
ISSN: 0974-8571 Vol.14 No. 1 June, 2022

International Journal of Computational Intelligence in Control

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

A Framework for Multilingual Sentiments

Extraction and Analysis of Online Review and

Comments
Ihsanullah Khan1 Aurangzeb Khan,1,2, Mazliham Mohd Su’ud2,

Muhammad Mansoor Alam3, Wahab Khan1, Fazli Subhan4

1Department of Computer Science, University of Science and Technology, Bannu, 28100, Pakistan.
ihsanullah1974@gmail.com , Aurangzeb.ustb@gamil.com , wahabshri@gmail.com

2Multimedia University Kuala lumpur, 50050, Malaysia

mazliham@mmu.edu.my
3Riphah International University, Rawalpindi, 74400, Pakistan

m.mansoor@ripah.edu.pk
4National University of Modern Languages Islamabad,4400, Pakistan

fsubhan@numl.edu.pk

Correspondence should be addressed to Aurangzeb Khan; Aurangzeb.saadatkhan@mmu.edu.my

Date of Submission: 15th March 2022 Revised: 30th April 2022 Accepted: 28th May 2022

How to Cite: Ihsan et al, (2022). A Framework for Multilingual Sentiments Extraction and Analysis of Online

Review and Comments

Abstract - Extracting opinions from resource poor

languages is difficult task. Most of the work done in

opinion mining in English language only, however

research is converting to extract opinions from local

languages using various sentiment techniques.

Extracting opinions from Roman Urdu is another

challenging task because this type of languages has no

proper standards and resources. This research starts

from collecting roman Urdu sentences, pre-processing

the data by removing noise and other additions,

normalizing the text, feature extraction by using one hot

coding, word embedding, count vector and TF-IDF

techniques. More than 2500 sentences of Roman Urdu

collected and converted into 5 folds each one consists of

500 sentiments either positive, negative, or neutral.

Various sentiment algorithm like KNN (K-nearest

neighbour), SVM (Support vector machine), Logistic

regression, Naive Bayes, Random Forest and Deep

learning are applied with four feature extraction

techniques. Results showed that deep learning technique

outperform with TF-IDF with accuracy of 82%.and

precision of 81%.

Index Terms - Sentiment analysis, Local Languages,

Lexicon, Review

INTRODUCTION

Internet is a resourceful place with respect to sentiment

information. From a user’s perspective, people are able to

post their own content through various social media, such as

forums, micro-blogs or online social networking sites.

Through this data, companies can determine their outcome

and can make better decisions to improve their products. It

helps to manage and modifying their services and Products

according to clients need in order to obtain maximum

benefits. The way to analysis any text, to extract
information, to process natural languages, all are used for

finding mood or feeling of writer either it is positive,

negative or neutral.

Indian sub-continent is one of the significant markets

for all types of products. People of this region react to any

online product or event using Roman Urdu, Roman Hindi or

in pure Urdu and pure Hindi about any product or event.

People expresses their opinions in short length informal

text without proper setting of grammar and spelling.

Polarity is assigned to each Sentence as positive, negative,

or neutral depending upon the opinion words present in it.

Previous work showed that NLP approaches performed
poorly on short and multilingual text as compared to formal

well-organized text written in longer documents. Examples

197

mailto:ihsanullah1974@gmail.com
mailto:Aurangzeb.ustb@gamil.com
mailto:wahabshri@gmail.com
mailto:mazliham@mmu.edu.my
mailto:m.mansoor@ripah.edu.pk
mailto:Aurangzeb.saadatkhan@mmu.edu.my

A Framework for Multilingual Sentiments Extraction and Analysis of Online Review and Comments

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

of sentence written in Roman Urdu to express someone

feelings: “Nokia mobile main koi khaas feature nai hy” In

this sentence, the word "nai” used for negative meanings in

the English language; therefore, this sentence polarity is

considered as negative. Similarly, “Mera HP behtareen
laptop hy” Here the word "behtareen" is used for the

English word "best "or "very good"; therefore, this sentence

is considered as Positive.

RELATED WORK

Faiza et al. [1] in their research discussed the sentence level

sentiment analysis of Urdu Noun by using the lexical based

approach for development of Urdu noun sentiment analyzer.

Arslan et al. [2] in their research presented a modal of
Roman Urdu sentences with deep neural network. A novel

self-attention bidirectional LSTM (SA-Bi LSTM) model

developed which work with Roman Urdu sentences. Results

showed that SA-Bi LSTM achieved high accuracy of 68.4%

and 69.3% for pre-processed and normalized data sets

respectively.

Research related to sentiment analysis of other than English

language converting to deep learning techniques as results

obtained from this technique are much better than other

sentiment analysis techniques [3]. In order to categorize

sentences in sentiment analysis different algorithms and
techniques are in used but convolutional neural network

showed very impressive results [4-8]. K. Mehmood

collected almost 800 sentences of Roma Urdu from various

sources and applied five number of algorithms including

Naïve Bayes, logistic regression, support vector machine

(SVM), K Nearest neighbour (KNN) and decision tree with

three feature extractions unigram, bigram and combination

of unigram and bigram. Results showed that naïve Bayes

outperformed with unigram as feature extraction technique

with accuracy of 63.27 % [9]. Major part of sentiment

analysis work has done in English language in English

speaking countries and china. A very limited work has been
done in Urdu and Roman Urdu Sentiment [10-16].

Sharf and Rahman performed N.L.P. techniques on Roman

Urdu dataset which is already part of their previous work.

