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Abstract- Nowadays, online buying has become a 

worldwide phenomenon. People frequently purchase 

items online, and many of e-commerce sites provide a 

review option for client feedback. People generally make 

purchasing decisions based on customer reviews that are 

already available. Some website owners may employ 

spammers to write false reviews in order to boost product 

sales. Many approaches have been proposed by 

researchers in the past to detect fraudulent reviews. 

However, there is a critical need to identify and analyze 

the best machine learning algorithm to detect fraudulent 

reviews. Therefore, in this study machine learning 

algorithms including support vector machine (SVM), 

Random Forest (RF), Logistic Regression (LR), Multi-

layer perceptron (NN), Long Short-Term Memory 

(LSTM) and Decision Tree (DT) are compared. The 

comparison is done by comparing the results of 

evaluation parameters i.e. Accuracy, Precision, Recall 

and F1-Measure. Results of this study shows that, RF is 

the best algorithms for detecting fake reviews. 

Keywords: Fake Reviews; Machine Learning 

Algorithms; Comparative Analysis; Kaggle dataset of fake 
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I. INTRODUCTION 

Now a days online shopping become the trend in 
world. People usually buy things online and these 
online shopping sites have review option for 
customer feedback. They usually decide to buy or not 
buy product on basis of already available reviews of 
customers. Some sites owners may hire the spammers 
for posting fake reviews to increase their sale of 
product [1]. For example someone want to buy laptop 

and the reviews are very positive but actually laptop 
is damaged so these are fake reviews. There is 
serious need to identify them and detect these fake 
reviews. In past many methods have suggested by 
researchers to detect the fake reviews. These reviews 
are hospitable for creating decisions about standard 
of products and services. Companies and traders use 
suggestions for making a decision for marketing 
structure, performance to services or product, for 
enhancement. Mostly companies hire the spammers 
or group or them for writing the reviews about 
products. These spammers can be professionals or 
non-professionals.  

Automatic spam identification is an essential task, 
yet there is currently a dearth of study in this area. 
Spam on a review is significantly more difficult to 
detect than other sorts of spam, such as online spam 
or email spam. The major reason for this is that 
spammers can easily hide their identities. As a result, 
it is difficult for people to recognize, while email 
spam and web spam, where one can easily establish 
whether the latter is spam or not [1]. 

This problem not only misleads online shoppers 
while purchasing things, but it also tarnishes 
businesses by lowering customer happiness. As a 
result, developing a system that can recognize and 
categories text into bogus (fake) and true (truthful) 
evaluations is critical, as it will aid the online 
community in making informed purchasing decisions 
and quickly assessing consumer feedback. 
Previously, supervised machine learning (ML) and 
lexicon-based algorithms were employed to detect 
fake reviews [2, 3, 4]. To identify fraudulent and 
legitimate reviews submitted on social media 
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platforms, Asghar et al. [2] employed sentiment-
based scoring algorithms. However, we are doing a 
comparative analysis of supervised ML technique, 
namely Random Forest (RF), Support vector machine 
(SVM), Multi-layer perceptron (NN), Logistic 
Regression (LR), Long Short-Term Memory (LSTM) 
and Decision Tree (DT), to detect real and fake 
(spam) text.  

II. LITERATURE REVIEW 

The study on Fake Review Detection focuses on 
ways to make ecommerce review sites more secure 
such that the benefits of continuing to propagate fake 
reviews aren't worth it [5, 6]. Owners of Online 
Social Networks (OSNs) have also turned to their 
internal resources to create procedures for detecting 
and restricting individuals who distribute fraudulent 
information: for example case studies reported by 
Tuenti [7], Flipkart [8], and Facebook [9]. We have 
not yet been able to eradicate the negative impacts of 
lying in review writing after years of work. This is 
due in large part to the lack of a "ground truth" for 
discriminating between honest and dishonest ideas. 
Even human assessors have been proven to routinely 
fail to discern between false and genuine evaluations 
[10]. It is not enough for an evaluator to look at a 
single review in isolation from other reviews of the 
same product to determine whether or not it is 
misleading, which makes review analysis a time-
consuming and difficult process [6]. Fake review 
detection becoming increasingly difficult due to the 
progress of spamming tactics, the participation of 
freelancers in writing fake reviews [11], and the 
collaboration of spammers in groups [12]. This 
necessitates a full examination of regulatory 
advancements and machine learning algorithms used 
to combat the impact of review spamming. 

