (approximation coefficients) and high pass filters (detailed coeffi-
cients), respectively, which can be calculated as follows ([31], [37], [41] and [42]):

hk =
1√
N ∑

n∈Z
f [n]φ j0,k[n],

gk =
1√
N ∑

n∈Z
f [n]ψ j0,k[n], j > j0.

The decomposition of a signal by wavelet is given in Figure 1 and the reconstruction
of the signal by wavelet has been shown in Figure 2. In Figure 1, LoD represents the low
pass decomposition filter and HiD represents the high pass decomposition filter. In Figure
2, LoR represents the low pass reconstruction filter and HiR represents the high pass
reconstruction filter. Further, ↑ 2 and ↓ 2 represent the up-sampling and down-sampling,
respectively, see ([9], [19], [20], [24], [37], [39], [40], [41] and [42]).
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imp_04.png

Figure 1. Discrete wavelet decomposition of signal.

imp_05.png

Figure 2. Discrete wavelet reconstruction of decomposed signal.

3.3. Two Dimensional Discrete Wavelet Transform. The two dimensional discrete wavelet
transform of a discrete (digital) image Im = [Ii, j]1≤i≤M,1≤ j≤N , of size M×N, where Ii, j
are real numbers given as:

Ĩm =WMImW T
N , (3.4)

where, WM =

(
HN/2
GN/2

)
, HN/2 and GN/2 are high and low pass filter coefficients matri-

ces.
The above transformation can be written as

Ĩm =WMImW T
N =

(
HM/2
GM/2

)
Im

(
HN/2
GN/2

)T

=

(
HM/2Im
GM/2Im

)(
HT

N/2 GT
N/2

)
(3.5)

=

(
HM/2ImHT

N/2 HM/2ImGT
N/2

GT
M/2ImHT

N/2 GM/2ImGT
N/2

)

=

(
A V
H D

)
=

(
average vertical di f f erence

horizontal di f f erence diagonal di f f erence

)
(3.6)

where

A = HMImHT
N , V = HM/2ImGT

N/2, H = GT
M/2ImHT

N/2, and D = GM/2ImGT
N/2.

Here A is averaged lower resolution version of the image Im which is computed along
row of Im followed by computing average along columns, H is computed by trend (aver-
age) along row of image Im followed by computation fluctuation along column, where as
horizontal edges in an image fluctuation along column are able to detect these edges. This
tends to emphasize the horizontal edges. V is similar to H roles of horizontal and verti-
cal reverses. V is vertical fluctuation which is able to detect vertical edges of the image.
D is diagonal fluctuation and emphasizes diagonal features created by both fluctuations
along row and column. This fluctuation tends to erase vertical and horizontal edges ([9],
[19] and [42]).
Now, let us suppose that, A = [ai, j], V = [vi, j], H = [hi, j] and D = [di, j], i = 1,2, ..., M

2 ;
j = 1,2, ..., N

2 . In case of Haar wavelet the matrix W is given as follows:
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W =
1√
2


1 1 0 0 0 ... 0 0
0 0 1 1 0 ... 0 0
. . . . . . . .
. . . . . . . .
0 0 0 0 0 . 1 1
1 −1 0 0 0 ... 0 0
0 0 1 −1 0 ... 0 0
. . . . . . . .
. . . . . . . .
0 0 0 0 0 . 1 −1

, (3.7)

The elements of the average, vertical, horizontal and diagonal matrices are given as fol-
lows:

ai, j =
Im2i−1,2 j−1 + Im2i−1,2 j + Im2i,2 j−1 + Im2i,2 j

2
,

vi, j =
(Im2i−1,2 j−1 + Im2i,2 j−1)− (Im2i−1,2 j + Im2i,2 j)

2
,

hi, j =
(Im2i−1,2 j−1 + Im2i−1,2 j)− (Im2i,2 j−1 + Im2i,2 j)

2
,

di, j =
(Im2i−1,2 j−1 + Im2i,2 j)− (Im2i−1,2 j + Im2i,2 j−1)

2
.

