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Abstract - Extracting opinions from resource poor 

languages is difficult task. Most of the work done in 

opinion mining in English language only, however 

research is converting to extract opinions from local 

languages using various sentiment techniques. 

Extracting opinions from Roman Urdu is another 

challenging task because this type of languages has no 

proper standards and resources. This research starts 

from collecting roman Urdu sentences, pre-processing 

the data by removing noise and other additions, 

normalizing the text, feature extraction by using one hot 

coding, word embedding, count vector and TF-IDF 

techniques. More than 2500 sentences of Roman Urdu 

collected and converted into 5 folds each one consists of 

500 sentiments either positive, negative, or neutral. 

Various sentiment algorithm like KNN (K-nearest 

neighbour), SVM (Support vector machine), Logistic 

regression, Naive Bayes, Random Forest and Deep 

learning are applied with four feature extraction 

techniques. Results showed that deep learning technique 

outperform with TF-IDF with accuracy of 82%.and 

precision of 81%.   

 

Index Terms - Sentiment analysis, Local Languages, 

Lexicon, Review 

INTRODUCTION 

Internet is a resourceful place with respect to sentiment 

information. From a user’s perspective, people are able to 

post their own content through various social media, such as 

forums, micro-blogs or online social networking sites. 

Through this data, companies can determine their outcome 

and can make better decisions to improve their products. It 

helps to manage and modifying their services and Products 

according to clients need in order to obtain maximum 

benefits. The way to analysis any text, to extract 
information, to process natural languages, all are used for 

finding mood or feeling of writer either it is positive, 

negative or neutral. 

Indian sub-continent is one of the significant markets 

for all types of products. People of this region react to any 

online product or event using Roman Urdu, Roman Hindi or 

in pure Urdu and pure Hindi about any product or event. 

People expresses their opinions in short length informal 

text without proper setting of grammar and spelling. 

Polarity is assigned to each Sentence as positive, negative, 

or neutral depending upon the opinion words present in it. 

Previous work showed that NLP approaches performed 
poorly on short and multilingual text as compared to formal 

well-organized text written in longer documents. Examples 
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of sentence written in Roman Urdu to express someone 

feelings: “Nokia mobile main koi khaas feature nai hy” In 

this sentence, the word "nai” used for negative meanings in 

the English language; therefore, this sentence polarity is 

considered as negative. Similarly, “Mera HP behtareen 
laptop hy” Here the word "behtareen" is used for the 

English word "best "or "very good"; therefore, this sentence 

is considered as Positive. 

RELATED WORK  

Faiza et al. [1] in their research discussed the sentence level 

sentiment analysis of Urdu Noun by using the lexical based 

approach for development of Urdu noun sentiment analyzer. 

Arslan et al. [2] in their research presented a modal of 
Roman Urdu sentences with deep neural network. A novel 

self-attention bidirectional LSTM (SA-Bi LSTM) model 

developed which work with Roman Urdu sentences. Results 

showed that SA-Bi LSTM achieved high accuracy of 68.4% 

and 69.3% for pre-processed and normalized data sets 

respectively. 

Research related to sentiment analysis of other than English 

language converting to deep learning techniques as results 

obtained from this technique are much better than other 

sentiment analysis techniques [3]. In order to categorize 

sentences in sentiment analysis different algorithms and 
techniques are in used but convolutional neural network 

showed very impressive results [4-8]. K. Mehmood 

collected almost 800 sentences of Roma Urdu from various 

sources and applied five number of algorithms including 

Naïve Bayes, logistic regression, support vector machine 

(SVM), K Nearest neighbour (KNN) and decision tree with 

three feature extractions unigram, bigram and combination 

of unigram and bigram. Results showed that naïve Bayes 

outperformed with unigram as feature extraction technique 

with accuracy of 63.27 % [9]. Major part of sentiment 

analysis work has done in English language in English 

speaking countries and china. A very limited work has been 
done in Urdu and Roman Urdu Sentiment [10-16]. 

Sharf and Rahman performed N.L.P. techniques on Roman 

Urdu dataset which is already part of their previous work. 

N.L.P. on Roman Urdu started by collecting data and 

creating a whole dataset in raw form. Second step is to clean 

raw data and normalize it according to standards by 

performing P.O.S. tagging and tokenization to identify the 

presence or absence of discourse element [17]. Sharf and 

Mansoor proposed baseline classifiers on O.P. in Roman 

Urdu. Extracting opinions from online web documents in 

roman Urdu is crucial work. Several machine learning 
algorithms, link analyses methods and score based methods 

used to extract opinions from roman Urdu literature. Dataset 

is consisted on twenty-two thousand records of roman Urdu 

on which positive opinions are 14500 and negative opinions 

are 4900 and 13000 neutral opinions. Satisfactory results 

retrieved from roman Urdu datasets [18]. A lot of work has 

been done in English language reviews but getting 

sentiment from Hindi, Urdu, Arabic languages is hard job to 

perform. Performed different Machine learning and deep 

learning classifiers and neural network using WEKA 

platform to classify positive and negative reviews on 80% 

training and 20% testing dataset of 1000 positive and 1000 

negative reviews. Naïve Bayes outperformed from all 
Machine learning classifier and deep learning neural 