N.L.P. on Roman Urdu started by collecting data and

creating a whole dataset in raw form. Second step is to clean

raw data and normalize it according to standards by

performing P.O.S. tagging and tokenization to identify the

presence or absence of discourse element [17]. Sharf and

Mansoor proposed baseline classifiers on O.P. in Roman

Urdu. Extracting opinions from online web documents in

roman Urdu is crucial work. Several machine learning
algorithms, link analyses methods and score based methods

used to extract opinions from roman Urdu literature. Dataset

is consisted on twenty-two thousand records of roman Urdu

on which positive opinions are 14500 and negative opinions

are 4900 and 13000 neutral opinions. Satisfactory results

retrieved from roman Urdu datasets [18]. A lot of work has

been done in English language reviews but getting

sentiment from Hindi, Urdu, Arabic languages is hard job to

perform. Performed different Machine learning and deep

learning classifiers and neural network using WEKA

platform to classify positive and negative reviews on 80%

training and 20% testing dataset of 1000 positive and 1000

negative reviews. Naïve Bayes outperformed from all
Machine learning classifier and deep learning neural

networks [19]. The popularity of Urdu websites increased

because people prefer Urdu websites to read and share their

feeling in their own mother language easily and

comfortably. Sentiment analyzer which used to analyses

sentiment in English language is not useful for detecting

sentiments in roman Urdu, due to script wise and

grammatical differences. Pre-processing normalization,

segmentation, POS tagging, phrase checking. Role tagging

lexicon computer techniques used to classify sentiments in

roman Urdu [20]. The more the size of the dataset the higher

the performance. Data is pouring from every field of daily
life, e.g. medical, educational and engineering. Sentiment

analysis falls under the category of linguistic computational

analysis. Lexicon based approach works on polarity level

scoring to detect positive and negative sentiments. Human

interaction is necessary in performing lexicon-based

approach to extract emotions or sentiment [21]. Bose et al

proposed a system in which people cast their personal

reviews on e-commerce platform after buying any product

which tremendously affected product's influence in more

unique buyers. Results are pretty satisfactory as the most

polarity for positive, joy and trust [22]. Chen and Sun
presented sentiment analysis within amazon review data.

Which give proper analysis of consumer behavior using

deep neural network LSTM-RNN fair accuracy achieved.

Analysis of textual content comes under the category of

N.L.P. Positive or negative opinions are extracted from text

streams to evaluate accuracy. Sentiment analysis is most

trending topic in the category of customer review or

comment. Customer reviews are always come under

multiple category classification. Sentiment analysis is useful

for other business values in industry e.g. fashion trends.

There proposed model does not over fit and give satisfactory
results [23]. Million and billions of opinions now generated

in a day’s regarding any product. Opinions are now rapidly

increasing in multi-language other than English.

Multilingual statement’s grammatical structure is missing

which makes it hard to understand. Survey consists of

various techniques. Digital reviews play an important role to

satisfied consumers on different events, occasions and on

reviews. Different architecture and frameworks discussed in

this review. Smaller scale of blogging websites influence

path and also twitter trends [24].

METHODOLOGY

This research consists of 07 stages in which each stage is

further divided into sub parts. Fig.1 show the clear picture

of hierarchy of research which start with data collection of

Roman Urdu text. Second phase start with pre-processing

which involved removing of stop word, irrelevant data, hash

198

Ihsanullah Khan et.al.

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

tags, and so on. Feature extraction process performed in

next step which includes Word embedding, Count vector,

One Hot encoding and TF-IDF. In next phase feature

extracted data is divided into training data and test data.

75% of total data collection is used for training purpose and
25% used for testing purpose. In 2nd last step, different

classification Algorithms like Deep neural network, Support

vector machine, K-nearest neighbor, Naïve base and

Logistic regression applied on data. Results obtained are

evaluated and compared accuracy, Precision, Recall and F1

score of each classification technique.

Data collection

Data preprocessing

Feature Extraction

Train/Test Split

Classification Algorithm

Evaluiation matrix

Results

FIGURE 1

HIERARCHY OF PROPOSED RESEARCH

3.1 Data Collection

 In sentiment analysis collection of related data is

one of the most important and crucial tasks. Only collecting

the domain specific data is not enough for obtaining best

results but it also depends upon quality of data sets as well

how data is labeled. Many Machine learning models learn

from the trained data, automatic predictions are likely to

mirror the human disagreement identified during annotation.

Hence a proper guideline is required to annotate data, is also
of utmost importance [25-27]. Following are different way

through which data is being collected for sentiment analysis:

• By using Web scrapers that crawl up web data and

collect specified information. It extracts data from webpage

(HTML document).

• Using a Web browser plugin with which users can

extract information from any public website using HTML

and export the data to the desired file format.

• Using existing open-source repositories of data that

are cleaned and compiled which can be used directly.

Example: Amazon product review, Twitter tweets on

Kaggle, YouTube, Facebook, Daraz, and from other

websites.

Since this research based on the sentence level sentiments of

roman Urdu related to product review and its targeted

variables, therefore, it is selected approximately 2500
sentences related to cameras, laptop and mobile phones.

Target variables consist of 3 types. These are either positive,

neutral or Negative.

3.2 Data Pre-processing

Pre-processing of data or text means to convert data or text

into a form that is predictable and analyzable for required

task. Task mean domain or approach or combinations of

approaches. Hence task is the combination of approach and

domain.

Task = approach + domain

It is an important that pre-processing techniques applied on

one task is not directly proportional to another task because
every task has its own requirements. Text is preprocess in

many ways especially when there is a case of resource poor

languages. Different techniques are used like Lowercasing,

Stemming. Lemmatization. Stop word Removal and Noise

Removal.

3.3 Feature Extraction

It is a procedure which dimensionally reduce the data set

into manageable groups which is further used for

processing. Feature extracting techniques used in this

research are:

3.3.1 One- Hot Encoding
Categorical data are variables that contain tag values instead

of numerical values. The number of possible values is

usually limited to a fixed set. Categorical variables are often

called nominal. E.g. A color variable with the values RGB,

A place variable with the values 1, 2 & 3. Here each value

denotes a different category. Some categories may have a

natural association to each other, for instance a natural

ordering. The place variable above have a natural ordering

of values. Some approaches can work directly with

categorical data but most of the machine learning techniques

cannot work directly on tag data. They need all the input

and output variables in numeric form. Overall, it is mostly a
limitation on the effectual implementation of machine

learning techniques. It means that categorical data should be

transformed into a digital format. Now the question is how

will convert the categorical data to numeric format? Here

are two steps to perform this data transformation i-e label

encoding and one hot encoding. In the first step, each

category value is allocated an integer value. For example,

red is 1, green is 2, and blue is 3. This is called a label/

integer encoding. For some variable quantities, this may be

adequate but for some categorical variables where no such

ordinal association presents, the label encoding is not
sufficient. In fact, by using this encoding and letting the

model to assume a natural classification among categories

can affect in poor performance or unexpected results. So, in

this scenario, a unique hot encoding can be applied to the

integer representation. It is where the integer encoded

variable is removed and a new binary variable is added for

199

A Framework for Multilingual Sentiments Extraction and Analysis of Online Review and Comments

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

each unique integer value. In the example of the variable

color, there are 3 classes and therefore 3 binary variable

quantities are needed. The value "1" is placed in the binary

variable for the color and the value "0" for the other colors.

