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Abstract. In this paper we consider branching processes with m−dependent

and increasing immigration. We derive the asymptotic normality for fluc-

tuations of such processes when the process is a supercritical. Moreover,
under some mild conditions on immigration process we will prove conver-

gence in L2−sense of properly normalized supercritical branching process

with m−dependent immigration.

1. Introduction

Let {ξk,i, k, i ≥ 1} and {εk, k ≥ 1} be two sequence of non-negative integer-
valued random variables such that the two families {ξk,i, k, i ≥ 1} and {εk, k ≥ 1}
are independent, {ξk,i, k, i ≥ 1} are independent and identically distributed (i.i.d.).
We consider a sequence of branching processes with immigration Xk, k ≥ 0 defined
recursively as

X0 = 0, Xk =

Xk−1∑
i=1

ξk,i + εk, k ≥ 1. (1.1)

We can interpret ξk,i as the number of offsprings produced by the i−th individual
belonging to the (k− 1)−th generation and εk is the number of immigrants in the
k−th generation. We can interpret Xk as the number of individuals in the k−th
generation.

Assume that a = Eξ1,1 < ∞. Process Xk is called subcritical, critical or
supercritical depending on a < 1, a = 1 or a > 1, respectively.

The asymptotic behavior the distribution of Xn as n → ∞ has been studied
by many authors, see, e.g., the survey of Vatutin and Zubkov [32]. For the first
time, Sevast’yanov [29] proved limit theorems for continuous-time Markov branch-
ing processes when {εn, n ≥ 1} is an independent and distributed by Poisson law.
Then many research works appeared in which various generalizations of the im-
migration process were considered. For instance, in the critical case, Nagaev [20]
considered a wide-sense stationary immigration process {εn, n ≥ 1}, and proved
weak convergence of distribution of n−1Xn as n → ∞ to a gamma distribution.
Asadullin and Nagaev [1] managed to weaken conditions of [20] up to the general

condition that there exists a random variable ε, such that n−1E
∣∣∣∣ n∑
k=1

(εk − ε)
∣∣∣∣→ 0
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as n→∞. Badalbaev and Zubkov [5] for the sequence of special random processes
(including branching processes with immigration) proved a limit theorem which
contains results of [20] and [1] as a special case. Concerning functional limit theo-
rems for (1.1), we refer to Wei and Winnicki [33], Sriram [30], Ispány et al.[9],[10],
Khusanbaev [14], [16] and see references therein.

While most of previous literature was concerned with stationary immigration,
the non-stationary (or time-dependent) and increasing immigration case were first
studied by Rahimov [22]. In this class of processes, unlike in classical models,
immigration rate may depend on time of immigration. Later, Rahimov [23] ob-
tained for all cases central limit theorems (CLT’s) for fluctuation of (1.1). A key
reference is a monograph by Rahimov [24], where one can find a variety of results
and references related to this process. We refer to [28], [13] and [15] to the rates of
convergence in CLT for process (1.1) Later, Rahimov [25] proved functional limit
theorems for a fluctuation of critical process defined by (1.1). For deterministic
approximation for (1.1), we refer to Rahimov [26], Khusanbaev [11]-[12] and see
references therein.

However, in all of previous works, the immigration process was assumed to be
independent. Guo and Zhang [8] proved a functional limit theorem for fluctuations
of the critical branching process (1.1) under the condition of m− dependent im-
migration. Recently, Khusanbaev et al. [17] managed to weaken conditions of [8]
to the case when immigration satisfies φ−mixing condition and proved functional
limit theorems for fluctuation of (1.1). The results of above cited papers showed
that the limit behavior of fluctuations of process (1.1) clearly depends on the rate
of convergence to infinity of the mean number of immigrants.

The aim of this paper is to establish CLT for fluctuations of supercritical process
Xn defined by (1.1) in the case when the immigration process is m−dependent and
the mean of immigrants tends to infinity. Moreover, we study conditions ensuring
convergence in L2−sense of properly normalized supercritical branching process
with m−dependent and regularly varying immigration to some random variable.