Since the matrices WN and WM are orthogonal, the inverse discrete wavelet transform of
the image Im can be calculated as follows:

Ĩm =WMImW T
N ,

W T
M Ĩm = ImW T

N ,

W T
M ĨmWN = Im,

Im =W T
M ĨmWN .

The wavelet decomposition of an image is given in Figure 3 and the reconstruction of the
image by wavelet has been shown in Figure 4. In Figure 3, LoD represents the low pass
decomposition filter, ↓ 2 represents the down-sampling and HiD represents the high pass
decomposition filter. In Figure 4, LoR represents the low pass reconstruction filter, ↑ 2
represent the up-sampling and HiR represents the high pass reconstruction filter. Further,
j denotes the level of decomposition , a j is average of the image at jth level, d j+1

h , d j+1
v ,

d j+1
d represents the horizontal, vertical and diagonal differences at jth level.

imp_02.png

Figure 3. Basic step for the decomposition in wavelets for images.
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imp_03.png

Figure 4. Basic step for wavelet reconstruction for decomposed images.

DWT allows for analyzing the noise level separately at each wavelet scale and adapted
the denoising algorithm accordingly. For denoising, a wavelet should be able to capture
the transient spikes of the original image then select those detail coefficients which are
larger than the characteristics of the amplitude of noise and discard others, the selection
is based on thresholding of the detail coefficients. The basic concept of image denois-
ing by wavelet is based on choosing a thresholding. A threshold value T is chosen for
which all transform values are linear in magnitude then T set equal to zero. By perform-
ing inverse wavelet transform on the thresholded transform, an estimation of the original
signal is estimated. There are two types of thresholdings occur namely Hard and Soft.
Once the thresholdings rule have been selected only the essential ingredient remains to be
found the noise level that is the estimation of noise level. Mainly two families are there;
first one is Donoho and Johnstone methods which contains Square2log, SURE, HeurSure
and Minimax. SURE and HeurSure are level dependent threshold while Square2log and
and Minimax are global threshold. The second family is Birge-Massart which is level
dependent and penalized globally, see ([10]-[13], [18], [19], [23] and [37]).

4. Proposed Model

Let us assume that u0(x,y) is the noisy image and u(x,y) is the original image or clear
image without noise and n(x,y) is the additive white Gaussian noise such that

u0(x,y) = u(x,y)+n(x,y). (4.1)

Now, let us suppose that u0(x,y) is an initial solution of the linear diffusion equation (2.1)
such that

u(0,x,y) = φ(x,y) = u0(x,y) = u(x,y)+n(x,y). (4.2)

To solve the diffusion equation (2.1), we use forward finite difference formulae ([15],
[16], [25] and [26]), as follows:

uxx =
un

i+1, j−2un
i, j +un

i−1, j

∆x2 , (4.3)

uyy =
un

i, j+1−2un
i, j +un

i, j−1

∆y2 , (4.4)

ut =
un+1

i, j −un
i, j

∆t
. (4.5)
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Now, using equations (4.3), (4.4) and (4.5) in equation (2.1), we get

un+1
i, j −un

i, j

∆t
= c(

un
i+1, j−2un

i, j +un
i−1, j

∆x2 +
un

i, j+1−2un
i, j +un

i, j−1

∆y2 ). (4.6)

By taking ∆x = ∆y and solving, we get

un+1
i, j = un

i, j +
c∆t
∆x2 (u

n
i+1, j−2un

i, j +un
i−1, j +un

i, j+1−2un
i, j +un

i, j−1). (4.7)

This system is stable if ∆t
∆x2 ≤ 0.5 (see the proof in [15], [16], [25] and [26]). Further,

the above system (4.7) is solved with the help of equation (4.1) and we assume that the
obtained solution is I(x,y). Now, we apply the discrete wavelet transform on I(x,y) as we
did in equation (3.4) and get Ĩ(x,y), that is

Ĩ(x,y) =WMI(x,y)W T
N . (4.8)

On solving we get

Ĩ(x,y) =
(

A V
H D

)
. (4.9)

Now, we shall apply the thresholding technique on Ĩ(x,y) (in our case we use soft thresh-
olding). After threshold we apply inverse discrete wavelet transform on Ĩ(x,y) as we did
in equation (3.9) and then, we obtain

I(x,y) =W T
M Ĩ(x,y)WN , (4.10)

which is the required denoised image.

