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1. Introduction 
lightlike geometry have been studied by K. L. Duggal and A. Bejancu [1, 2] 
and D. N. Kupeli [3] with different approaches. Recently, many geometers 
investigated lightlike hypersurfaces by using the fundamental knowledge 
introduced by Duggal-Bejancu with various geometric conditions and 
obtained many important results. For example, D. H. Jin [4] proved a 
classification theorem of lightlike hypersurface M with totally umbilical 
screen distribution of a semi-Riemannian space form. C. Atindogbe and K. 
L. Duggal [5] introduced screen conformal lightlike hypersurface and proved 
that its induced Ricci curvature tensor is symmetric. Two monographs by 
Duggal-Jin [6] and Duggal-Sahin [7] contain a collection of many interesting 
results on lightlike hypersurfaces, and have, further, motivated other 
scholars to take an active role in the study of lightlike geometry. For instance 
see [8–11]. 

The object of present paper is to study the properties of Hopf  lightlike 
hypersurfaces of  indefinite cosympletic manifold.                                                                      

 
2. Lightlike hypersurfaces 

 

Let (M, g) be a lightlike hypersurface of M . The normal bundle 
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T M  of M is a subbundle of the tangent bundle TM of M, of rank 1, and 

coincides with the radical distribution Rad(TM) = TM  T M . Denote 
by F (M) the algebra of smooth functions on M and by T(E) the F (M) 
module of smooth sections of any vector bundle E over M.  
 

A complementary vector bundle S(TM) of Rad(TM) in TM is non-
degenerate distribution on M, which is called a screen distribution on M, 
such that 
 
TM = Rad(TM) orth S(TM), 
 
where  orth denotes the orthogonal direct sum. For any null section  of 

Rad(TM), there exists a unique null section N of a unique lightlike vector 

bundle tr(TM) in the orthogonal complement S )(TM  of S(TM) satisfying 

 
g ( , N) = 1,  g  (N; N) = g  (N; X) = 0;   8 X   T(S(TM)): 

 
We call tr(TM) and N the transversal vector bundle and the null transversal 
vector field of M with respect to the screen distribution S(TM), respectively. 
  

The tangent bundle T M  of M  is decomposed as follow: 
    

T M  = TM   tr(TM) =  {Rad(TM)   tr(TM)}  orth S(TM): 
 

In the sequel, let X, Y, Z and W be the vector fields on M, unless 
otherwise specified. Let P be the projection morphism of TM on S(TM). 
Then the local Gauss and Weingartan formulas of M and S(TM) are given 
respectively by 

(2.1) ( . ) .X XY Y B X Y N                    

(2.2) ( ) ,X NN A X X N                  

(2.3) ( . ) .X XPY PY C X PY              

( ) ,X A X X                         

 

where  and  are the induced linear connections on TM and S(TM) 
respectively, B and C are the local second fundamental forms on TM and 

S(TM) respectively, AN and 

A  are the shape operators on TM and S(TM) 

respectively, and are 1-forms on TM. 

The induced connection    is connection of M is not metric and satisfies 
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         ,    ,    ,   ( ) ,X g Y Z B X Y Z B X Z Y    

where   is a 1-form such that 

 
 (X) = g (X, N). 

As B(X,Y ) = ),( Yg X , so B is independent of the choice of S(TM) and 

satisfies 
,    0,  ( (2. ) ) .4) (B X X TM     

Local second fundamental forms are related to their shape operators by 

 ,    ,  (2.5) ( ) ( , ,   ,)  0A g AB X Y g X Y X N 
  

 
     ,     ,   , ,   0.(2.6) N NC X PY g A X A X NgPY 

 
 

Denote by R , R and R   the curvature tensor of the semi-symmetric 

metric connection  on M  and the induced linear connection   and 
  on M and S(TM) respectively. Using the Gauss-Weingarten formulas, 

we obtain two Gauss-Codazzi equations for M and S(TM) such that 

     

   

     

(2.7) ( , )

{(

,     ,     ,  

 ,    ,   

  ,   ( ,  

) ( )

)} ,

N N

X Y

R X Y Z B X Z A Y B Y Z A X

B Y

R X Y

Z B X Z

X B Y Z Y B X Z

Z

N



 