networks [19]. The popularity of Urdu websites increased 

because people prefer Urdu websites to read and share their 

feeling in their own mother language easily and 

comfortably. Sentiment analyzer which used to analyses 

sentiment in English language is not useful for detecting 

sentiments in roman Urdu, due to script wise and 

grammatical differences. Pre-processing normalization, 

segmentation, POS tagging, phrase checking. Role tagging 

lexicon computer techniques used to classify sentiments in 

roman Urdu [20]. The more the size of the dataset the higher 

the performance. Data is pouring from every field of daily 
life, e.g. medical, educational and engineering. Sentiment 

analysis falls under the category of linguistic computational 

analysis. Lexicon based approach works on polarity level 

scoring to detect positive and negative sentiments. Human 

interaction is necessary in performing lexicon-based 

approach to extract emotions or sentiment [21]. Bose et al 

proposed a system in which people cast their personal 

reviews on e-commerce platform after buying any product 

which tremendously affected product's influence in more 

unique buyers. Results are pretty satisfactory as the most 

polarity for positive, joy and trust [22]. Chen and Sun 
presented sentiment analysis within amazon review data. 

Which give proper analysis of consumer behavior using 

deep neural network LSTM-RNN fair accuracy achieved. 

Analysis of textual content comes under the category of 

N.L.P. Positive or negative opinions are extracted from text 

streams to evaluate accuracy. Sentiment analysis is most 

trending topic in the category of customer review or 

comment. Customer reviews are always come under 

multiple category classification. Sentiment analysis is useful 

for other business values in industry e.g. fashion trends. 

There proposed model does not over fit and give satisfactory 
results [23]. Million and billions of opinions now generated 

in a day’s regarding any product. Opinions are now rapidly 

increasing in multi-language other than English. 

Multilingual statement’s grammatical structure is missing 

which makes it hard to understand. Survey consists of 

various techniques. Digital reviews play an important role to 

satisfied consumers on different events, occasions and on 

reviews. Different architecture and frameworks discussed in 

this review. Smaller scale of blogging websites influence 

path and also twitter trends [24]. 

METHODOLOGY 

This research consists of 07 stages in which each stage is 

further divided into sub parts. Fig.1 show the clear picture 

of hierarchy of research which start with data collection of 

Roman Urdu text. Second phase start with pre-processing 

which involved removing of stop word, irrelevant data, hash 
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tags, and so on. Feature extraction process performed in 

next step which includes Word embedding, Count vector, 

One Hot encoding and TF-IDF. In next phase feature 

extracted data is divided into training data and test data. 

75% of total data collection is used for training purpose and 
25% used for testing purpose. In 2nd last step, different 

classification Algorithms like Deep neural network, Support 

vector machine, K-nearest neighbor, Naïve base and 

Logistic regression applied on data. Results obtained are 

evaluated and compared accuracy, Precision, Recall and F1 

score of each classification technique. 

Data collection

Data preprocessing

Feature Extraction

Train/Test Split

Classification Algorithm

Evaluiation matrix

Results

 
FIGURE 1  

HIERARCHY OF PROPOSED RESEARCH 

3.1 Data Collection 

 In sentiment analysis collection of related data is 

one of the most important and crucial tasks. Only collecting 

the domain specific data is not enough for obtaining best 

results but it also depends upon quality of data sets as well 

how data is labeled. Many Machine learning models learn 

from the trained data, automatic predictions are likely to 

mirror the human disagreement identified during annotation. 

Hence a proper guideline is required to annotate data, is also 
of utmost importance [25-27]. Following are different way 

through which data is being collected for sentiment analysis: 

• By using Web scrapers that crawl up web data and 

collect specified information. It extracts data from webpage 

(HTML document).  

• Using a Web browser plugin with which users can 

extract information from any public website using HTML 

and export the data to the desired file format.  

• Using existing open-source repositories of data that 

are cleaned and compiled which can be used directly. 

Example: Amazon product review, Twitter tweets on 

Kaggle, YouTube, Facebook, Daraz, and from other 

websites. 

Since this research based on the sentence level sentiments of 

roman Urdu related to product review and its targeted 

variables, therefore, it is selected approximately 2500 
sentences related to cameras, laptop and mobile phones. 

Target variables consist of 3 types. These are either positive, 

neutral or Negative. 

3.2 Data Pre-processing 

Pre-processing of data or text means to convert data or text 

into a form that is predictable and analyzable for required 

task. Task mean domain or approach or combinations of 

approaches. Hence task is the combination of approach and 

domain.  

Task = approach + domain  

It is an important that pre-processing techniques applied on 

one task is not directly proportional to another task because 
every task has its own requirements. Text is preprocess in 

many ways especially when there is a case of resource poor 

languages. Different techniques are used like Lowercasing, 

Stemming. Lemmatization. Stop word Removal and Noise 

Removal. 

