
 
 
 
 

POROELASTICITY AND ITS APPLICATION IN BONE ELEMENTS 
 

ANUP  KUMAR  KARAK 
 
Abstract: Poroelasticity is a well-developed theory for the interaction of fluid and solid states of a fluid-
saturated porous medium. The theory originally was developed for soil mechanics especially for 
consolidation problems. In the theory of biomechanics in which the various bone elements of living 
being are considered as fluid-filled porous elastic materials. The application of poroelasticity to bone 
differs from its application to soft tissues in two important ways. First, the deformations of bone are 
small while those of soft tissues are generally large. Second, the bulk modulus of the mineralized bone 
matrix is about six times stiffer than that of the fluid in the pores while the bulk moduli of the soft 
tissue matrix and the pore water are almost the same. In these works, it was suggested that the theory 
of poroelasticity should be applied to the stress and strain analysis of bones.  
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1. Introduction 

The theory of wave propagation in a porous elastic solid, saturated with a viscous 
compressible fluid was established by Biot [1]. The theory was, however, restricted to 
the low frequency range only where the effect of dissipation due to the relative motion 
of the fluid in the pores with respect to the solid frame was included. Subsequently, 
the theory was also generalized by the author [2] to the wider frequency range. On the 
basis of this theory, Biot predicted the existence of three types of attenuated body 
waves – two dilatation (PI−, PII −  wave) and one rotational wave (S - wave) in porous 
media. If the dissipation be ignored, these waves show unattenuated behaviour. 

It is worthwhile to note that the viscous forces predominate over the inertia 
forces in the low frequency range while in the high frequency range, the inertia forces 
predominate over the viscous ones. This transition between the two frequency ranges 
is governed by a characteristic frequency. Another transition frequency lower than the 
characteristic  frequency exists below which the flow in the pores is of Poiseuille type 
and above which Poiseuille flow breaks down  and the viscosity must be regarded as a 
complex function of non-dimensional frequency parameter. In particular, if the 
frequency parameter is made tend to infinity, the viscosity tends to zero and 
consequently the dynamical equations for the non-dissipative porous case are 
obtained. On the other hand, when the frequency parameter tends to zero, the 
characteristic pore size tends to zero and as a consequence the dynamical equations for 
the classical case result. 

Biot’s dynamical theory of elasticity of fluid- filled porous elastic solid is 
extensively used in studying the seismological problems such as propagation of body 
and surface waves in crustal layers of the earth, fluid-filled rocks, ocean bottom 
sediments etc. Besides seismology, the theory finds applications in the field of 
biomechanics in which the various bone elements of living being are considered as 
fluid-filled porous elastic materials. It is also applicable in the fields of geophysics, 
acoustic engineering, foundation engineering and so on.  

The theory of dynamical poroelasticity was extensively applied by Deresiewicz and 
his co-workers [3-14] to study the effect of boundaries on the wave propagation in 
liquid-filled porous elastic solid. Paul [15] and Jones [16] studied the propagation of 
Love and Rayleigh waves in poroelastic half-space while Gardener [17] discussed the 
extensional vibration of a fluid-saturated porous cylinder. Paria [18] and Chakraborty 
[19, 20] considered some axi-symmetric dynamic response of half-space and spherical 
cavity. Paul [21, 22] studied the disturbance produced in a poroelastic half-space for 
different types of stationary or moving surface loads. Tajuddin and his co-workers [23-
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37] discussed various specific problems in this field. Sanyal and Basu Mallik [38 – 40] 
also gave some contributions in porous media.  

Now bony materials which are the subject of the present investigation were 
discussed by Nowinski and Davis [41-43]. In these works, it was suggested that the 
theory of poroelasticity should be applied to the stress and strain analysis of bones. To 
give an illustration, the compressive strength of bones in a dry state is about 50% 
higher than that of the wet bones, with the ratio 1:2 for the percentage of elongation 
of dry and wet samples respectively [44]. Likewise, the removal of moisture completely 
suppresses the plastic properties of bones. 