The paper is organized as follows. In Section 2, we provide basic facts and
definitions. Section 3 contains main results and their proofs.

2. Notations and definitions

We begin by introducing basic facts. First, let us recall the notation of m-
dependence.

Definition 2.1. It is said that a sequence of random variables {ξn, n ≥ 1} satisfies
the m−dependence condition for some m ≥ 0 if the random vectors (ξ1, ..., ξk) and
(ξk+m+1, ...,) are independent for all k ≥ 1 (see [6]).

Throughout the paper, we will assume that the immigration process is het-
erogeneous, i.e., random variables {εk, k ≥ 1} are non-identically distributed and
m−dependent, and the particles entering the population act independently of the
other particles and according to the same law as particles of the population. We
denote by Zji (k) , k = i, i+1, ..., 1 ≤ j ≤ εi, the branching Galton-Watson process

generated by j−th particles arriving at the moment i with Zji (i) = 1. According
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ON LIMIT THEOREMS FOR BRANCHING PROCESSES 3

to our assumptions branching processes Zji (k) , k ≥ i; i, j ≥ 1 are independent

and Zji (k + i) , k = 0, 1, ... has the same distribution as Z1
1 (k) , k = 1, 2, ....

Set
pk = P (ξ1,1 = k) , B = E (ξ1,1) (ξ1,1 − 1) , b2 = Var(ξ1,1),

Bt =

∞∑
k=2

kt−1 (k − 1) pk <∞, t > 1.

We also assume that α (n) = Eεn <∞ and β (n) = Var(εn) <∞ for all n ∈ N.

Definition 2.2 ([7]). A measurable function l : (0,∞)→ (0,∞) is slowly varying
if for all λ > 0

lim
x→∞

l(λx)

l(x)
= 1.

Definition 2.3 ([7]). A measurable function f : (0,∞)→ (0,∞) is called regularly
varying at infinity if it can be represented in the form

f(x) = xρl (x) ,

where ρ is called index of regular variation and ρ ∈ (−∞,∞) and lρ (x) is a slowly
varying function.

Definition 2.4 ([7]). A sequence of positive numbers {x(n), n ≥ 1} is called
a regularly varying sequence of index ρ if there is a sequence of positive terms
{y(n), n ≥ 1} satisfying

x(n) ∼ Cy(n), n(1− (y(n− 1)/y(n)))→ ρ <∞, n→∞.

If a sequence {x(n), n ≥ 1} is regularly varying with index ρ, we will write
{x(n), n ≥ 1} ∈ Rρ.

Under the above assumptions A (a, n) = EXn and B2 (a, n) = Var(Xn) are
finite for all n ≥ 1. Denote

fk (t) = EeitZ
1
1 (k), Ψk (t) = EeitXk , k ≥ 1.

Denote by Φ (x) distribution function of the standard normal law. In this paper,
an ∼ bn denotes lim

n→∞
an
bn

= 1 and an = o (bn) denotes lim
n→∞

an
bn

= 0, a ∧ b =

min (a, b) and
P→ denotes the convergence of random variables in probability. C

denotes a generic constant which may be different from place to place.

3. Main results and their proofs

Our first result provides conditions for validity of CLT for supercritical branch-
ing processes Xn. Note that the immigration mean and variance is not assumed
to be a regularly varying at infinity.

Theorem 3.1. Assume a > 1, B2+δ <∞ for some 0 < δ < 1 and let {εn, n ≥ 1}
be a sequence of m−dependent random variables. If χ (a, n) :=

n∑
k=1

a−2kα (k)→∞

and β (n) = o (χ (a, n)) as n→∞ then

P
(
Xn −A (a, n)

B (a, n)
< x

)
→ Φ (x) , n→∞, x ∈ R.
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Remark 3.2. Note that the condition χ (a, n) → ∞ holds if lim inf α(n+1)
α(n) ≥ a2.

This means that immigration mean tends to infinity fast enough. Clearly, if α (n) ∈
Rα then χ (a, n) does not converge to infinity.