3.3 Feature Extraction 

It is a procedure which dimensionally reduce the data set 

into manageable groups which is further used for 

processing. Feature extracting techniques used in this 

research are: 

3.3.1 One- Hot Encoding 
Categorical data are variables that contain tag values instead 

of numerical values. The number of possible values is 

usually limited to a fixed set. Categorical variables are often 

called nominal. E.g. A color variable with the values RGB, 

A place variable with the values 1, 2 & 3. Here each value 

denotes a different category. Some categories may have a 

natural association to each other, for instance a natural 

ordering. The place variable above have a natural ordering 

of values. Some approaches can work directly with 

categorical data but most of the machine learning techniques 

cannot work directly on tag data. They need all the input 

and output variables in numeric form. Overall, it is mostly a 
limitation on the effectual implementation of machine 

learning techniques. It means that categorical data should be 

transformed into a digital format. Now the question is how 

will convert the categorical data to numeric format? Here 

are two steps to perform this data transformation i-e label 

encoding and one hot encoding. In the first step, each 

category value is allocated an integer value. For example, 

red is 1, green is 2, and blue is 3. This is called a label/ 

integer encoding. For some variable quantities, this may be 

adequate but for some categorical variables where no such 

ordinal association presents, the label encoding is not 
sufficient. In fact, by using this encoding and letting the 

model to assume a natural classification among categories 

can affect in poor performance or unexpected results. So, in 

this scenario, a unique hot encoding can be applied to the 

integer representation. It is where the integer encoded 

variable is removed and a new binary variable is added for 
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each unique integer value. In the example of the variable 

color, there are 3 classes and therefore 3 binary variable 

quantities are needed. The value "1" is placed in the binary 

variable for the color and the value "0" for the other colors. 

Major part of pre-processing consists of something called 
encoding. It implies that representing each piece of 

information in a way that the computer can get it, hence the 

name encodes, which literally means “convert to [computer] 

code”. There’s many different ways of encoding such as 

Label encoding and One Hot Encoding. Label encoding is 

instinctive and simple to understand. 

Here is an example of categorical data, like cats and dogs. 

When look towards the name of the label encoding, it 

showed that label is just a category (i.e. cat or dog), and 

encode just means giving them a number to represent that 

category (1 for cat and 2 for dog).  Providing a number to 

each category make the computer intelligent and computer 
become able to know the numbers as computer perform best 

with numbers. 

3.3.2 Word Embedding 

Word embedding is a kind of word representation that lets 

words with same meaning to have a same representation. It 

is a communal term for models that learned to map a set of 

words or expressions in a vocabulary to vectors of 

numerical values. It is all about enhancing the ability of 

networks to learn from text data. By representing that data 

as lower dimensional vectors. These vectors are called 

embedding vectors. This technique is used to reduce the 
dimensionality of text data, but these procedures can also 

learn some interesting characteristics about words in a 

vocabulary. 

A word embedding is an erudite representation for text 

where words that have the same meaning have a same 

representation. It is an approach for representing words and 

documents that may be considered one of the key 

innovations of deep learning on stimulating natural language 

processing difficulties. 

Word embedding is in fact a class of techniques where 

individual words are represented as real-valued vectors in a 
predefined vector space. Each word is mapped to one vector 

and the vector values are learned in a way that resembles a 

neural network, and hence the technique is often lumped 

into the field of deep learning. 

Key to the approach is the idea of using a dense scattered 

representation for each word. Each word is represented by a 

real-valued vector, often tens or hundreds of dimensions. It 

is analogized to the millions of dimensions vital for sparse 

word representations, such as a one-hot encoding. 

There are different methods to learn word embedding from 

text but three main methods namely embedding layer, 

Word2Vec, and GloVe can be used to learn a word 
embedding from text data. Word embedding methods works 

on a real-valued vector representation for a predefined fixed 

sized words from a quantity of text, and the learning process 

is either shared with the neural network model on some 

tasks, such as document classification, or an unsupervised 

process, using document statistics.  

3.3.3 Term Frequency — Inverse Document Frequency (TF-

IDF)  

Word counts are very basic and one problem with it is that 
some words like “a” or “the” will seem many times and 

their bulky counts will not be very expressive in the 

encoded vectors. So, substitute is to compute word 

frequencies by the most popular technique called TF-IDF 

abbreviated as Term Frequency – Inverse Document 

Frequency, and it is ideal for problems with large text data 

files. 

Term Frequency: It tells how frequently a given word 

appears within a document. 

Inverse Document Frequency: It rationalizes the words that 

appear a lot across documents. 

TF-IDF are word frequency results that highlight words 
which are more stimulating, e.g. common in a document but 

not across documents. It is another most communal tool in 

natural language processing for converting a list of text data 

to a matrix representation. Each document is transformed to 

a row of the TF-IDF matrix and each word is kept in a 

column vector. The number of columns is a restriction 

which must be stated, a vocabulary of the topmost 5-10k 

most communal words is often adequate. TF-IDF are sparse 

vectors where the number of non-zero values in the vector is 

equal to the number of unique words in the document. So, if 

a document contains the word ‘garden then the garden 
column will have a one in place of a zero for that document 

tuple. 