In our investigation, we assume that the volume concentration of pores (porosity) 
in the bulk material is uniform so that the material may be regarded as quasi-
homogeneous and quasi-isotropic. Also we consider that in the two-phase solid-fluid 
system, the solid skeleton is linearly and perfectly elastic and undergoing small 
deformations. The liquid phase is a perfect fluid and the pores are interconnected. 
With these assumptions, we apply Biot’s theory to the propagation of longitudinal 
waves in bony materials having the form of long cylindrical bars of circular cross-
section. To solve the problem, the four coupled differential equations are reduced to 
the solution of a single ordinary differential equation with variable coefficients and a 
regular singular point and this equation is solved by Frobenius method. External 
loading on the curved surface is supposed to be absent and the surface is assumed to 
be permeable to the flow of pore fluid. 
 

2. General  Equations 
Let us consider an infinite circularly cylindrical bar of radius a of poroelastic 

material with its longitudinal axis coinciding with the z-axis of the cylindrical 
coordinates (r, 𝜃, 𝑧). Then the equations governing the wave propagation in 
poroelastic bodies are [1] 

           N∇2u + 𝛁[(A + N)e + Q𝜖] = 
𝜕2

𝜕𝑡2
(𝜌11 𝒖 + 𝜌12 𝐔 ) 

                   𝛁(Qe + Rϵ) = 
𝜕2

𝜕𝑡2
(𝜌12 𝒖 + 𝜌22 𝐔 )                      

(1) 
Where e and 𝜖 are the dilatations of the solid and liquid phases respectively, 
                                 e = . 𝒖 , 𝜖 = 𝛁. 𝐔                       
(2) 
with u and U as the displacement vectors. The𝜌’s are the mass coefficients s.t. the 
sums 𝜌11 + 𝜌12 and 𝜌12 + 𝜌22 represent the mass of solid and mass of fluid per unit 
volume of the bulk material respectively. A, N, Q, R are the material coefficients. 
In the axisymmetric case, equations (1) become 

(A + 2N) 
𝜕𝑒

𝜕𝑟
 + 2N 

𝜕𝑤𝜃

𝜕𝑧
 + Q 

𝜕𝜖

𝜕𝑟
 = 𝜌11 

𝜕2𝑢𝑟

𝜕𝑡2
 + 𝜌12 

𝜕2𝑈𝑟

𝜕𝑡2
,                                            

                                             (A + 2N) 
𝜕𝑒

𝜕𝑧
 − 

2N

r
 

𝜕

𝜕𝑟
(𝑟𝑤𝜃) + Q 

𝜕𝜖

𝜕𝑧
 = 𝜌11 

𝜕2𝑢𝑧

𝜕𝑡2
 + 𝜌12 

𝜕2𝑈𝑧

𝜕𝑡2
,                                   

(3a) 

Q 
𝜕𝑒

𝜕𝑟
 + R 

𝜕𝜖

𝜕𝑟
 = 𝜌12 

𝜕2𝑢𝑟

𝜕𝑡2
 + 𝜌22 

𝜕2𝑈𝑟

𝜕𝑡2
,      

Q 
𝜕𝑒

𝜕𝑧
 + R 

𝜕𝜖

𝜕𝑧
 = 𝜌12 

𝜕2𝑢𝑧

𝜕𝑡2
 + 𝜌22 

𝜕2𝑈𝑧

𝜕𝑡2
                                                                      

(3b) 
with 

      e = 
1

𝑟
 

𝜕

𝜕𝑟
(𝑟𝑢𝑟) + 

𝜕𝑢𝑧

𝜕𝑧
 ,   𝜖 = 

1

𝑟
 

𝜕

𝜕𝑟
(𝑟𝑈𝑟) + 

𝜕𝑈𝑧

𝜕𝑧
,   𝑤𝜃 =  

1

2
(

𝜕𝑢𝑟

𝜕𝑧
− 

𝜕𝑢𝑧

𝜕𝑟
).                            