Proof. Note that the process Xk can be represented as

Xk =

k∑
i=1

εi∑
j=1

Zji (k), k ≥ 1. (3.1)

By (3.1) and taking into account independence of random variables Zji (k), it
follows

Ψn (t) = E
n∏
k=1

fεkn−k (t).

Indeed, Zji (k) are independent of εn, n ≥ 1, since by assumption two sequences
{ξk,i, k, i ≥ 1} and εn, n ≥ 1 are independent, obtain

Ψn (t) = E exp(itXn) = E exp(it

n∑
i=1

εi∑
j=1

Zji (n))

= E[E[

n∏
i=1

exp(it

εi∑
j=1

Zji (n)|σ(ε1, ε2, ..., εn)]] = E[

n∏
i=1

[E(itZ1
1 (n))]εi ].

Therefore

Eeit
Xn−A(a,n)
B(a,n) = e−it

A(a,n)
B(a,n)E

n∏
k=1

fεkn−k

(
t

B (a, n)

)
.

Since Eξ2+δ1,1 <∞, 0 < δ < 1 then we may expand fk(t) into the Taylor series (see

Loev [19], 212 pp.):

fk (t) = 1+itEZ1
1 (k)− t

2

2
E
[
Z1
1 (k)

]2
+21−δθk

t2+δ

(1 + δ)(2 + δ)
E
[
Z1
1 (k)

]2+δ
, |θk| ≤ 1.

Using the well-known formulas (see [3])

EZ1
1 (k) = ak, E

[
Z1
1 (k)

]2
=
ak−1

(
ak−1 − 1

)
a− 1

b2 + a2k,

and expansion lnx = (x− 1)− 1
2 (x− 1)

2
+O

(
(x− 1)

3
)

, x→ 1, we obtain

ln

[
e−it

A(a,n)
B(a,n)

n∏
k=1

fεkn−k

(
t

B (a, n)

)]
=

=
it

B (a, n)

n∑
k=1

an−k (εk − α (k))− t2

2B2 (a, n)

n∑
k=1

εk
an−k

(
an−k − 1

)
a (a− 1)

b2+

+O

(
t2+δ

B2+δ (a, n)

n∑
k=1

εkE
[
Z1
1 (n− k)

]2+δ
+

|t|3

B3 (a, n)

n∑
k=1

a3(n−k)α (k)

)
=

= J1 (n) + J2 (n) +O (J3 (n)) , a.s. (3.2)
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We have to evaluate each term involved in the right-hand side of (3.2). Before we
start, it should be pointed out the asymptotic behavior of B2 (a, n) as n → ∞.
Observe that under conditions of Theorem 3.1, we have

B2 (a, n) ∼ ∆2 (a, n) ∼ Ca2nχ (a, n) , n→∞. (3.3)

It is obvious that E[J1 (n)] = 0. By Cauchy-Bunyakovsky inequality and inequality
2xy ≤ x2 + y2, x ∈ R, Lemma 3.2 from [27] and also using the properties of
regularly varying functions at infinity, we deduce

E[J1 (n)]
2 ≤ t2

B2 (a, n)

n∑
k=1

a2(n−k)β (k) +

+
2t2

B2 (a, n)

n−1∑
k=1

(k+m−1)∧n∑
j=k+1

a2n−j−k
√
β (k)

√
β (j) ≤

≤ C a2nt2

B2 (a, n)
max

1≤k≤n
β (k) +

+
a2n (m− 1) t2

B2 (a, n)
max

1≤k≤n
β (k)

n∑
k=1

a−2k +
a2n (m− 1) t2

B2 (a, n)

n∑
k=1

a−2kβ (k) ∼

∼ Cm t2

χ (a, n)
max

1≤k≤n
β (k)→ 0, n→∞.

Hence, we may claim that

J1 (n)
P→ 0, n→∞. (3.4)

Let us consider J2 (n). From (3.3) it follows that

EJ2 (n) = − t2

2B2 (a, n)
∆2 (a, n)→ − t

2

2
, n→∞.