For numerical computation and comparison with other existing methods we computed
the mean square error and peak signal to noise ratio by following formulae:

MSE =
1

MN

M

∑
i=1

N

∑
j=1

(u(x,y)− I(x,y))2, (4.11)

PSNR = 10
log( MN

MSE )

log10
. (4.12)

imp_01.png

Figure 5. Flowchart of the algorithm for the proposed model.

Algorithm Input

Step 1: Load a clean Image I(i, j),
Step 2: Generate random white Gaussian noise and add into the Image I(i, j) and obtain
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noisy image Ĩ(i, j), i.e., Ĩ(i, j) = I(i, j)+w(i, j),
Step 3: Apply the diffusion equation model by considering noisy image Ĩ(i, j) as initial
condition and obtain the solution of diffusion equation by using finite difference method,
which is a smooth image,
Step 4: Apply the discrete wavelet transform on the image which is obtained as a solution
of diffusion equation to decompose the image up-to appropriate level,
Step 5: Apply the threshold technique for thresholding,
Step 6: Reconstruct the clean image by computing inverse discrete wavelet transform,
Step 7: Compute the peak signal to noise ratio,
Output: Obtained denoised Image.

5. Simulations and Results

In this section, we have given some examples to evaluate and validate the perfor-
mance of proposed technique. We took gray scale image contaminated with additive
white Gaussian noise with zero mean and σ2 variance (we added standard noise). In
this experiment, we use Haar, Daubechies, Coiflets, Symlets, Franklin and Biorthogonal
wavelets to denoise the noisy images. The values of peak signal to noise ratio (PSNR) are
tabulated in the tables and figures of original, noisy and denoised images are given. We
compared PSNR values obtained by proposed method with the wavelet method, diffusion
equation method and method proposed by Kumar et al [38].

Example 1. In this example, we took the test image of Lena and then we added the
standard random white gaussian noise. Further, we applied proposed technique to denoise
the noisy image of Lena and calculated the PSNR values, which are tabulated in the tables
1.1 and 1.2, as well as, the original image 1(a), noisy image 1(b) and the denoised image
1(c) are represented. On applying diffusion equation model we obtained PSNR value
26.03 and on using wavelet denoising approach we obtained PSNR value 23.62. While
using proposed method we obtained maximum PSNR value upto 31.5454, which is far
better than other methods as well as method proposed by Kumar et al [38].

Table 1.1. Calculated PSNR values of denoised Lena image obtained by proposed model
and corresponding wavelets for example 1.

Wavelet PSNR Wavelet PSNR Wavelet PSNR Wavelet PSNR
Sym4L1 31.5276 Sym4L2 31.5430 Sym4L3 31.5454 Bi-orth. 2.2 31.4888
Daub.5 26.8263 Coif1 26.8386 Coif4 26.7673 Fra. 26.8379

Table 1.2. Calculated PSNR values of by different methods for example 1.

Noisy Image [38] Wavelet Diff. eqn Our method
18.7073 26.8263 23.62 26.03 31.5454
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Lena.jpg NoisyLena.jpg Sym4L2.jpg

1(a). Original Lena image 1(b). Noisy Lena image 1(c). Denoised by our method

Example 2. In this example, we took the test image of Moon surface and then we added
the random white Gaussian noise. Further, we applied proposed technique to denoise the
noisy image of Moon surface and calculated the PSNR values, which are tabulated in the
tables 2.1 and 2.2, as well as, the original image 2(a), noisy image 2(b) and the denoised
image 2(c) are represented. On applying diffusion equation model we obtained PSNR
value 28.18 and on using wavelet denoising approach we obtained PSNR value 21.08.
While on using proposed method we obtained maximum PSNR value upto 28.2996,
which is far better than other methods.

Table 2.1 Calculated PSNR values of denoised Moon image obtained by proposed
model and corresponding wavelets for example 2.