III. METHODOLOGY 

In this research, we have applied systematic 
approach. First of all, a dataset having fake and 
truthful review has been gathered. Then different 
classification algorithms are applied on it. Figure 1, 
exhibits the methodology which is employed to 
conduct this research.  

 

Figure 1: Methodology to apply ML algorithms 

A. Dataset 

A kaggle dataset is used in this study. The dataset 
is available on a sub-link of 
(https://www.kaggle.com/general/243411). It 
provided me with a good measure of attributes to 
work with, so we chose to give it a go. In includes, 
Verified Purchase, Product Title, Review Title, 
Rating, Review Text, and its class that is fake or real. 
We explored dataset to know the trends in database. 
The dataset have 10 attributed / features and have 
21000 instances. Dataset is balanced as it has 10500 
fake reviews and the same are real reviews.  The data 
was then converted into numbers as the most of 
machine learning algorithms only works on integers. 

B. Classification Algorithms 

Various supervised learning classification 
algorithms including LR, DT, RF, NN and SVM are 
applied to detect the fake reviews. 

● Logistic Regression: When the dependent 

variable is dichotomous, this model is 

utilised (binary). The results of the study 

gleaned from this model are typically 

regarded as predictive. Logistic regression is 

used to examine the connection between a 

nominal, intervals, ordinal, or ration-level 

independent variable and a binary dependent 

variable [13].  

● Decision Tree: One of the most often used 

approaches for digital mapping is decision 

trees. This approach allows the researcher to 

carry out the mapping operation utilising a 

regression tree. This approach is predictive 

in nature. This method's main formula is to 

simply break up datasets into discrete blocks 

of a tree, which improves data growth in an 

efficient and accurate manner [14]. 
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● Random Forest: The random forest, as the 

name suggests, is made up of a large number 

of individual decision trees that work 

together as an ensemble. Each individual 

tree in the random forest produces a class 

prediction, and the class with the most votes 

becomes the prediction of our model. The 

wisdom of crowds is a simple yet powerful 

principle at the heart of random forest [15].  

● Support Vector Machine: Catanzaro created 

this supervised learning model. Data is 

utilised in SVM for regression analysis and 

categorization. It is the most resilient 

prediction model and is built on a statistical 

learning framework. It categorises the data 

into one or more groups. It categorises all 

new data that is provided in a previously 

specified category. 

● Multilayer Perceptron (NN): Multilayer 

Perceptron is a Neural Network technique 

that learns linear and non-linear data 

correlations [16]. In the realm of deep 

learning, a multi-layered perceptron (MLP) 

is one of the most prevalent neural network 

models. 

● LTSM: Learning and Teaching Support 

Material (LTSM) is a broad word that refers 

to a wide range of resources that instructors 

and students utilize in the context of 

teaching and learning [17].

IV. RESULTS AND ANALYSIS 

In this section, we have discussed and compared the 

results of each machine learning algorithm. Four 

different evaluation parameters were used for the 

comparison of algorithms which are precision, recall, 

accuracy and F1-Score. 

A. Logistic Regression 

LR exhibits the high accuracy and recall for dataset 

even though dataset was divided in such a way that 

test is 40% and 60% is the training set. Figure 2 

exhibits the outcomes for LR. It exhibits that LR has 

achieved 79% of accuracy, 76.38% of precision, 

79.74% of F1 score and 83.46% recall. 

  

Figure 2: Results by using LR 

B. Decision Tree 

DT achieved an accuracy of 74.67%, 74.09% of 

precision, 75.15% of recall and 74.621% of F1 score. 

The results of decision are illustrated by figure 3. 

 

Figure 3: Results by using decision tree 

 

C. Random Forest 

The performance of Random forest is very well for 

detection of fake reviews. If shows 83.27% of 

accuracy, 85.64% of precision, 79.57% of recall and 

82.49% of F1 score. Figure 4 exhibits the results of 

RF. 
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Figure 4: Results by using Random Forest classifier 

 

D. Multilayer Perceptron Neural Networks (NN) 

NN has not performed well for this problem. It may 

be due to the size of dataset. We have used Keras 

library for NN model. Relu is used as activation 

function. 12 hidden layers and 15 epochs are used as 

initial parameters. NN shows 50% of accuracy and 

25% of F1 score. Figure 5 exhibits the results of 

MPNN. 