(3c) 
The stress-strain relations are  
   𝜎𝑟𝑟 = 2N𝑒𝑟𝑟 +  𝐴𝑒 + 𝑄𝜖 , 
                        𝜎𝜃𝜃 = 2N𝑒𝜃𝜃 +  𝐴𝑒 + 𝑄𝜖 ,                                                                 
(4) 
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   𝜎𝑟𝑧 = 2N𝑒𝑟𝑧  , 
   s =  Qe + R𝜖 
where s is a quantity proportional to the fluid pressure. 
 Let us now assume that a train of sinusolidal wave propagates along the z-axis 
of the cylinder so that 
                [𝑢𝑟  , 𝑢𝑧  , U𝑟  , U𝑧 , ] = [𝑅1(𝑟), 𝑅2(𝑟), 𝑅3(𝑟), 𝑅4(𝑟)] exp {𝑖(𝛾𝑧 + 𝑝𝑡)}                   
(5) 

Where p is the wave frequency, 
𝑝

𝛾
 is the phase velocity and 𝑅𝑖 (r), (I = 1, 2, 3, 4) are 

functions of r to be determined. 
Keeping (5) in mind equations (3) can be written as 

(A + 2N) 
𝜕𝑒

𝜕𝑟
 + 2N i𝛾𝑤𝜃 + Q 

𝜕𝜖

𝜕𝑟
 = − 𝜌11 𝑝2𝑢𝑟  −  𝜌12 𝑝2U𝑟,    

(A + 2N) i𝛾𝑒  − 
2N

r
 

𝜕

𝜕𝑟
(𝑟𝑤𝜃) + Q i𝛾𝜖 = − 𝜌11 𝑝2𝑢𝑧  −  𝜌12 𝑝2U𝑧,                   (6a) 

Q 
𝜕𝑒

𝜕𝑟
 + R 

𝜕𝜖

𝜕𝑟
 = − 𝜌12 𝑝2𝑢𝑟  −  𝜌22 𝑝2U𝑟,     

Q 
𝜕𝑒

𝜕𝑧
 + R 

𝜕𝜖

𝜕𝑧
 = − 𝜌12 𝑝2𝑢𝑧  −  𝜌22 𝑝2U𝑧                                

(6b) 
A longer manipulation of the above equations leads to  

                        
𝜕2𝑒

𝜕𝑟2
 + 

1

𝑟

𝜕𝑒

𝜕𝑟
+ (𝛽1𝑝2 − 𝛾2)𝑒 + 𝛽2𝑝2𝜖 = 0   

    
𝜕2𝜖

𝜕𝑟2
 + 

1

𝑟

𝜕𝜖

𝜕𝑟
+ (𝛽1𝑝2 − 𝛾2)𝜖 + 𝛽4𝑝2𝑒 = 0                                                         

(7) 
where 

 𝛽1 = 
𝑄𝜌12  −  𝑅𝜌11   

𝛼
 ,  𝛽2 = 

𝑄𝜌22 −  𝑅𝜌12  

𝛼
 ,  

  𝛽3 =  
(𝐴 +2𝑁)𝜌22 − 𝑄𝜌12

−  𝛼
 ,   𝛽4 =  

(𝐴 +2𝑁)𝜌12 − 𝑄𝜌11

−  𝛼
                            

(8) 
  𝛼 =  𝑄2 − 𝑅(𝐴 + 2𝑁). 
Employing the expressions (5), we obtain from (7) 

                         𝑆1
′′ + 

1

𝑟
 𝑆1

′ + 𝛾1𝑆1 + 𝛽2𝑝2𝑆2 = 0,                                                                

(9a) 

                        𝑆2
′′ + 

1

𝑟
 𝑆2

′ + 𝛾2𝑆2 + 𝛽4𝑝2𝑆1 = 0,                                                                

(9b) 
where 

                             𝑆1 =  𝑅1
′ +  

1

𝑟
 𝑅1  + i γ𝑅2 ,  

                             𝑆2 =  𝑅3
′ +  

1

𝑟
 𝑅3  + iγ𝑅4                                                  

(10) 
                             𝛾1 =  𝛽1𝑝2 − 𝛾2,    𝛾2 =  𝛽3 𝑝2 − 𝛾2. 
Noting from (9a) that  

        𝑆2 =  − 
1

𝛽2𝑝2 [ 𝑆1
′′ + 

1

𝑟
 𝑆1

′ + 𝛾1𝑆1 ]                                                            

(11) 
we have from (9b) 