Major part of pre-processing consists of something called
encoding. It implies that representing each piece of

information in a way that the computer can get it, hence the

name encodes, which literally means “convert to [computer]

code”. There’s many different ways of encoding such as

Label encoding and One Hot Encoding. Label encoding is

instinctive and simple to understand.

Here is an example of categorical data, like cats and dogs.

When look towards the name of the label encoding, it

showed that label is just a category (i.e. cat or dog), and

encode just means giving them a number to represent that

category (1 for cat and 2 for dog). Providing a number to

each category make the computer intelligent and computer
become able to know the numbers as computer perform best

with numbers.

3.3.2 Word Embedding

Word embedding is a kind of word representation that lets

words with same meaning to have a same representation. It

is a communal term for models that learned to map a set of

words or expressions in a vocabulary to vectors of

numerical values. It is all about enhancing the ability of

networks to learn from text data. By representing that data

as lower dimensional vectors. These vectors are called

embedding vectors. This technique is used to reduce the
dimensionality of text data, but these procedures can also

learn some interesting characteristics about words in a

vocabulary.

A word embedding is an erudite representation for text

where words that have the same meaning have a same

representation. It is an approach for representing words and

documents that may be considered one of the key

innovations of deep learning on stimulating natural language

processing difficulties.

Word embedding is in fact a class of techniques where

individual words are represented as real-valued vectors in a
predefined vector space. Each word is mapped to one vector

and the vector values are learned in a way that resembles a

neural network, and hence the technique is often lumped

into the field of deep learning.

Key to the approach is the idea of using a dense scattered

representation for each word. Each word is represented by a

real-valued vector, often tens or hundreds of dimensions. It

is analogized to the millions of dimensions vital for sparse

word representations, such as a one-hot encoding.

There are different methods to learn word embedding from

text but three main methods namely embedding layer,

Word2Vec, and GloVe can be used to learn a word
embedding from text data. Word embedding methods works

on a real-valued vector representation for a predefined fixed

sized words from a quantity of text, and the learning process

is either shared with the neural network model on some

tasks, such as document classification, or an unsupervised

process, using document statistics.

3.3.3 Term Frequency — Inverse Document Frequency (TF-

IDF)

Word counts are very basic and one problem with it is that
some words like “a” or “the” will seem many times and

their bulky counts will not be very expressive in the

encoded vectors. So, substitute is to compute word

frequencies by the most popular technique called TF-IDF

abbreviated as Term Frequency – Inverse Document

Frequency, and it is ideal for problems with large text data

files.

Term Frequency: It tells how frequently a given word

appears within a document.

Inverse Document Frequency: It rationalizes the words that

appear a lot across documents.

TF-IDF are word frequency results that highlight words
which are more stimulating, e.g. common in a document but

not across documents. It is another most communal tool in

natural language processing for converting a list of text data

to a matrix representation. Each document is transformed to

a row of the TF-IDF matrix and each word is kept in a

column vector. The number of columns is a restriction

which must be stated, a vocabulary of the topmost 5-10k

most communal words is often adequate. TF-IDF are sparse

vectors where the number of non-zero values in the vector is

equal to the number of unique words in the document. So, if

a document contains the word ‘garden then the garden
column will have a one in place of a zero for that document

tuple.

The Tf-Idf determines the most communal words in the

quantity and keeps them to the vocabulary. A document is

altered by enumerating the number of times each word in

the vocabulary appears in the text. Thus, a Tf-idf matrix will

have the shape [Number of documents,

Size_of_vocabulary]. The weight of each word is

normalized by the number of times it appears in the

quantity, so a word that seems only 10% of all documents

will be assigned a higher value then one which seems 90%
of documents.

3.3.4 Count Vector

Text data needs more preparation before using it for

prognostic modeling. The text should be analyzed to

eliminate words, called tokenization. Then the words want

to be encoded as integers or decimal point values for use as

input to a machine learning procedure, called feature

extraction or vectorization. The scikit-learn library bids

easy-to-use tools to perform both tokenization and

vectorization of text data. Count Vectorizer is a prodigious

tool provided by the scikit-learn library in Python. It is used

to convert a specified text into a vector based on the
occurrence of each word that occurs in the whole text. It is

obliging when there are numerous such texts, and to alter

each word in each text into vectors for further text analysis.

Let consider a few example texts from a document as a list

element:

200

Ihsanullah Khan et.al.

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

document = [“One Nerd supports Two Nerds”, “Two Nerds

support Four Nerds”, “Each Nerd supports many other

Nerds at NerdsforNerds.”]

Count Vectorizer generates a matrix in which each unique

word is represented by a column of the matrix, and each text
example from the document is a row in the matrix.

PROPOSED MODEL USING DEEP NEURAL NETWORK

This deep neural network consists of 4 hidden layer and an

output layer. Layer1 consists of 256 units, layer2 consist of

128 units, layer3 consist of 64 units and layer4 consists of

32 units. Output layer consists of 6 units and activation

function on hidden layers. There is ReLu and activation
function on the Output layer. There is SoftMax. Dropout on

layer1 and 0.2, 0.3 on layer2, 0.5 on layer3 and 0.6 on

layer4. There is Adam as an optimizer,

Sparse_categorical_cross entropy as loss function, and

Accuracy as Metrix. All the details are given in Table 1.