 

Figure 5: Results by MPNN

E. Support Vector Machines (SVM) 

SVM has also shown good results when applied to a 

fictitious review dataset. However, when compared 

to the other classifiers utilized in this study, SVM 

performs poorly. Figure 5 depicts the SVM findings. 

SVM attained 64.89% of accuracy, 61.20% of 

precision, 79.52% of recall and 69.17% of F1 score.  

 

Figure 6: Results by using SVM 

F. LSTM 

LSTM has also performed like multilayer perceptron 

neural network. It has also achieved a test accuracy 

of 50%. However, its training accuracy is 75.60% in 

20th epochs. Figures show its training and testing 

accuracy. 

LSTM was just not trained on enough epochs. 26,000 

samples need more than 50 epochs. Another reason 

behind the low accuracy of LSTM network is that it 

is too simple and basic/default functions were used in 

it.  

The accuracy can be improved by adding more 

LSTM layers and increase no of epochs or batch size. 

Further I can add regularizes and/or dropout to 

decrease the learning capacity of LSTM model.  

 

 

Figure 7: Results by LSTM
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V. COMPARATIVE ANALYSIS OF RESULTS BY 

ML ALGORITHMS 

All of the ML algorithms utilized in this investigation 

produced acceptable results. As a result, a 

comparison of all evaluation parameters attained by 

ML algorithms was performed. Table 1 provides a 

quick comparison of all algorithms in terms of 

assessment parameters.

 

Table 1: Comparative analysis against evaluation parameters 

 SVM Decision Tree 
Logistic 

Regression 

Random Forest  

(RF) 

NN LSTM 

Accuracy 0.648 0.749 0.79 0.831 0.50 0.50 

F1-Score 0.691 0.748 0.797 0.824 0.34 0.34 

Precision 0.6120 0.744 0.763 0.854 0.25 0.25 

Recall 0.795 0.752 0.834 0.795 0.50 0.50 

Table 1 shows the results in terms of F1-score, 

precision, accuracy, and recall, against each classifier 

used in this research. It indicates that when 

classification algorithms are used, Random Forest 

outperforms all the algorithms. However, Logistic 

Regression have a high recall then random forest. RF 

shows an accuracy of 83.16%. The second best 

classifier of fake review detection is LR with 79% of 

accuracy. In terms of recall the second best classifier 

for our dataset is RF which shows 79.5% which is 

lesser then LR i.e. 83.4%. Support Vector Machine 

shows 64.8% of accuracy, 79.5% recall, 61.20% of 

precision and 69.1% of F1-score. The least but not 

the worst results against every parameter was shown 

by neural networks i.e. LSTM and multispectral. 

Both have achieved and accuracy of 50%.  Figure 8, 

9, 10 and 11 shows the comparative analysis of all 

the evaluation parameters for all ML algorithms in 

graphical form

.  
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Figure 8: Accuracy comparison of ML algorithms  Figure 9: Precision comparison of ML algorithms

 

Figure 10: Recall comparison of ML algorithms 

 

Figure 11: F1_Score comparison of ML algorithms 

VI. DISCUSSION 

The findings of this study shows that machine 

learning algorithms can successfully address the issue 

of fake review identification. All of the algorithms 

used, produce results that are more than excellent. As 

RF is a mixture of trees, it produces the greatest 

results. This is due to the nature and design of the 

algorithms. A single decision tree has an accuracy of 

74.9%, whereas a combination of trees, such as RF, 

has an accuracy of 83.1%. 

NN is well-suited to classification problems, and it 

performs best on two-class datasets. NN, on the other 

hand, did not fare well in this research. It has an 

accuracy of just 50%, which is much behind that of 

RF. The key reason for the poor performance of NNs 

is the large amount of data. For tiny datasets, NNs do 

not perform well. Another possible explanation is 

that we have converted some features into numbers, 

which may be the source of some noise. 
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