                  𝑟3 𝑆1
𝑖𝑣 + 2𝑟2𝑆1

′′′ + [(𝛾1 + 𝛾2)𝑟3 −  𝑟]𝑆1
′′ + [(𝛾1 + 𝛾2)𝑟2 +  1]𝑆1

′ 
                                                                             + (𝛾1𝛾2 − 𝛽2𝛽4𝑝2)𝑟3𝑆1 = 0                       
(12) 
Since all the coefficients of the basic equation are finite single-valued and continuous 
throughout the domain of definition 0 ≤ 𝑟 ≤ 𝑎, the only singular points which may 
occur within that interval are the zeros of the leading coefficients. For the present 
discussion, we write equation (12) in a symbolic and symmetric form  
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                 𝑟4𝜑𝑖𝑣 + 𝑟3𝑃1(𝑟) 𝜑′′′ + 𝑟2𝑃2(𝑟) 𝜑′′ + r 𝑃3(𝑟) 𝜑′ + 𝑃4(𝑟) 𝜑 = 0                               
(13) 
Where 𝜑 = 𝜑(𝑟) represents the function 𝑆1. Clearly, 𝑃1(𝑟), 𝑃2(𝑟), .  .  .  .  .  are 
analytic in the neighbourhood of the origin r = 0 since these are algebraic expressions.  
 Now 𝑟−𝑠𝑃𝑠(𝑟), (s = 1, 2, 3, 4), are of order 𝑟−𝑠 as r →  0, since 𝑃𝑠(𝑟) remain 
bounded throughout this process. But this is the necessary and sufficient condition in 
order that r = 0 be a regular singular point. Hence equation (12) possesses a 
fundamental set of solutions regular at the origin and it is possible to obtain at least 
some of the solutions in the form of power series by using Frobenius method. 
 The point r = 0 being regular the associated indical equation must be a 
polynomial of degree n = 4 in the exponent of the power solution. Some of these 
exponents (roots) may be equal or differ by an integer so that the number of particular 
solutions of the type considered may fall short of n = 4. However, by differentiating 
equation (9), we have raised the order of the equation and this has introduced 
additional solutions which are not necessary solutions of the original problem. In fact, 
we will see later that to satisfy the boundary conditions of the problem, it is sufficient 
to know one particular solution of equation (12). 
 

3.   Solutions  of  Problem 
 For the solution of (12) we take 
                                     𝑆1(r) = ∑ 𝑎𝑘𝑟𝑘+ 𝛿 ,∞

𝑘=0  (𝑎0  ≠ 0),                                                         
(14) 
Where the parameter 𝛿 is determined from the indicial equation 
             𝛿2(𝛿 − 2)2 = 0.                                                                                    
(15) 
With double roots 𝛿1 = 0, 𝛿2 = 2. Since the roots differ by an integers, they provide a 
single independent solution, say 
                                     𝑆1(r) = ∑ 𝑎𝑘𝑟𝑘 .∞

𝑘=0                                                                                
(16) 
In order that the function 𝑆2(r) to be finite at r = 0, we should have 𝑎1 ≡ 0 and the 
general recurrence formula becomes 

                                    𝑎𝑛 =  
− 𝑎𝑛−2[2(𝛾1+ 𝛾2)(𝑛−2)]− 𝑎𝑛−4 (𝛾1 𝛾2− 𝛽2𝛽4𝑝4) 

[3𝑛(𝑛−1)(𝑛−2)− 𝑛 (𝑛−1)+ 𝑛]
 ,                                  

(17) 
with n = 2, 4, 6, . . . . . . . ., all the coefficients with an odd subscript vanishing. It may 
be noted from (17) that 𝑎0, 𝑎2 remain undetermined. These have to be determined 
from the boundary conditions on the curved surface of the bar. 
Let us first express the solid and liquid phase dilatation in terms of the functions 𝑆1 
and 𝑆2 as  
   (𝑒, 𝜖) =  (𝑆1, 𝑆2)𝑒𝑥𝑝{𝑖(𝛾𝑧 + 𝑝𝑡)}                   
  (18) 
Inserting these into the equations of (6a) we obtain after some rearrangement 