Table 1:Deep Neural Network Layer Architecture

Layers L1 L2 L3 L4 Output

Units 256 128 64 32 6

Activation

function

Relu Relu Relu Relu SoftMax

Dropout 0.2 0.3 0.5 0.6

Optimizer Adam

Loss

function

Sparse_categorical_crossentropy

Metrix Accuracy

4.1 Evaluation Matrix

To evaluate the performance of models Four -parameter is

used 1) overall accuracy (2) Precision (3) Recall and (4) F1

score. The main goal of this research is to achieve highest

accuracy, along with stable value of Precision, Recall, and

F1 Score. Accuracy, Precision, Recall, and F1 score are

formulated as:

Accuracy= (TP+TN)/(TP+TN+FP+FN)

Where TP= True Positive TN=True Negative FP= False

Positive, FN=False Negative

Precision= TP/(TP+FP)
Recall=TP/(TP+FN)

F1 Score =(2*(Recall* Precision))/((Recall + Precision))

RESULTS

I. Results using Count Vector feature extraction technique

By using the Deep learning with Count Vector as feature

extraction and using pre-processing result showed a total of

0.82 accuracy, 0.81 of precision, 0.82 of recall, and 0.81 of

F1 score. It used 5 cross validation using deep learning as

classification model. In first fold of validation, there is 0.93

of accuracy, 0.91 of precision, 0.93 of recall, and 0.92 of F1

score. There is a training loss of 0.0014, training accuracy of

0.9997, and Validation loss of 0.6780 validation Accuracy

of 0.9330. The graphs of both accuracy and loss are given in

Fig (2, 3). In Second fold of validation, there is 0.96 of
accuracy, 0.94 of precision, 0.96 of recall, and 0.95 of F1

score. There is a training loss of 0.0082, training accuracy of

0.9983 and Validation loss of 0.3350 - validation Accuracy

of 0.9600. The graphs of both accuracy and loss are given in

Fig (4, 5). In third fold of validation, there is 0.83 of

accuracy, 0.83 of precision, 0.83 of recall, and 0.83 of F1

score. There is a training loss of 0.0737, training accuracy of

0.9757 and Validation loss of 0.8261 validation Accuracy of

0.8340. The graphs of both accuracy and loss are given in

Fig (6, 7). In fourth fold of validation, there is 0.65 of

accuracy, 0.65 of precision, 0.65 of recall, and 0.65 of F1

score. There is a training loss of 0.0548, training accuracy of
0.9807 and Validation loss 1.8106 of validation Accuracy of

0.6520. The graphs of both accuracy and loss are given in

Fig (8, 9). In fifth fold of validation there is 0.60 of

accuracy, 0.60 of precision, 0.60 of recall, and 0.60 of F1

score. There is a training loss of 0.1192, training accuracy of

0.9600 and Validation loss of 2.3056 validation Accuracy of

0.6030. The graphs of both accuracy and loss are given in

Fig (10, 11). Every fold accuracy, precision, Recall and F1

Score are mentioned in below Table 2.

Table 2:Results using Count Vector feature extraction

technique
FOLDS ACCURACY PRECISION RECALL F1 SCORE

Fold1 0.93 0.91 0.93 0.92

Fold2 0.96 0.94 0.96 0.95

Fold3 0.83 0.83 0.83 0.83

Fold4 0.65 0.65 0.65 0.65

Fold5 0.60 0.60 0.60 0.60

Figure 2:1st fold training and validation accuracy graph

using count vector

201

A Framework for Multilingual Sentiments Extraction and Analysis of Online Review and Comments

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

Figure 3:1st fold training and validation loss graph using

count vector

Figure 4:2nd fold training and validation accuracy graph

using count vector

Figure 5:2nd fold training and validation loss graph using

count vector

Figure 6:3rd fold training and validation Accuracy graph

using count vector

Figure 7:4rd fold training and validation loss graph using

count vector

Figure 8:5th fold training and validation Accuracy graph

using count vector

202

Ihsanullah Khan et.al.

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

Figure 9:6th fold training and validation loss graph using

count vector

Figure 10:7th fold training and validation Accuracy graph

using count vector

Figure 11:5th fold training and validation loss

II. Results using One Hot Encoder

By using the Deep learning with one Hot Encoder as feature

extraction and using pre-processing There is achieved a total

of 0.68 accuracy, 0.67 of precision, 0.68 of recall, 0.61 of
F1 score. There is 5 cross validation using deep learning as

classification model. In first fold of validation, there is 0.94

of accuracy, 0.88 of precision, 0.94 of recall, and 0.91 of F1

score. There is a training loss of 0.0021, training accuracy of

0.9997 and Validation loss of 0.2763 validation Accuracy of

0. 9400.In Second fold of validation, there is 0.95 of

accuracy, 0.91 of precision, 0.95 of recall, and 0.93 of F1
score. There is a training loss of 0.0031, training accuracy of

1.0000 and Validation loss of 0.2445 validation Accuracy of

0. 9550.In third fold of validation, there is 0.59 of accuracy,

0.62 of precision, and 0.59 of recall, and 0.50 of F1 score.

There is a training loss of 0.0026, training accuracy of

0.9997 and Validation loss of 0.7658 validation Accuracy of

0. 5930.In fourth fold of validation, there is 0.54 of

accuracy, 0.41 of precision, 0.54 of recall, and 0.40 of F1

score. There is a training loss of 0.0037, training accuracy of

1.0000 and Validation loss 1.0297 of validation Accuracy of

0.5430. In fifth fold of validation, there is 0.36 of accuracy,

0.54 of precision, 0.36 of recall, and 0.30 of F1 score. There
is a training loss of 0.0028, training accuracy of 1.0000 and

Validation loss of 1.1482 validation Accuracy of 0.3560.

Every fold accuracy, precision, Recall, and F1 Score are

mentioned in below Table 3.

Table 3:Results using One Hot Encoder

Fold
validation

Accuracy Precision Recall
F1
score

Fold1 0.94 0.88 0.94 0.91

Fold2 0.95 0.91 0.95 0.93

Fold3 0.59 0.62 0.59 0.50

Fold4 0.54 0.41 0.54 0.40

Fold5 0.36 0.54 0.36 0.30

Total 0.68 0.67 0.68 0.61

III. Results using TF-IDF feature extraction technique

By using Deep learning with TF-IDF as a feature extraction

and using pre-processing There is achieved a total of 0.82

accuracy, 0.81 of precision, 0.82 of recall, 0.81 of F1 score.

There is 5 cross validation using deep learning as

classification model. In first fold of validation, there is 0.94

of accuracy, 0.93 of precision, 0.94 of recall, and 0.94 of F1

score. There is a training loss of 0.0014, training accuracy of

0.9997 and Validation loss of 0.2600 validation Accuracy of
0.9430. In Second fold of validation, there is 0.96 of

accuracy, 0.96 of precision, 0.96 of recall, 0.94 of F1 score.