Wavelet PSNR Wavelet PSNR Wavelet PSNR Wavelet PSNR
HaarL2 28.2190 Sym3 28.2996 Sym4 28.2524 Sym5 28.2781
Daub.5 28.2402 Coif1 28.2411 Coif5 28.2554 Fra. 28.2586

Table 2.2. Calculated PSNR values of by different methods for example 2.

Noisy Image Wavelet Diff. eqn Our method
19.99 21.08 28.18 28.2996

moon.png NoisyMoon.png WPmoon.png

2(a). Original Moon Surface 2(b). Noisy Moon Surface 2(c.) Denoised by our method

Example 3. In this example, we took the test image of clock and then we added the
random white Gaussian noise. Further, we applied proposed technique to denoise the
noisy image of clock and calculated the PSNR values, which are tabulated in the tables 3.1
and 3.2, as well as, the original image 3(a), noisy image 3(b) and the denoised image 3(c)
are represented. On applying diffusion equation model we obtained PSNR value 26.0323
and on using only wavelet denoising approach we obtained PSNR value 21.7410. While
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on using proposed method we obtained maximum PSNR value upto 26.9786, which is far
better than other methods.

Table 3.1. Calculated PSNR values of denoised clock image obtained by proposed
model and corresponding wavelets for example 3.

Wavelet PSNR Wavelet PSNR Wavelet PSNR Wavelet PSNR
Haar 26.9786 Daub. 7 26.8998 coif. 3 26.9362 Sym.5 26.9752

Daub. 3 26.9301 Daub. 9 26.8326 coif. 5 26.9104 Bi-orth. 2.2 26.8743
Daub. 5 26.9265 Daub. 45 26.7551 Sym.4 26.9203 Bi-orth. 3.5 26.7663

Table 3.2. Calculated PSNR values by different methods for example 3.

Noisy Image Wavelet Diff. eqn Our method
20.6049 21.7410 26.023 26.9786

clock.png clockNoisy.png ChaarL1.png

3(a). Original Clock image 3(b). Noisy Clock image 3(c). Denoised by our method

Example 4. In this example, we took the test image of Airplane and then we added
the random white Gaussian noise. Further, we applied proposed technique to denoise the
noisy image of Airplane and calculated the PSNR values, which are tabulated in the tables
4.1 and 4.2, as well as, the original image 4(a), noisy image 4(b) and the denoised image
4(c) are represented. On applying diffusion equation model we obtained PSNR value
27.5971 and on using wavelet denoising approach we obtained PSNR value 21.53. While
on using proposed method we obtained maximum PSNR value upto 28.0610, which is far
better than other methods.

Table 4.1 Calculated PSNR values of denoised Airplane image obtained by proposed
model and corresponding wavelets for example 4.

Wavelet PSNR Wavelet PSNR Wavelet PSNR Wavelet PSNR
HaarL2 27.9290 Sym4L1 27.6921 Sym4L2 27.8631 Sym4L3 27.9727
Daub.5 28.0251 Coif1 28.0610 Coif4 27.9879 Fra. 28.0497

11



Table 4.2. Calculated PSNR values by different methods for example 4.

Noisy Image Wavelet Diff. eqn Our method
19.3695 21.53 27.5971 28.0610

air.png airNoisy.png Asym4L3.png

4(a). Original Airplane image 4(b.) Noisy Airplane image 4(c). Denoised by our method

Conclusion

We have applied the diffusion equation and wavelet based model on noisy images
which are contaminated with standard noise to denoise the noisy image. We obtained
the PSNR values which are tabulated in the tables and the corresponding figures are also
given. To show the performance of the proposed method we denoise four test images and
compared the calculated PSNR values with existing methods. In the proposed method, we
obtained the PSNR value upto 31 for Lena image, while on using diffusion equation model
we get the PSNR 26.03. Further, on using wavelet denoising method we get the PSNR
value 23.62 and in the model proposed by Kumar [38] PSNR value is 25.34. This shows
the superiority of our method. In this paper we use Haar, Daubechies, Symlet, Coiflet,
Franklin and Biorthogonal wavelets and decomposed the images upto appropriate level of
decomposition and soft thresholding for denoising.
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