                                     
𝜕𝐸

𝜕𝑟
=  𝜌1

∗ 𝑢𝑟 −  𝑁𝑖𝛾
𝜕𝑢𝑧

𝜕𝑟
, 

                                  𝑖𝛾𝐸 =  𝜌2
∗ 𝑢𝑧 − 

𝑁𝑖𝛾

𝑟
 

𝜕

𝜕𝑟
(𝑟𝑢𝑟) + 

𝑁

𝑟
 

𝜕𝑢𝑟

𝜕𝑟
+  𝑁

𝜕2𝑢𝑧

𝜕𝑟2
                                 

(19a) 
where    

E = − [(𝑃 − 
𝜌11

𝜌12
 𝑄) 𝑒 + (𝑄 − 

𝜌12

𝜌22
 𝑅) 𝜖], 

                                     𝜌1
∗ =  𝜌11𝑝2 − 

𝜌12
2

𝜌22
 𝑝2  − N𝛾2,                 

(19b) 

                                     𝜌2
∗ =  𝜌11𝑝2 − 

𝜌12
2

𝜌22
 𝑝2 , p = A + 2N. 
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Eliminating 𝑢𝑟 from equation (19a) and ordering we have  

    
𝜕2𝑢𝑧

𝜕𝑟2
 + 

1

𝑟
 

𝜕𝑢𝑧

𝜕𝑟
+ 

𝜌2
∗

N2𝛾2

𝜌1
∗ + 𝑁

 𝑢𝑧 =  
𝑖𝛾𝐸

𝑁2𝛾2 

𝜌1
∗ + 𝑁

  +  
𝑖𝛾

𝑁𝛾2 + 𝜌1
∗ 
 

1

𝑟
 

𝜕𝐸

𝜕𝑟
 + 

𝑖𝛾

𝑁𝛾2 + 𝜌1
∗ 
  

𝜕2𝐸

𝜕𝑟2
                                

(20) 
So that by means of the transformation 

  𝐸∗ = − [(𝑃 − 
𝜌12

𝜌22
 𝑄) 𝑆1 + (𝑄 − 

𝜌12

𝜌22
 𝑅) 𝑆2 ]                                                 

(21) 
Equation (20) is reduced to 

  𝑟2 𝑑2𝑅2

𝑑𝑟2
 + r 

𝑑𝑅2

𝑑𝑟
 + 𝜆2𝑟2𝑅2 = G(r)                  

(22a) 
with   

G(r) = 𝑏1𝑟2𝐸∗  + 𝑏2𝑟
𝑑𝐸∗

𝑑𝑟
 + 𝑏2𝑟2 𝑑2𝐸∗

𝑑𝑟2
                                

(22b) 
 and                 

                       𝜆2 = 
𝜌2

∗

𝑁2𝛾2 

𝜌1
∗  + 𝑁

,  𝑏1 =  
𝑖 𝛾

𝑁2𝛾2 

𝜌1
∗  + 𝑁

 ,  𝑏1 = 
𝑖𝛾

𝑁𝛾2 + 𝜌1
∗  
                                     

(22c) 
Introducing the new variable x = λr, equation (22a) becomes 
                             𝑥2𝑅2

′′ +  𝑥 𝑅2
′ + 𝑥2𝑅2 = 𝐺(𝑥)                                                                

(23) 
where prime denotes differentiation w. r. t. x 
 The C. F. of the solution of (23) is 
                 𝑅2 =  𝐶1 𝐽𝑜(𝑥) + 𝐶2 𝑌𝑜(𝑥)                                                                           
(24) 
P. I. of the nonhomogeneous equation (23) can be easily obtained by the method of 
variation of parameter as 

 𝑅2part
 = −

𝜋

2
 𝐽𝑜(𝑥) ∫ 𝑥𝑌𝑜(𝑥) 𝐺(𝑥)𝑑𝑥  + 

𝜋

2
 𝑌𝑜(𝑥) ∫ 𝑥𝐽𝑜(𝑥) 𝐺(𝑥)𝑑𝑥 .     