Now we estimate the variance of J2 (n). Observe that

VarJ2 (n) ≤ (2m− 1) t4

4B4 (a, n)

n∑
k=1

β (k)
a2(n−k)

(
an−k − 1

)2
a2(a− 1)

2 b4 ∼

∼ C (2m− 1) b4t4

4(a2nχ (a, n))
2 a

4n max
1≤k≤n

β (k)→ 0, n→∞.

Thus, by Chebyshev’s inequality

J2 (n)
P→− t

2

2
, n→∞. (3.5)

Concerning J3 (n), we get

E |J3 (n)| ≤ t2+δ

B2+δ (a, n)

n∑
k=1

α (k)E
[
Z1
1 (n− k)

]2+δ
+

|t|3

B3 (a, n)

n∑
k=1

a3(n−k)α (k)

= J3,1 (n) + J3,2 (n) . (3.6)
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Let us consider J3,2 (n). From (3.3) and α (n) ∼ χ (a, n), n→∞, we have

J3,2 (n) ≤ |t|3

a2nχ (a, n)
√
a2nχ (a, n)

α (n)
a3n − 1

a3 − 1
→ 0, n→∞. (3.7)

Finally, it remains to consider J3,1 (n). From Nagaev ([21], Theorem 1.7), we know
that if Bt <∞ and a ≥ 1 then for any t > 2,

E[Z1
1 (n)]t < c1(t)ant

(
Bt
B

) t
(t−2)

+ c2(t)+

+c3(t)Bt
(
an − 1

a− 1

)t
+ c4(t)ant

an − 1

a− 1
βt, (3.8)

where

βt = Eξt1,1, c1(t) = 1, 02t

(
5et

t− 2

)t
, c2(t) = t(t+ 1)e1,5t−1Γ(t),

c3(t) = 2−te−t−1t(t+ 1)(t+ 3, 5)tΓ(t), c4(t) =
4

5

(
5

2

)2t(
t

t− 2

)t
,

and Γ(t) is a Euler’s function.
From (3.8) and (3.3) it follows

J3,1 (n) ≤ α (n) t2+δ

B2+δ (a, n)

n∑
k=1

E
[
Z1
1 (n− k)

]2+δ ≤
≤ Ct2+δ

a(2+δ)n (χ (a, n))
δ
2

a(2+δ)n − 1

a2+δ − 1
+

nt2+δ

a(2+δ)n (χ (a, n))
δ
2

+

≤ Ct2+δ

a(2+δ)n (χ (a, n))
δ
2

a(2+δ)n − 1

a2+δ − 1
+

Ct2+δ

a(2+δ)n (χ (a, n))
δ
2

a(3+δ)n − 1

a3+δ − 1
→ 0 (3.9)

as n→∞. Then from (3.7), (3.9) and taking into account (3.6), it yields

J3 (n)
P→ 0, n→∞. (3.10)

Thus, combining relations (3.4)-(3.5) and (3.10), we obtain

ln

[
e−it

A(a,n)
B(a,n)

n∏
k=1

fεkn−k

(
t

B (a, n)

)]
P→− t

2

2
, n→∞.

Hence, according to the Lebesgue’s majorized convergence theorem, we may de-
duce

e−it
A(a,n)
B(a,n) Ψn

(
t

B (a, n)

)
→ e−

t2

2 , n→∞,

which finishes the proof of Theorem 3.1. �

The last result deals with convergence of properly normalized supercritical
branching processes with dependent immigration when condition χ (a, n) → ∞
is not valid. It should be noted that from Theorem 6.1 in [2] follows a.s. conver-
gence of normalized supercritical branching processes with immigration. We will
additionally prove the L2−convergence of normalized Xn and make sure that the
first two moments of the limit distribution exist.
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Theorem 3.3. Assume that a > 1, b2 > 0. Let {εn, n ≥ 1} be a sequence of
m−dependent random variables with α (n) ∈ Rα and β (n) ∈ Rβ where α, β ≥ 0.
Moreover, assume the following condition holds:

∞∑
k=1

a−kα (k) <∞,
∞∑
k=1

a−kβ (k) <∞. (3.11)

Then there exists a random variable V such that

V (n) :=
Xn

an
→ V, n→∞ (3.12)

where convergence means in L2−sense, and with EV <∞, Var (V ) <∞.