There is a training loss of 0.0003, training accuracy of

1.0000 and Validation loss of 0.2111 validation Accuracy of

0.9600. In third fold of validation, there is 0.83 of accuracy,

0.83 of precision, 0.83 of recall, and 0.83 of F1 score. There

is a training loss of 0.0045, training accuracy of 0.9990 and

Validation loss of 0.6147 validation Accuracy of 0.8340. In

fourth fold of validation, there is 0.73 of accuracy, 0.72 of

precision, 0.73 of recall, and 0.72 of F1 score. There is a

training loss of 0.0028, training accuracy of 1.0000 and

203

A Framework for Multilingual Sentiments Extraction and Analysis of Online Review and Comments

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

Validation loss 0.8976 of validation Accuracy of 0.7250. In

fifth fold of validation, there is 0.62 of accuracy, 0.63 of

precision, 0.62 of recall, and 0.62 of F1 score. There is a

training loss of 0.0031, training accuracy of 1.0000 and

Validation loss of 1.2767 validation Accuracy of 0.6180.
Every fold accuracy, precision, Recall and F1 Score are

mentioned in below table 4.

Table 4:Results using TF-IDF feature extraction

technique

Fold
validation

Accuracy Precision Recall F1
score

Fold1 0.94 0.88 0.94 0.91

Fold2 0.95 0.91 0.95 0.93
Fold3 0.59 0.62 0.59 0.50

Fold4 0.54 0.41 0.54 0.40

Fold5 0.36 0.54 0.36 0.30

Total 0.68 0.67 0.68 0.61

IV. Results using Word Embedding feature extraction

technique

By using the Deep learning with Word Embedding as
feature extraction and using pre-processing There is

achieved a total of 0.82 accuracy, 0.81 of precision, 0.82 of

recall, 0.81 of F1 score. There is 5 cross validation using

deep learning as classification model. In first fold of

validation, there is 0.93 of accuracy, 0.91 of precision, 0.93

of recall, and 0.92 of F1 score. There is a training loss of

0.0014, training accuracy of 0.9997, and Validation loss of

0.6780 validation Accuracy of 0. 9330.In Second fold of

validation, there is 0.96 of accuracy, 0.94 of precision, 0.96

of recall, and 0.95 of F1 score. There is a training loss of

0.0082, training accuracy of 0.9983 and Validation loss of
0.3350 - validation Accuracy of 0. 9600.In third fold of

validation, there is 0.83 of accuracy, 0.83 of precision, 0.83

of recall, and 0.83 of F1 score. There is a training loss of

0.0737, training accuracy of 0.9757 and Validation loss of

0.8261 validation Accuracy of 0.8340. In fourth fold of

validation, there is 0.65 of accuracy, 0.65 of precision, 0.65

of recall, and 0.65 of F1 score. There is a training loss of

0.0548, training accuracy of 0.9807 and Validation loss

1.8106 of validation Accuracy of 0.6520. In fifth fold of

validation, there is 0.60 of accuracy, 0.60 of precision, 0.60

of recall, and 0.60 of F1 score. There is a training loss of

0.1192, training accuracy of 0.9600 and Validation loss of
2.3056 validation Accuracy of 0.6030. Every fold accuracy,

precision, Recall and F1 Score are mentioned in below

Table 5:

Table 5:Results using Word Embedding feature

extraction technique

Folds Accuracy Precision Recall F1 Score

Fold1 0.93 0.91 0.93 0.92

Fold2 0.96 0.94 0.96 0.95

Fold3 0.83 0.83 0.83 0.83

Fold4 0.65 0.65 0.65 0.65

Fold5 0.60 0.60 0.60 0.60

Total 0.79 0.79 0.79 0.79

V.Comparison of Different Classification models using

Count Vector as feature extraction

As we discussed above that we implemented different

machine learning and deep learning models using different

feature extraction techniques and pre-processing technique

to achieve better results. By using same pre-processing same

feature extraction model (Count Vector) but by using

different classification model we achieved the following

results. By using stop word removal as pre-processing,

count vector as feature extraction and KNN (K-nearest

neighbour) as classification model we achieved 0.47 of
Accuracy , 0.54 of precision, 0.47 of recall and 0.38 of

F1score. By using stop word removal as pre-processing,

count vector as feature extraction and SVM (Support vector

machine) as classification model we achieved 0.64 of

Accuracy, 0.65 of precision, 0.64 of recall and 0.64 of

F1score. By using stop word removal as pre-processing,

count vector as feature extraction and Logistic regression as

classification model we achieved 0.65 of Accuracy, 0.66 of

precision, 0.65 of recall and 0.65 of F1score. By using stop

word removal as pre-processing, count vector as feature

extraction and SVM (Support vector machine) as

classification model we achieved 0.64 of Accuracy, 0.65 of
precision, 0.64 of recall and 0.64 of F1score. By using stop

word removal as pre-processing, count vector as feature

extraction and SVM (Support vector machine) as

classification model we achieved 0.64 of Accuracy, 0.65 of

precision, 0.64 of recall and 0.64 of F1score.By using stop

word removal as pre-processing, count vector as feature

extraction and Deep learning as classification model we

achieved 0.79 of Accuracy , 0.79 of precision, 0.79 of recall

and 0.79 of F1score.

Table 6: Results Comparison using count vector
Model Accuracy Precision Recall F1Score

KNN(K-nearest

neighbor)
0.47 0.54 0.47 0.38

204

Ihsanullah Khan et.al.