Thus by retransformation to the variable, the complete solution of (23) in its final 
form is  

 𝑅2 =  𝐶1𝐽𝑜(𝜆𝑟) + 𝐶2𝑌𝑜(𝜆𝑟) −
𝜋

2
 𝐽𝑜(𝜆𝑟) 𝜆2 ∫ 𝑟𝑌𝑜(𝜆𝑟)𝐺(𝑟)𝑑𝑟   

                 + 
𝜋

2
 𝑌𝑜(𝜆𝑟) 𝜆2 ∫ 𝑟𝐽𝑜(𝜆𝑟)𝐺(𝑟)𝑑𝑟.                                        

(25) 
In order to guarantee the boundedness of 𝑅2(r) at the point r = 0, we investigate the 
behavior of this function at r = 0. Confining ourselves to the terms involving the 
coefficients 𝑎0 and 𝑎2, we obtain from (22b) 

G(r) = 𝑟2  [𝑏1  {𝑞1(𝑎0 + 𝑎2 𝑟2) − 
𝑞2

𝛽2𝑝2
 (𝛾1𝑎0 + 4𝑎2 + 𝛾1𝑎2𝑟2)} +  4𝑏2  (𝑞1 −

 
𝑞2𝛾1

𝛽2𝑝2
) 𝑎2] (26a) 

where  

  𝑞1 = − 𝑃 + 
𝜌12

𝜌22
 𝑄 ,  𝑞2 =  − 𝑄 + 

𝜌12

𝜌22
 𝑅.                                                       

(26b) 
It is seen that in the interval 0 ≤ 𝑟 ≤ 𝑎. G(r) remains bounded with its upper bound, 
say M. On the other hand 

            ∫ 𝑟 𝑌𝑜(𝜆𝑟)𝑑𝑟 =  
𝑟

𝜆
 𝑌1(𝜆𝑟),  ∫ 𝑟 𝐽𝑜(𝜆𝑟)𝑑𝑟 =  

𝑟

𝜆
 𝐽1(𝜆𝑟) 

So that in the neighbourhood of the point r = 0 the integrals in (25) behave like 

𝑟2 ( 𝛾 + 𝑙𝑛
𝜆𝑟

2
), (dropping the bounded factors), and 𝑟2 respectively (𝛾 =
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Euler′s constant). It follows that the third and fourth terms in (25) behave like 

𝑟2 ( 𝛾 + 𝑙𝑛
𝜆𝑟

2
) and consequently tend to zero as r → 0.  

 Since 𝑌𝑜(𝜆𝑟) is unbounded at r = 0, so the boundedness of 𝑅2(0) requires 
that 𝐶2  ≡ 0. Thus we are left with three unknown integration constants 𝑎0, 𝑎2 
and 𝐶1 to be determined from the boundary conditions. 

4. Boundary  Conditions  − Frequency  Equation 
By hypothesis, the curved surface of the bar should be free from external load and 
permeable for the fluid, so that  
           𝜎𝑟𝑟 =  𝜎𝑟𝑧 = 𝑠 = 0 at r = a.                                                              
(27) 
Substitution of (4) into the foregoing conditions gives the following system of three 
equations for the three unknown coefficients 𝑎0,   𝑎2 and 𝐶1 

2N𝑅1
′ +  𝐴𝑆1 +  𝑄𝑆2 = 0, 

   𝑅1𝑖𝛾 + 𝑅2
′ = 0,     

  
                              Q𝑆1 +  𝑅𝑆2  = 0.                                                                
(28) 
Using (19a) and then (5) we obtain from (28) 

  𝑅1  =  
1

𝜌1
∗

 𝑁𝑖𝛾 𝑅2
′ + 

1

𝜌1
∗
 𝐸∗′                                                                           

(29) 
where 

𝐸∗′ =  𝑞1(2𝑎2𝑟 + 4𝑎4𝑟3+ .  .  .  .  . ) −
𝑞2

𝛽2𝑝2
[(2𝛾1𝑎2 +  16 𝑎4)𝑟 + 4(36𝑎6 +

 𝛾1𝑎4)𝑟3 + .  .   .  .  .  ]                                                                                                                                
(30) 
We may now cast the stress boundary conditions (28) into the form  