Proof. We will show that

E[V (n+ k)− V (k)]
2 → 0, k →∞ (3.13)

uniformly for n ≥ 0. It is obvious that

E[V (n+ k)− V (k)]
2

= Var (V (n+ k)) + Var (V (k))− 2 cov (V (n+ k) , V (k))

+(EV (n+ k)− EV (k))
2
. (3.14)

First, we have

cov (Xn+k, Xk) = anVar (Xk) +

k+n∑
j=k+1

ak+n−j cov (Xk, εj)

= anVar (Xk) +

k+n∑
j=k+1

k∑
l=1

a2k+n−j−l cov (εl, εk+i). (3.15)

Now using the identity

cov (V (n+ k) , V (k)) =
1

a2k+n
cov (Xn+k, Xk) , (3.16)

and by substituting the expression of (3.15) in (3.16), we obtain the two terms of
the following form:

cov (V (n+ k) , V (k)) =
1

a2k
Var (Xk) +

k+n∑
j=k+1

k∑
l=1

a−j−l cov (εl, εj). (3.17)

We will show that under condition (3.11) the second term of the right hand side
of (3.17) converges to zero as n, k →∞. Indeed,

k+n∑
j=k+1

k∑
l=1

a−j−l cov (εl, εj) ≤
k+n∑
j=k+1

k∑
l=1

a−j−l(β (l) + β (j))

≤
k+n∑
j=k+1

a−j
k∑
l=1

a−lβ (l) +

k+n∑
j=k+1

a−lβ (l)

k∑
l=1

a−l ≤

≤ a−1(1− a−n)

1− a−1
1

ak

k∑
l=1

a−lβ (l) +
a−1(1− a−k)

1− a−1
∞∑

j=k+1

a−jβ (j)→ 0. (3.18)
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Now, we may write

|Var (V (n+ k))−Var (V (k))| ≤

≤
∞∑

j=k+1

a−2j (Cα (j) + β (j)) +

k+n∑
i=k+1

i−1∑
j=1

a−i−j cov (εj , εi). (3.19)

Note that from (3.11) it follows that the first term of the right hand side of (3.19)
tends to zero as k → ∞. It remains to show that the second term converges to
zero as k →∞. For this purpose, we may write

k+n∑
i=k+1

i−1∑
j=1

a−i−j cov (εj , εi) ≤
k+n∑
i=k+1

i−1∑
j=1

a−i−j(β(j) + β(i)) ≤

≤
k+n∑
i=k+1

a−i
i−1∑
j=1

a−jβ(j) +

k+n∑
i=k+1

a−iβ(i)

i−1∑
j=1

a−j → 0, n, k →∞. (3.20)

Therefore, from (3.11) and (3.19)-(3.20) it entails that uniformly for n ≥ 0

Var (V (n+ k))−Var (V (k))→ 0, k →∞. (3.21)

Again, by condition (3.11), we obtain

EV (n+ k)− EV (k) ≤
∞∑

j=k+1

a−jα (j)→ 0, k →∞ (3.22)

uniformly for n ≥ 0. Consequently, from (3.18),(3.21)-(3.22) it yields (3.13).
Hence, the existence of a random variable V implies from (3.13) and well-known
Cauchy criterion for average convergence of order p ≥ 1 (see [31], Theorem 7,
Chapter 2, p.333). Consequently, V (n) converges in L2−sense to V as n → ∞.

Now, the application of the inequality (
√
EX2 −

√
EY 2)2 ≤ E(X − Y )2 which can

be easily verified, gives us(√
E(V (n))

2 −
√
EV 2

)2

≤ E(V (n)− V )
2
. (3.23)

By (3.23), we may conclude that

E(V (n))
2 → E(V )

2
, n→∞.

On the other hand, by the inequality (EX)2 ≤ EX2, we have

(E (V (n)− V ))
2 ≤ E(V (n)− V )

2 → 0, n→∞

which ends the proof of Theorem 3.3. �
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