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

0.47

0.64 0.65

0.48

0.63

0.79

0.54

0.65 0.66

0.55

0.64

0.79

0.47

0.64

0.65

0.48

0.63

0.79

0.38

0.64 0.65

0.44

0.62

0.79

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Comparison using countvector

Accuracy Precision Recall F1Score

0.48

0.65

0.66

0.5

0.64

0.79

0.55

0.66

0.67

0.58

0.65

0.79

0.48

0.65

0.66

0.5

0.64

0.79

0.44

0.64

0.66

0.54

0.64

0.79

0 0.5 1

KNN(K-
nearest

neighbor)

SVM(Support
vector

machine)

Logistic
regression

Naive Bayes

Random
Foreest

Deep
learning

F1Score Recall Precision Accuracy

SVM(Support

vector machine)
0.64 0.65 0.64 0.64

Logistic

regression
0.65 0.66 0.65 0.65

Naive Bayes 0.48 0.55 0.48 0.44

Random Forest 0.63 0.64 0.63 0.62

Deep learning 0.79 0.79 0.79 0.79

Figure 12:Results Comparison using count vector

VI.Comparison of Different Classification models using

Word Embedding as feature extraction

As we discussed above that we implemented different

machine learning and deep learning models using different

feature extraction techniques and pre-processing technique

to achieve better results. By using same pre-processing same

feature extraction model (Word embedding) but by using

different classification model we achieved the following

results. By using stop word removal as pre-processing ,

Word embedding as feature extraction and KNN(K-nearest

neighbor) as classification model we achieved 0.48 of
Accuracy , 0.55 of precision, 0.48 of recall and 0.44 of

F1score. By using stop word removal as pre-processing,

Word embedding as feature extraction and SVM (Support

vector machine) as classification model we achieved 0.65 of

Accuracy , 0.66 of precision, 0.65 of recall and 0.64 of

F1score. By using stop word removal as pre-processing,

Word embedding as feature extraction and Logistic

regression as classification model we achieved 0.66 of

Accuracy, 0.67 of precision, 0.66 of recall and 0.66 of

F1score. By using stop word removal as pre-processing,

Word embedding as feature extraction and Logistic Naïve

Bayes as classification model we achieved 0.50 of Accuracy

,0.58 of precision, 0.50 of recall and 0.54 of F1score. By

using stop word removal as pre-processing, Word

embedding as feature extraction and Random Forest as
classification model we achieved 0.64 of Accuracy, 0.65 of

precision, 0.64 of recall and 0.64 of F1score. By using stop

word removal as pre-processing, Word embedding as

feature extraction and Deep learning as classification model

we achieved 0.79 of Accuracy, 0.79 of precision, 0.79 of

recall and 0.79 of F1score.

Table 7:Results comparison using word embedding
Model Accuracy Precision Recall F1Score

KNN(K-nearest

neighbor)

0.48 0.55 0.48 0.44

SVM(Support

vector machine)

0.65 0.66 0.65 0.64

Logistic regression 0.66 0.67 0.66 0.66

Naive Bayes 0.50 0.58 0.50 0.54

Random Forest 0.64 0.65 0.64 0.64

Figure 13:Results comparison using word embedding

VII.Comparison of Different Classification models using

one hot encoder as feature extraction

By using same pre-processing same feature extraction

model (One hot encoder) but by using different

205

A Framework for Multilingual Sentiments Extraction and Analysis of Online Review and Comments

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

classification model we achieved the following results. By

using stop word removal as pre-processing, One hot encoder

as feature extraction and KNN (K-nearest neighbour) as

classification model we achieved 0.49 of Accuracy , 0.52 of

precision, 0.49 of recall and 0.44 of F1score. By using stop
word removal as pre-processing , One hot encoder as feature

extraction and SVM(Support vector machine) as

classification model we achieved 0.64 of Accuracy , 0.65 of

precision, 0.64 of recall and 0.64 of F1score. By using stop

word removal as pre-processing, One hot encoder as feature

extraction and Logistic regression as classification model

we achieved 0.65 of Accuracy , 0.66 of precision, 0.65 of

recall and 0.65 of F1score. By using stop word removal as

pre-processing, one hot encoder as feature extraction and

Naïve bayes as classification model we achieved 0.48 of

Accuracy, 0.55 of precision, 0.48 of recall and 0.44 of

F1score. By using stop word removal as pre-processing, one
hot encoder as feature extraction and Random Forest as

classification model & achieved 0.63 of Accuracy, 0.64 of

precision, 0.63 of recall and 0.62 of F1score. By using stop

word removal as pre-processing, one hot encoder as feature

extraction and Deep learning as classification model we

achieved 0.68 of Accuracy, 0.67 of precision, 0.68 of recall

and 0.61 of F1score. All details are given in below Table.

Table 8:Results comparison using One hot encoder

Model Accuracy Precision Recall F1 Score

KNN(K-
nearest

neighbor
)

0.49 0.52 0.49 0.44

SVM(Su
pport
vector

machine)

0.64 0.65 0.64 0.64

Logistic
regressio

n

0.65 0.66 0.65 0.65

Naive
Bayes

0.48 0.55 0.48 0.44

Random
Forest

0.63 0.64 0.63 0.62

Deep
learning

0.68 0.67 0.68 0.61

0.49

0.64

0.65

0.48

0.63

0.68

0.52

0.65

0.66

0.55

0.64

0.67

0.49

0.64

0.65

0.48

0.63

0.68

0.44

0.64

0.65

0.44

0.62

0.61

0 0.2 0.4 0.6 0.8

KNN(K-nearest
neighbor)

SVM(Support vector
machine)

Logistic regression

Naive Bayes

Random Forest

Deep learning

F1Score Recall Precision Accuracy

Results comparison using onehotencoder

Figure 14: Results comparison using one hot encoder

VIII.Comparison of Different Classification models using

TF-IDF as feature extraction

Since in this research Roman Urdu text used therefore none

of these machine learning algorithms showed a satisfactory
result. To obtaining better results deep learning technique

applied with different feature extraction techniques like one

hot coding, TF-IDF, Word embedding, and count vector. By

using same pre-processing technique same feature

extraction technique (TF-IDF) but by using different

classification model we achieved the following results. By

using stop word removal as pre-processing, TF-IDF as

feature extraction and KNN(K-nearest neighbor) as

classification model we achieved 0.54 of Accuracy, 0.58 of

precision, 0.54 of recall and 0.48 of F1score. By using stop

word removal as pre-processing, TF-IDF as feature

extraction and SVM (Support vector machine) as
classification model we achieved 0.66 of Accuracy, 0.67 of

precision, 0.66 of recall and 0.65 of F1score. By using stop

word removal as pre-processing, TF-IDF as feature

extraction and Logistic regression as classification model

we achieved 0.68 of Accuracy, 0.69 of precision, 0.68 of

recall and 0.65 of F1score. By using stop word removal as

pre-processing, TF-IDF as feature extraction and Naive

Bayes as classification model we achieved 0.57 of

Accuracy, 0.60 of precision, 0.57 of recall and 0.52 of

F1score. By using stop word removal as pre-processing, TF-

IDF as feature extraction and Random Forest as

206

Ihsanullah Khan et.al.