2𝑁2𝑖𝛾𝜆 [ – 𝐶1 𝐽1
1(𝜆𝑟) +  

𝜋

2
 𝜆2 𝐽1

′(𝜆𝑟) ∫ 𝐺(𝑟) 𝑌𝑜(𝜆𝑟) 𝑑𝑟  

           + 
𝜋

2
 𝜆2 𝐽1(𝜆𝑟) 𝐺(𝑟) 𝑌𝑜(𝜆𝑟) – 

𝜋

2
 𝜆2 𝑌1

′(𝜆𝑟) ∫ 𝐺(𝑟) 𝐽𝑜(𝜆𝑟)𝑑𝑟                                   

           –  
𝜋

2
 𝜆2𝑌1(𝜆𝑟)𝐺(𝑟)𝐽𝑜(𝜆𝑟)] + 2N𝐸∗′′ + 𝑃1

∗𝑄𝑆2(𝑟) = 0 at r = 𝑎, 

 (1 − 
𝑁𝛾2

𝜌1
∗
)λ [– 𝐶1 𝐽1(𝜆𝑟) +  

𝜋

2
 𝜆2 𝐽1(𝜆𝑟) ∫ 𝐺(𝑟) 𝑌𝑜(𝜆𝑟) 𝑑𝑟                                            

(31) 

                         – 
𝜋

2
 𝜆2 𝑌1(𝜆𝑟) ∫ 𝐺(𝑟) 𝐽𝑜(𝜆𝑟)𝑑𝑟] + 

𝑖𝛾𝐸∗′

𝜌1
∗

 = 0 at r = a 

Q 𝑆1 (r) + Q 𝑆2 (r) = 0 at r = a. 
A nontrivial solution of this system requires the vanishing of the determinant of the 
system. The computations may be simplified by first solving equation (37)2 w. r. t. 
𝐶1 𝐽1(𝜆𝑟) and then differentiating w.r.t. r and inserting into equation (37)1. Then we 
have 

[
2𝑁2𝛾2

(𝜌1
∗− 𝑁𝛾2)

 + 2𝑁] 𝐸∗′′ +  𝑄𝜌1
∗𝑆2 (r) = 0 at r = a, 

                                     Q 𝑆1 (r) + R 𝑆2 (r) = 0 at r = a. 
For a first approximation we retain only two terms in the series expansions involving 
𝑎0 and 𝑎2 and rewrite above equations in a more symmetric form 

− 
𝑄𝜌1

∗𝛾1

𝛽2𝑝2
𝑎0 + [(

4𝑁𝛾2

𝜌1
∗ −  𝑁𝛾2

+  4𝑁) (𝑞1 − 
𝑞2𝛾1

𝛽2𝑝2
) −

𝑄𝜌1
∗

𝛽2𝑝2
(4 + 𝛾1𝑎2) ] 𝑎2 =  0,  

(𝑄 − 
𝑅𝛾1

𝛽2𝑝2
) 𝑎0 + (𝑄𝑎2 − 

4𝑅

𝛽2𝑝2
− 

𝛾1𝑎2𝑅

𝛽2𝑝2
) 𝑎2 = 0. 

Vanishing of the determinant of this system now yields, after some transformations  
                                           𝑝4𝜑1 − 𝑝2𝛾2𝜑2 + 𝛾2𝜑3                                                             
(32) 
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Where 

  𝜑1 =  (𝜌11 − 
𝜌12

2

𝜌22
) 𝑄2𝛽2 + (𝛽1𝑞2 − 𝛽2𝑞1)(𝑄𝛽2 −  𝑅𝛽1)𝑁, 

            𝜑2 =  𝑁[(𝑄𝛽2 −  2𝑅𝛽1)𝑞2 +  𝑅𝛽2𝑞1 +  2𝑄2𝛽2],     
(33) 
                       𝜑3 = − 𝑁R𝑞2. 
Using the notations 

                  c = 
𝑝

𝛾
 , 𝜓1 =  

𝜑2

𝜑1
, 𝜓3 =  

𝜑3

𝜑1
                                                                               

(34) 
The equation (33) is converted into a simpler form 
     𝑐4 − 𝜓1𝑐2 + 𝜓2 = 0.                                                                                    
(35) 
From which we obtain immediately two velocities of propagation of the longitudinal 
waves, 𝑐1 and 𝑐2, where 