The Tf-Idf determines the most communal words in the 

quantity and keeps them to the vocabulary. A document is 

altered by enumerating the number of times each word in 

the vocabulary appears in the text. Thus, a Tf-idf matrix will 

have the shape [Number of documents, 

Size_of_vocabulary]. The weight of each word is 

normalized by the number of times it appears in the 

quantity, so a word that seems only 10% of all documents 

will be assigned a higher value then one which seems 90% 
of documents. 

3.3.4 Count Vector 

Text data needs more preparation before using it for 

prognostic modeling. The text should be analyzed to 

eliminate words, called tokenization. Then the words want 

to be encoded as integers or decimal point values for use as 

input to a machine learning procedure, called feature 

extraction or vectorization. The scikit-learn library bids 

easy-to-use tools to perform both tokenization and 

vectorization of text data. Count Vectorizer is a prodigious 

tool provided by the scikit-learn library in Python. It is used 

to convert a specified text into a vector based on the 
occurrence of each word that occurs in the whole text. It is 

obliging when there are numerous such texts, and to alter 

each word in each text into vectors for further text analysis. 

Let consider a few example texts from a document as a list 

element: 
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document = [“One Nerd supports Two Nerds”, “Two Nerds 

support Four Nerds”, “Each Nerd supports many other 

Nerds at NerdsforNerds.”] 

Count Vectorizer generates a matrix in which each unique 

word is represented by a column of the matrix, and each text 
example from the document is a row in the matrix. 

 

PROPOSED MODEL USING DEEP NEURAL NETWORK  

This deep neural network consists of 4 hidden layer and an 

output layer. Layer1 consists of 256 units, layer2 consist of 

128 units, layer3 consist of 64 units and layer4 consists of 

32 units. Output layer consists of 6 units and activation 

function on hidden layers. There is ReLu and activation 
function on the Output layer. There is SoftMax. Dropout on 

layer1 and 0.2, 0.3 on layer2, 0.5 on layer3 and 0.6 on 

layer4. There is Adam as an optimizer, 

Sparse_categorical_cross entropy as loss function, and 

Accuracy as Metrix. All the details are given in Table 1. 

    

Table 1:Deep Neural Network Layer Architecture 

Layers L1 L2 L3 L4 Output 

Units 256 128 64 32 6 

Activation 

function 

Relu Relu Relu Relu SoftMax 

Dropout 0.2 0.3 0.5 0.6  

Optimizer Adam     

Loss 

function 

Sparse_categorical_crossentropy 

Metrix Accuracy     

     

 

4.1 Evaluation Matrix 
 

To evaluate the performance of models Four -parameter is 

used 1) overall accuracy (2) Precision (3) Recall and (4) F1 

score. The main goal of this research is to achieve highest 

accuracy, along with stable value of Precision, Recall, and 

F1 Score. Accuracy, Precision, Recall, and F1 score are 

formulated as:  

Accuracy=  (TP+TN)/(TP+TN+FP+FN)   

Where TP= True Positive TN=True Negative FP= False 

Positive, FN=False Negative 

Precision=  TP/(TP+FP) 
Recall=TP/(TP+FN) 

 

F1 Score =(2*(Recall* Precision))/((Recall + Precision)) 

RESULTS 

I. Results using Count Vector feature extraction technique 

By using the Deep learning with Count Vector as feature 

extraction and using pre-processing result showed a total of 

0.82 accuracy, 0.81 of precision, 0.82 of recall, and 0.81 of 

F1 score. It used 5 cross validation using deep learning as 

classification model. In first fold of validation, there is 0.93 

of accuracy, 0.91 of precision, 0.93 of recall, and 0.92 of F1 

score. There is a training loss of 0.0014, training accuracy of 

0.9997, and Validation loss of 0.6780 validation Accuracy 

of 0.9330. The graphs of both accuracy and loss are given in 

Fig (2, 3). In Second fold of validation, there is 0.96 of 
accuracy, 0.94 of precision, 0.96 of recall, and 0.95 of F1 

score. There is a training loss of 0.0082, training accuracy of 

0.9983 and Validation loss of 0.3350 - validation Accuracy 

of 0.9600. The graphs of both accuracy and loss are given in 

Fig (4, 5). In third fold of validation, there is 0.83 of 

accuracy, 0.83 of precision, 0.83 of recall, and 0.83 of F1 

score. There is a training loss of 0.0737, training accuracy of 

0.9757 and Validation loss of 0.8261 validation Accuracy of 

0.8340. The graphs of both accuracy and loss are given in 

Fig (6, 7). In fourth fold of validation, there is 0.65 of 

accuracy, 0.65 of precision, 0.65 of recall, and 0.65 of F1 

score. There is a training loss of 0.0548, training accuracy of 
0.9807 and Validation loss 1.8106 of validation Accuracy of 

0.6520. The graphs of both accuracy and loss are given in 

Fig (8, 9). In fifth fold of validation there is 0.60 of 

accuracy, 0.60 of precision, 0.60 of recall, and 0.60 of F1 

score. There is a training loss of 0.1192, training accuracy of 

0.9600 and Validation loss of 2.3056 validation Accuracy of 

0.6030. The graphs of both accuracy and loss are given in 

Fig (10, 11). Every fold accuracy, precision, Recall and F1 

Score are mentioned in below Table 2. 