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

classification model we achieved 0.65 of Accuracy, 0.66 of

precision, 0.65 of recall and 0.64 of F1score. By using stop

word removal as pre-processing, TF-IDF as feature

extraction and Deep learning as classification model we

achieved 0.82 of Accuracy, 0.81 of precision, 0.82 of recall
and 0.81 of F1score. All details are given in below Table 9.

Table 9:Results comparison using TF-IDF
Model Accur

acy

Precision Recall F1

Score

KNN(K-

nearest

neighbor)

0.54 0.58 0.54 0.48

SVM(Supp

ort vector

machine)

0.66 0.67 0.66 0.65

Logistic

regression

0.68 0.69 0.68 0.65

Naive

Bayes

0.57 0.60 0.57 0.52

Random

Forest

0.65 0.66 0.65 0.64

Deep

learning

0.82 0.81 0.82 0.81

0.54

0.66
0.68

0.57

0.65

0.82

0. 58

0. 67

0. 69

0. 6

0. 66

0. 81

0.54

0.66
0.68

0.57

0.65

0.82

0.48

0.65 0.65

0.52

0.64

0.81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy Precision Recall F1Score

Figure 15 Results comparison using TF-IDF

VIV.Comparison of Different Feature Extraction Technique

using Deep Learning

As discussed above various machine learning algorithm like

KNN (K-nearest neighbour), SVM (Support vector

machine) Logistic regression Naive Bayes, Random Forest,

and deep learning were implemented using four different

feature extraction technique to achieve better results. In

above Tables comparison was made on the basis of

accuracy, precision, recall and F1 score. By using stop word
removal as a pre-processing technique and TF-IDF as

feature extraction with Deep learning sentiment analysis

classification model it is observed that 0.82% of Accuracy,

0.81% of precision, 0.82% of recall and 0.81 of F1score

achieved. By using stop word removal as pre-processing

One hot encoder as feature extraction and Deep learning as

classification model there is an accuracy of 0.68% precision

of 0.67%, recall of 0.68% and F1 score of 0.61% obtained.

In next phase using stop word removal as pre-processing,

Word embedding as feature extraction and Deep learning as

classification model there is achieved 0.79 of Accuracy,
0.79 of precision, 0.79 of recall and 0.79 of F1score.

Similarly, by using stop word removal as pre-processing,

count vector as feature extraction and deep learning as

classification model results obtained are 0.79 of Accuracy,

0.79 of precision, 0.79 of recall and 0.79 of F1score. From

blow table results it is cleared that Deep learning with TF-

IDF as a feature extraction with stop word removal

performed best as compared to other techniques.

Table 10:Results comparison using deep Learning with

different feature extraction
Model Accuracy Precisio

n

Recall F1Score

TF-IDF 0.82 0.81 0.82 0.81

One Hot

Encoder

0.68 0.67 0.68 0.61

Word

Embedding

0.79 0.79 0.79 0.79

Count

Vector

0.79 0.79 0.79 0.79

207

A Framework for Multilingual Sentiments Extraction and Analysis of Online Review and Comments

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

0.82

0.68

0.79 0.79
0.81

0.67

0.79 0.79

0.82

0.68

0.79 0.79
0.81

0.61

0.79 0.79

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

COMPARIS ION TABLE USING VARIOUS
F EATURE EXTRACTION TECHINQUES WITH

D EEP LEARNING MODAL

Accuracy Precision Recall F1Score

Figure 16:Results comparison using deep Learning with

different feature extraction

CONCLUSION
Because of the rise of digital contents around the planet and

the large number of people who respond to various web -

based products and sales, it has become necessary for
businesses to contemplate online sentiments expressed in

any language and to process these sentiments in order to

make decisions and enhances the effectiveness and

benchmark of their products. In this study we have proposed

a framework for multilingual sentiments extraction and

analysis of online review and comments. We have collected

more than 2500 sentences of Roman Urdu collected and

converted into 5 folds each one consists of 500 sentiments

either positive, negative, or neutral. After this various

machine learning and deep learning classifiers are used with

four features extraction methods. Results shows that our
deep learning models outperformed the ML classifiers with

significant margin. In addition, we have also used one hot

coding, word embedding, count vector and TF-IDF

techniques for feature extraction.

Data Availability

The data used to support the findings of this study are

available from the corresponding author upon request

Conflicts of Interest

We declare that we have no known competing

financial interest or personal relationships that

could have influenced the work reported in this

paper

Funding Statement

No funding for this research

REFERENCES

[1] F. Hashim and M. Khan, "Sentence level sentiment

analysis using urdu nouns," In proceeding of 6th

international Conference on Language and

Technology, UET, Lahore, Pakistan, pp. 101-108,
2016.

[2] M. A. Manzoor, S. Mamoon, S. K. Tao, A. Zakir, M.

Adil et al., "Lexical Variation and Sentiment Analysis

of Roman Urdu Sentences with Deep Neural

Networks." International Journal of Advanced

Computer Science and Applications, Vol. 11, pp.719-
726, 2020.

[3] X. Ouyang, P. Zhou, C. H. Li and L. Liu, "Sentiment

analysis using convolutional neural network," In

Proceedings of IEEE international conference on

computer and information technology; ubiquitous

computing and communications; dependable,

autonomic and secure computing; pervasive

intelligence and computing, liverpool, United
Kingdom, pp. 2359-2364, 2015.

[4] Y. Chen, "Convolutional neural network for sentence

classification," (Master's thesis, University of
Waterloo), 2015.

[5] W. Khan, A. Daud, F. Alotaibi, N. Aljohani and S.

Arafat, “Deep recurrent neural networks with word

embeddings for Urdu named entity recognition," ETRI
Journal. Vol. 42, No. 1, pp.90-100, 2020.