                𝑐1
2 = 

𝜓1+ √𝜓1
2− 4𝜓2    

2
 ,  𝑐2

2 = 
𝜓1− √𝜓1

2− 4𝜓2    

2
                                   

(36) 
 
The existence of two wave velocities in the bar agrees with a similar finding of Biot for 
an infinite poroelastic space [1] 
 An inspection of the intricate representation of the symbols 𝜓1 and 𝜓2 in 
terms of the material constants A, N, Q, R by means of the relations (34), (33), (26b) 
and (8), indicates that even the first approximation to the wave velocities in 
poroelastic bodies is  highly complicated. This difficulty is aggravated by the fact that 
the material coefficients of the bony materials are in a great measure unknown. 
However, we attempt a rough analysis using the meager data available and following 
Biot’s comments on the elastic coefficients of the consolidation theory  
[ 1 ]. As contended in [ 2 ], the  constants A, N, Q R may be represented as follows: 

A - 
𝑄2

𝑅
=  𝜆, N = 𝜇, 

Q = 
𝑓 (1−𝑓− 

𝜁

𝜅
)

𝜉 + 𝜁− 
𝜁2

𝜅
 
  , R = 

𝑓2

𝜉 +  𝜁− 
𝜁2

𝜅

                                                               (37) 

where 𝜆, μ are Lame  constants under condition of pore pressure, f the porosity, 𝜅 and 
𝜁 the coefficients of jacketed and unjacketed compressibility respectively and 𝜉 the 
coefficient of fluid content. 
 Noting that 𝜅 is the inverse of the bulk modulus under conditions of 
constant pore pressure one obtains 

𝜅 = 
3(1−2𝜎)

𝐸
       (38) 

where E is Young’s modulus and 𝜎 is Poisson’s ratio. Taking values of these to be 3 ×
 106 and 0.28 [43], an approximate value of 𝜅 is  

𝜅 = 0.44 × 10−6 𝑖𝑛2/𝑙𝑏.                                                                   (39) 
Typical values of porosity of compact bone are given to range from 8 – 22 percent 
[43]. We take the value of 14 percent. 

It can be shown that [43] f ≤ 1 − 
𝜁

𝜅
 ≤ 1 

so that in the present case 0 ≤  𝜁 ≤ 0.80𝜅 and using (39), we have  
   𝜁 ≈ 0.22 × 10−6 𝑖𝑛2 / lb.                                                               
(40) 
We also suppose the fluid to be incompressible for which ξ = - f 𝜁 so that using the 
present values  
   ξ ≈  −0.0308 ×  10−6 𝑖𝑛2 / lb.                                                        
(41) 
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with these values, the coefficients A, N, Q, R can be calculated. 
Now the only additional numerical values required are for the mass parameters. As a 
reasonable approximation, we take the mass coupling parameter 𝜌12 to be equal to 
zero. The total mass of both solid and fluid constituent per unit volume of bulk 
material is then 𝜌 = 𝜌12 + 𝜌22.   Assuming the fluid mass density to be that of water 
and a value of  𝜌 to be [43] 𝜌 = 3.7 𝑠𝑙𝑢𝑔/ 𝑓𝑡3, we obtain finally 
  𝜌11 = 1.65 × 10−4  lb 𝑠𝑒𝑐2 / 𝑖𝑛4, 𝜌22 = 0.14 ×  10−4  lb 𝑠𝑒𝑐2 / 
𝑖𝑛4.             (42) 
Substitution of all the foregoing approximate values into expressions (36) yields two 
wave velocities in the bony material equal to 
                      𝑐1 = 1.40 ×  10−5ips, 𝑐2 = 0.97 ×  105ips. 
 It is interesting to note the two velocities so calculated bracket the velocities 
found by McElhaney [45] on the basis of his experimental work. In fact, McElhaney’s 
values are 1.21 ×  105 ips for fresh bovine and the embalmed human femur bone, 
respectively. 
 

5. Concluding Remarks 
As mentioned earlier, the entire set of the material coefficients of bony material is in a 
great measure unknown and the foregoing numerical evalution may only be 
considered as a rough estimate. It seems that the next step in examination of the 
applicability of the theory requires extensive experimental work which could provide 
more reliable data. 
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