Table 2:Results using Count Vector feature extraction 

technique 
FOLDS ACCURACY PRECISION RECALL F1 SCORE 

Fold1 0.93 0.91 0.93 0.92 

Fold2 0.96 0.94 0.96 0.95 

Fold3 0.83 0.83 0.83 0.83 

Fold4 0.65 0.65 0.65 0.65 

Fold5 0.60 0.60 0.60 0.60 

 

 
Figure 2:1st fold training and validation accuracy graph 

using count vector 
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Figure 3:1st fold training and validation loss graph using 

count vector 

 
Figure 4:2nd fold training and validation accuracy graph 

using count vector 

 

 
Figure 5:2nd fold training and validation loss graph using 

count vector 

 
Figure 6:3rd fold training and validation Accuracy graph 

using count vector 

 
Figure 7:4rd fold training and validation loss graph using 

count vector 

 

 
Figure 8:5th fold training and validation Accuracy graph 

using count vector 
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Figure 9:6th fold training and validation loss graph using 

count vector 

 
Figure 10:7th fold training and validation Accuracy graph 

using count vector 

 

 
Figure 11:5th fold training and validation loss 

 

II. Results using One Hot Encoder  

By using the Deep learning with one Hot Encoder as feature 

extraction and using pre-processing There is achieved a total 

of 0.68 accuracy, 0.67 of precision, 0.68 of recall, 0.61 of 
F1 score. There is 5 cross validation using deep learning as 

classification model. In first fold of validation, there is 0.94 

of accuracy, 0.88 of precision, 0.94 of recall, and 0.91 of F1 

score. There is a training loss of 0.0021, training accuracy of 

0.9997 and Validation loss of 0.2763 validation Accuracy of 

0. 9400.In Second fold of validation, there is 0.95 of 

accuracy, 0.91 of precision, 0.95 of recall, and 0.93 of F1 
score. There is a training loss of 0.0031, training accuracy of 

1.0000 and Validation loss of 0.2445 validation Accuracy of 

0. 9550.In third fold of validation, there is 0.59 of accuracy, 

0.62 of precision, and 0.59 of recall, and 0.50 of F1 score. 

There is a training loss of 0.0026, training accuracy of 

0.9997 and Validation loss of 0.7658 validation Accuracy of 

0. 5930.In fourth fold of validation, there is 0.54 of 

accuracy, 0.41 of precision, 0.54 of recall, and 0.40 of F1 

score. There is a training loss of 0.0037, training accuracy of 

1.0000 and Validation loss 1.0297 of validation Accuracy of 

0.5430. In fifth fold of validation, there is 0.36 of accuracy, 

0.54 of precision, 0.36 of recall, and 0.30 of F1 score. There 
is a training loss of 0.0028, training accuracy of 1.0000 and 

Validation loss of 1.1482 validation Accuracy of 0.3560.  

Every fold accuracy, precision, Recall, and F1 Score are 

mentioned in below Table 3. 

Table 3:Results using One Hot Encoder 

Fold 
validation 

Accuracy Precision Recall 
F1 
score 

Fold1 0.94 0.88 0.94 0.91 

Fold2 0.95 0.91 0.95 0.93 

Fold3 0.59 0.62 0.59 0.50 

Fold4 0.54 0.41 0.54 0.40 

Fold5 0.36 0.54 0.36 0.30 

Total 0.68 0.67 0.68 0.61 

 

III. Results using TF-IDF feature extraction technique 

By using Deep learning with TF-IDF as a feature extraction 

and using pre-processing There is achieved a total of 0.82 

accuracy, 0.81 of precision, 0.82 of recall, 0.81 of F1 score. 

There is 5 cross validation using deep learning as 

classification model. In first fold of validation, there is 0.94 

of accuracy, 0.93 of precision, 0.94 of recall, and 0.94 of F1 

score. There is a training loss of 0.0014, training accuracy of 

0.9997 and Validation loss of 0.2600 validation Accuracy of 
0.9430. In Second fold of validation, there is 0.96 of 

accuracy, 0.96 of precision, 0.96 of recall, 0.94 of F1 score. 

There is a training loss of 0.0003, training accuracy of 

1.0000 and Validation loss of 0.2111 validation Accuracy of 

0.9600. In third fold of validation, there is 0.83 of accuracy, 

0.83 of precision, 0.83 of recall, and 0.83 of F1 score. There 

is a training loss of 0.0045, training accuracy of 0.9990 and 

Validation loss of 0.6147 validation Accuracy of 0.8340. In 

fourth fold of validation, there is 0.73 of accuracy, 0.72 of 

precision, 0.73 of recall, and 0.72 of F1 score. There is a 

training loss of 0.0028, training accuracy of 1.0000 and 
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Validation loss 0.8976 of validation Accuracy of 0.7250. In 

fifth fold of validation, there is 0.62 of accuracy, 0.63 of 

precision, 0.62 of recall, and 0.62 of F1 score. There is a 

training loss of 0.0031, training accuracy of 1.0000 and 

Validation loss of 1.2767 validation Accuracy of 0.6180. 
Every fold accuracy, precision, Recall and F1 Score are 

mentioned in below table 4. 