[6] P. Wang, J. Xu, B. Xu, C. Liu and H. Zhang et al.,

"Semantic clustering and convolutional neural network

for short text categorization," In Proceedings of the

53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pp. 352-357, 2015.

[7] M. Iyyer, V. Manjunatha, J. Boyd-Graber and H.

Daumé, "Deep unordered composition rivals syntactic

methods for text classification," In Proceedings of the
53rd annual meeting of the association for

computational linguistics and the 7th international

joint conference on natural language processing
(volume 1: Long papers), pp. 1681-1691, 2015.

[8] Y. Goldberg, "A primer on neural network models for
natural language processing," Journal of Artificial
Intelligence Research, vol. 57, pp. 345-420, 2016.

208

Ihsanullah Khan et.al.

Copyrights @Muk Publications Vol. 14 No.1June, 2022

 International Journal of Computational Intelligence in Control

[9] K. Mehmood, D. Essam and K. Shafi, "Sentiment

analysis system for Roman Urdu," Mehran University

Research Journal of Engineering & Technology, Vol.
38, No. 2, pp. 463-470, 2019.

[10] M. K. Malik, "Urdu named entity recognition and

classification system using artificial neural network,"

ACM Transactions on Asian and Low-Resource

Language Information Processing (TALLIP), vol. 17,
pp. 1-13, 2017.

[11] M. K. Malik and S. M. Sarwar, "Urdu named entity
recognition system using hidden Markov model,"

Pakistan Journal of Engineering and Applied Sciences,
vol. 21, pp.15-22, 2017.

[12] M. K. Malik and S. M. Sarwar, "Named entity

recognition system for postpositional languages: urdu
as a case study," International Journal of Advanced

Computer Science and Applications, vol. 7, pp. 141-
147, 2016.

[13] N. Karamat, K. Malik and S. Hussain, "Improving

generation in machine translation by separating

syntactic and morphological processes," In proceeding
of the IEEE 2011 Frontiers of Information Technology
Conference, pp. 195-200,2011.

[14] S. Shahzadi, B. Fatima, K. Malik and S. M. Sarwar,

"Urdu word prediction system for mobile phones,"

World Applied Sciences Journal, vol. 22, pp. 113-120,
2013.

[15] A. Ali, A. Hussain and M. K. Malik, "Model for

english-urdu statistical machine translation," World
Applied Sciences, vol. 24, pp. 1362-1367, 2013.

[16] M. Usman, Z. Shafique, S. Ayub and K. Malik, "Urdu

text classification using majority voting," International

Journal of Advanced Computer Science and
Applications, vol. 7, pp. 265-273, 2016.

[17] Z. Sharf and S. U. Rahman, "Performing natural

language processing on roman urdu datasets,"

International Journal of Computer Science and
Network Security, vol. 18, pp. 141-148, 2018.

[18] Z. Sharf and H. A. Mansoor, "Opinion mining in

roman urdu using baseline classifiers," International

Journal Of Computer Science And Network Security,
vol. 18, pp. 156-164, 2018.

[19] M. Khan and K. Malik, "Sentiment classification of

customer’s reviews about automobiles in roman urdu,"
In proceeding of the Future of Information and
Communication Conference, pp. 630-640,2018.

[20] A. Z. Syed, M. Aslam and A. M. Martinez-Enriquez,

"Lexicon based sentiment analysis of Urdu text using

SentiUnits," In proceeding of the Mexican

International Conference on Artificial Intelligence, pp.
32-43,2010.

[21] A. Sadia, F. Khan and F. Bashir, "An overview of

lexicon-based approach for sentiment analysis," In

proceeding of the 3rd International Electrical

Engineering Conference, at IEP Centre, Karachi,
Pakistan, pp.1-6, 2018.

[22] R. Bose, R. K. Dey, S. Roy and D. Sarddar, "Sentiment

Analysis on Online Product Reviews,” (eds)

Information and Communication Technology for

Sustainable Development. Advances in Intelligent

Systems and Computing, vol 933. Springer, Singapore.

https://doi.org/10.1007/978-981-13-7166-0_56, pp.
559-569, 2020.

[23] A. Bhatt, A. Patel, H. Chheda and K. Gawande,

"Amazon review classification and sentiment

analysis," International Journal of Computer Science

and Information Technologies, Vol.6, No.6, pp.5107-
5110, 2015.

[24] N. Suri and T. Verma, "Multilingual Sentimental

Analysis on Twitter Dataset: A Review," Advances in

Computational Sciences and Technology, vol. 10, pp.
2789-2799, 2017.

[25] S. Mohammad, S. Kiritchenko, P. Sobhani, X. Zhu and

C. Cherry, "Semeval-2016 task 6: Detecting stance in
tweets," In Proceedings of the 10th international

workshop on semantic evaluation (SemEval-2016),
2016, pp. 31-41, 2016.

[26] E. Agirre and A. Soroa, "Personalizing pagerank for

word sense disambiguation," In Proceedings of the

12th Conference of the European Chapter of the ACL
(EACL 2009), pp. 33-41,2009.

[27] I. San Vicente, R. Agerri and G. Rigau, "Simple,

robust and (almost) unsupervised generation of

polarity lexicons for multiple languages," In

Proceedings of the 14th Conference of the European
Chapter of the Association for Computational
Linguistics, pp. 88-97,2014

209

	Introduction
	Related Work
	Proposed model using Deep Neural Network
	Results
	I. Results using Count Vector feature extraction technique
	By using the Deep learning with Count Vector as feature extraction and using pre-processing result showed a total of 0.82 accuracy, 0.81 of precision, 0.82 of recall, and 0.81 of F1 score. It used 5 cross validation using deep learning as classificati...
	II. Results using One Hot Encoder
	III. Results using TF-IDF feature extraction technique
	IV. Results using Word Embedding feature extraction technique
	VI.Comparison of Different Classification models using Word Embedding as feature extraction
	VII.Comparison of Different Classification models using one hot encoder as feature extraction
	VIII.Comparison of Different Classification models using TF-IDF as feature extraction
	VIV.Comparison of Different Feature Extraction Technique using Deep Learning
	Data Availability
	Conflicts of Interest
	We declare that we have no known competing financial interest or personal relationships that could have influenced the work reported in this paper
	Funding Statement

	References