 

Table 4:Results using TF-IDF feature extraction 

technique 

Fold 
validation 

Accuracy Precision Recall F1 
score 

Fold1 0.94 0.88 0.94 0.91 

Fold2 0.95 0.91 0.95 0.93 
Fold3 0.59 0.62 0.59 0.50 

Fold4 0.54 0.41 0.54 0.40 

Fold5 0.36 0.54 0.36 0.30 

Total 0.68 0.67 0.68 0.61 

 

IV. Results using Word Embedding feature extraction 

technique 

By using the Deep learning with Word Embedding as 
feature extraction and using pre-processing There is 

achieved a total of 0.82 accuracy, 0.81 of precision, 0.82 of 

recall, 0.81 of F1 score. There is 5 cross validation using 

deep learning as classification model. In first fold of 

validation, there is 0.93 of accuracy, 0.91 of precision, 0.93 

of recall, and 0.92 of F1 score. There is a training loss of 

0.0014, training accuracy of 0.9997, and Validation loss of 

0.6780 validation Accuracy of 0. 9330.In Second fold of 

validation, there is 0.96 of accuracy, 0.94 of precision, 0.96 

of recall, and 0.95 of F1 score. There is a training loss of 

0.0082, training accuracy of 0.9983 and Validation loss of 
0.3350 - validation Accuracy of 0. 9600.In third fold of 

validation, there is 0.83 of accuracy, 0.83 of precision, 0.83 

of recall, and 0.83 of F1 score. There is a training loss of 

0.0737, training accuracy of 0.9757 and Validation loss of 

0.8261 validation Accuracy of 0.8340. In fourth fold of 

validation, there is 0.65 of accuracy, 0.65 of precision, 0.65 

of recall, and 0.65 of F1 score. There is a training loss of 

0.0548, training accuracy of 0.9807 and Validation loss 

1.8106 of validation Accuracy of 0.6520. In fifth fold of 

validation, there is 0.60 of accuracy, 0.60 of precision, 0.60 

of recall, and 0.60 of F1 score. There is a training loss of 

0.1192, training accuracy of 0.9600 and Validation loss of 
2.3056 validation Accuracy of 0.6030. Every fold accuracy, 

precision, Recall and F1 Score are mentioned in below 

Table 5: 

Table 5:Results using Word Embedding feature 

extraction technique 

 
Folds Accuracy Precision Recall F1 Score 

Fold1 0.93 0.91 0.93 0.92 

Fold2 0.96 0.94 0.96 0.95 

Fold3 0.83 0.83 0.83 0.83 

Fold4 0.65 0.65 0.65 0.65 

Fold5 0.60 0.60 0.60 0.60 

Total 0.79 0.79 0.79 0.79 

 
V.Comparison of Different Classification models using 

Count Vector as feature extraction 

As we discussed above that we implemented different 

machine learning and deep learning models using different 

feature extraction techniques and pre-processing technique 

to achieve better results. By using same pre-processing same 

feature extraction model (Count Vector) but by using 

different classification model we achieved the following 

results. By using stop word removal as pre-processing, 

count vector as feature extraction and KNN (K-nearest 

neighbour) as classification model we achieved 0.47 of 
Accuracy , 0.54 of precision, 0.47 of recall and 0.38 of 

F1score. By using stop word removal as pre-processing, 

count vector as feature extraction and SVM (Support vector 

machine) as classification model we achieved 0.64 of 

Accuracy, 0.65 of precision, 0.64 of recall and 0.64 of 

F1score. By using stop word removal as pre-processing, 

count vector as feature extraction and Logistic regression as 

classification model we achieved 0.65 of Accuracy, 0.66 of 

precision, 0.65 of recall and 0.65 of F1score. By using stop 

word removal as pre-processing, count vector as feature 

extraction and SVM (Support vector machine) as 

classification model we achieved 0.64 of Accuracy, 0.65 of 
precision, 0.64 of recall and 0.64 of F1score. By using stop 

word removal as pre-processing, count vector as feature 

extraction and SVM (Support vector machine) as 

classification model we achieved 0.64 of Accuracy, 0.65 of 

precision, 0.64 of recall and 0.64 of F1score.By using stop 

word removal as pre-processing, count vector as feature 

extraction and Deep learning as classification model we 

achieved 0.79 of  Accuracy , 0.79 of precision, 0.79 of recall 

and 0.79 of F1score. 

Table 6: Results Comparison using count vector 
Model Accuracy Precision Recall F1Score 

KNN(K-nearest 

neighbor) 
0.47 0.54 0.47 0.38 
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0.65 0.66 0.65 0.65 

Naive Bayes 0.48 0.55 0.48 0.44 

Random Forest 0.63 0.64 0.63 0.62 

Deep learning 0.79 0.79 0.79 0.79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12:Results Comparison using count vector 

VI.Comparison of Different Classification models using 

Word Embedding as feature extraction 

As we discussed above that we implemented different 

machine learning and deep learning models using different 

feature extraction techniques and pre-processing technique 

to achieve better results. By using same pre-processing same 

feature extraction model (Word embedding) but by using 

different classification model we achieved the following 

results. By using stop word removal as pre-processing , 

Word embedding as feature extraction and KNN(K-nearest 

neighbor ) as classification model we achieved 0.48 of 
Accuracy , 0.55 of precision, 0.48 of recall and 0.44 of 

F1score. By using stop word removal as pre-processing, 

Word embedding as feature extraction and SVM (Support 

vector machine) as classification model we achieved 0.65 of 

Accuracy , 0.66 of precision, 0.65 of recall and 0.64 of 

F1score. By using stop word removal as pre-processing, 

Word embedding as feature extraction and Logistic 

regression as classification model we achieved 0.66 of 

Accuracy, 0.67 of precision, 0.66 of recall and 0.66 of 

F1score. By using stop word removal as pre-processing, 

Word embedding as feature extraction and Logistic Naïve 

Bayes as classification model we achieved 0.50 of Accuracy 

,0.58 of precision, 0.50 of recall and 0.54 of F1score. By 

using stop word removal as pre-processing, Word 

embedding as feature extraction and Random Forest as 
classification model we achieved 0.64 of Accuracy, 0.65 of 

precision, 0.64 of recall and 0.64 of F1score. By using stop 

word removal as pre-processing, Word embedding as 

feature extraction and Deep learning as classification model 

we achieved 0.79 of Accuracy, 0.79 of precision, 0.79 of 

recall and 0.79 of F1score. 

Table 7:Results comparison using word embedding 
Model Accuracy Precision Recall F1Score 

KNN(K-nearest 

neighbor) 

0.48 0.55 0.48 0.44 

SVM(Support 

vector machine) 

0.65 0.66 0.65 0.64 

Logistic regression 0.66 0.67 0.66 0.66 

Naive Bayes 0.50 0.58 0.50 0.54 

Random Forest 0.64 0.65 0.64 0.64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13:Results comparison using word embedding 

VII.Comparison of Different Classification models using 

one hot encoder as feature extraction 

By using same pre-processing same feature extraction 

model (One hot encoder) but by using different 

205



A Framework for Multilingual Sentiments Extraction and Analysis of Online Review and Comments 

 

Copyrights @Muk Publications  Vol. 14 No.1June, 2022 

 International Journal of Computational Intelligence in Control 

 

classification model we achieved the following results. By 

using stop word removal as pre-processing, One hot encoder 

as feature extraction and KNN (K-nearest neighbour) as 

classification model we achieved 0.49 of Accuracy , 0.52 of 

precision, 0.49 of recall and 0.44 of F1score. By using stop 
word removal as pre-processing , One hot encoder as feature 

extraction and SVM(Support vector machine ) as 

classification model we achieved 0.64 of  Accuracy , 0.65 of 

precision, 0.64 of recall and 0.64 of F1score. By using stop 

word removal as pre-processing, One hot encoder as feature 

extraction and Logistic regression as classification model 

we achieved 0.65 of Accuracy , 0.66 of precision, 0.65 of 

recall and 0.65 of F1score. By using stop word removal as 

pre-processing, one hot encoder as feature extraction and 

Naïve bayes as classification model we achieved 0.48 of 

Accuracy, 0.55 of precision, 0.48 of recall and 0.44 of 

F1score. By using stop word removal as pre-processing, one 
hot encoder as feature extraction and Random Forest as 

classification model & achieved 0.63 of Accuracy, 0.64 of 

precision, 0.63 of recall and 0.62 of F1score. By using stop 

word removal as pre-processing, one hot encoder as feature 

extraction and Deep learning as classification model we 

achieved 0.68 of Accuracy, 0.67 of precision, 0.68 of recall 

and 0.61 of F1score. All details are given in below Table. 
  

Table 8:Results comparison using One hot encoder 

Model Accuracy Precision Recall F1 Score 

KNN(K-
nearest 

neighbor
) 

0.49 0.52 0.49 0.44 

SVM(Su
pport 
vector 

machine) 

0.64 0.65 0.64 0.64 

Logistic 
regressio

n 

0.65 0.66 0.65 0.65 

Naive 
Bayes 

0.48 0.55 0.48 0.44 

Random 
Forest 

0.63 0.64 0.63 0.62 

Deep 
learning 

0.68 0.67 0.68 0.61 
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Figure 14: Results comparison using one hot encoder 

VIII.Comparison of Different Classification models using   

TF-IDF as feature extraction 

Since in this research Roman Urdu text used therefore none 

of these machine learning algorithms showed a satisfactory 
result. To obtaining better results deep learning technique 

applied with different feature extraction techniques like one 

hot coding, TF-IDF, Word embedding, and count vector. By 

using same pre-processing technique same feature 

extraction technique (TF-IDF) but by using different 

classification model we achieved the following results. By 

using stop word removal as pre-processing, TF-IDF as 

feature extraction and KNN(K-nearest neighbor ) as 

classification model we achieved 0.54 of  Accuracy, 0.58 of 

precision, 0.54 of recall and 0.48 of F1score. By using stop 

word removal as pre-processing, TF-IDF as feature 

extraction and SVM (Support vector machine) as 
classification model we achieved 0.66 of Accuracy, 0.67 of 

precision, 0.66 of recall and 0.65 of F1score. By using stop 

word removal as pre-processing, TF-IDF as feature 

extraction and Logistic regression as classification model 

we achieved 0.68 of Accuracy, 0.69 of precision, 0.68 of 

recall and 0.65 of F1score. By using stop word removal as 

pre-processing, TF-IDF as feature extraction and Naive 

Bayes as classification model we achieved 0.57 of 

Accuracy, 0.60 of precision, 0.57 of recall and 0.52 of 

F1score. By using stop word removal as pre-processing, TF-

IDF as feature extraction and Random Forest as 

206



Ihsanullah Khan et.al. 

Copyrights @Muk Publications  Vol. 14 No.1June, 2022 

 International Journal of Computational Intelligence in Control 

 

  

classification model we achieved 0.65 of Accuracy, 0.66 of 

precision, 0.65 of recall and 0.64 of F1score. By using stop 

word removal as pre-processing, TF-IDF as feature 

extraction and Deep learning as classification model we 

achieved 0.82 of Accuracy, 0.81 of precision, 0.82 of recall 
and 0.81 of F1score. All details are given in below Table 9. 

Table 9:Results comparison using TF-IDF 
Model Accur

acy 

Precision Recall F1 

Score 

KNN(K-

nearest 

neighbor) 

0.54 0.58 0.54 0.48 

SVM(Supp

ort vector 

machine) 

0.66 0.67 0.66 0.65 

Logistic 

regression 

0.68 0.69 0.68 0.65 

Naive 

Bayes 

0.57 0.60 0.57 0.52 

Random 

Forest 

0.65 0.66 0.65 0.64 

Deep 

learning 

0.82 0.81 0.82 0.81 
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Figure 15 Results comparison using TF-IDF 

VIV.Comparison of Different Feature Extraction Technique 

using Deep Learning  

As discussed above various machine learning algorithm like 

KNN (K-nearest neighbour), SVM (Support vector 

machine) Logistic regression Naive Bayes, Random Forest, 

and deep learning were implemented using four different 

feature extraction technique to achieve better results. In 

above Tables comparison was made on the basis of 

accuracy, precision, recall and F1 score. By using stop word 
removal as a pre-processing technique and TF-IDF as 

feature extraction with Deep learning sentiment analysis 

classification model it is observed that 0.82% of  Accuracy, 

0.81% of precision, 0.82% of recall and 0.81 of F1score 

achieved. By using stop word removal as pre-processing 

One hot encoder as feature extraction and Deep learning as 

classification model there is an accuracy of 0.68% precision 

of 0.67%, recall of 0.68% and F1 score of 0.61% obtained. 

In next phase using stop word removal as pre-processing, 

Word embedding as feature extraction and Deep learning as 

classification model there is achieved 0.79 of Accuracy, 
0.79 of precision, 0.79 of recall and 0.79 of F1score. 

Similarly, by using stop word removal as pre-processing, 

count vector as feature extraction and deep learning as 

classification model results obtained are 0.79 of Accuracy, 

0.79 of precision, 0.79 of recall and 0.79 of F1score. From 

blow table results it is cleared that Deep learning with TF-

IDF as a feature extraction with stop word removal 

performed best as compared to other techniques. 

 

Table 10:Results comparison using deep Learning with 

different feature extraction 
Model Accuracy Precisio

n 

Recall F1Score 

TF-IDF 0.82 0.81 0.82 0.81 

One Hot 

Encoder 

0.68 0.67 0.68 0.61 

Word 

Embedding 

0.79 0.79 0.79 0.79 

Count 

Vector 

0.79 0.79 0.79 0.79 

207



A Framework for Multilingual Sentiments Extraction and Analysis of Online Review and Comments 

 

Copyrights @Muk Publications  Vol. 14 No.1June, 2022 

 International Journal of Computational Intelligence in Control 

 

  

0.82

0.68

0.79 0.79
0.81

0.67

0.79 0.79

0.82

0.68

0.79 0.79
0.81

0.61

0.79 0.79

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

COMPARIS ION TABLE USING VARIOUS 
F EATURE EXTRACTION TECHINQUES WITH  

D EEP LEARNING MODAL

Accuracy Precision Recall F1Score

 

Figure 16:Results comparison using deep Learning with 

different feature extraction 

 

CONCLUSION 
Because of the rise of digital contents around the planet and 

the large number of people who respond to various web - 

based products and sales, it has become necessary for 
businesses to contemplate online sentiments expressed in 

any language and to process these sentiments in order to 

make decisions and enhances the effectiveness and 

benchmark of their products. In this study we have proposed 

a framework for multilingual sentiments extraction and 

analysis of online review and comments. We have collected 

more than 2500 sentences of Roman Urdu collected and 

converted into 5 folds each one consists of 500 sentiments 

either positive, negative, or neutral. After this various 

machine learning and deep learning classifiers are used with 

four features extraction methods. Results shows that our 
deep learning models outperformed the ML classifiers with 

significant margin. In addition, we have also used one hot 

coding, word embedding, count vector and TF-IDF 

techniques for feature extraction. 
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