 

 



 
(2.8) ( , ) ( , ) ( , ) ( , )

{( )( , ) ( )( , )

( ) ( , ) ( ) ( , )} .
X Y

R X Y PZ R X Y PZ C X PZ A Y C Y PZ A X

C Y PZ C X PZ

X C Y PZ Y C X PZ

 

  

    

   

 

 

 
In case R = 0, we say that M is flat. 
B.Y. Chen-K. Yano [12] introduced the notion of a semi-Riemannian 
manifold of quasi-constant curvature as a semi-Riemannian manifold 

( M , g ) endowed with the curvature tensor R satisfying the following 

form: 

   

   

       

,  ,  }

 ,  

(2.9) ( , ) {

{ ( ) ,  )

       

(

},

Y Z X X Z Y

Y Z X

R X Y Z g g

g g

Z X Z Y

X Z Y

Y X

  

   



 







 



  

for any vector fields X, Y and Z of M  , where λ and µ are smooth 
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functions, ζ  is a smooth vector field and θ is a 1-form associated with ζ by 

θ(X) =  , .g X   

Comparing the tangential and transversal components of  (2.7) and (2.9), 
We have 

   

   

       

(2.10) ( , ) {

{ ( (

}

( (

)( )( ( (

,  ,  }

 ,  ) ,  )

       

Y, Z) A , ) A ,

(2.11) ( Y, Z) ( , ) (X) Y, Z) ( ) , ) 0.

N N

X Y

Y Z X X Z Y

Y Z X X Z Y

Y X

R X Y Z g g

g g

Z X Z Y

B B X

B B X B B

X

Y ZX

Z Y

Z



   

   

 









 





     

 
 
3. Indefinite Cosympletic Manifold 
Let M be an almost contact manifold equipped with an almost contact 
metric structure ( , , , )g   consisting of a (1,1) tensor field  , a vector 

field   , a 1-form   and a compatible Riemannian metric g satisfying 

(3.1)
2 ( ) , ( , ) ( , ) ( ), ( ), ( ) 1,J X X X g J X JY g X Y X Y         

 
   From this, we also have         

0, 0, (J , ) ( , J ), ( ) ( , ).J oJ g X Y g X Y X g X        

                    for all  , ( ).X Y M  

On an almost contact metric manifold M we may always define a 2-form   

by ( , ) ( , ).X Y g X Y  (M, , , , )g   is said to be an almost 

cosymplectic manifold [13] if  the form  and   are closed i. e. 

0d  and 0d  , where d is the operator of exterior differentiation.In 

particular, if the almost contact structure of an almost cosymplectic 
manifold is normal, then it is said to be a cosymplectic manifold [14]. As it 
is known, an almost contact metric structure is cosymplectic if and only if 
both  and   vanish, where   is the covariant differentiation with 

respect to g. 
For a lightlike hypersurface M of an indefinite cosympletic manifold 
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( M , g ), it is known [15] that J(Rad(TM)) and J(tr(TM)) are subbundles of 

S(TM), of rank 1 such that J(Rad(TM))  J(tr(TM)) = 0. Thus there exist 
two non-degenerate almost complex distributions Do and D on M with 
respect to J, i.e., J(Do) = Do and J(D) = D, such that 
 
S(TM) = J(Rad(TM))   J(tr(TM))  orth Do; 
 
D = {Rad(TM)  orth J(Rad(TM))}  orth Do; 

             ,TM D J tr TM                           

Consider two null vector  fields U and V , and two 1-forms u and v such 
that 

    ,     .(3.2) U JN V J   

 
Denote by S the projection morphism of TM on D. Any vector field X of M 
is expressed as X = SX + u(X)U,  where u and v are 1-forms locally defined 
on M by  

       (3.3)   ,      . ; ,  u X g X V v X g X U    

Applying J to this form, we have 

   (3. )   ,4 JX FX u X N   

where F is a tensor field of type (1, 1) globally defined on M by F = JoS.  
 

Applying X  to (3.2)  (3.6) and  using (2.1)
 

 (2.4), with (3.2)  (3.6), 

we have  

   ,  (3.  ,)  ,5 B X U C X V  

        (3.6)  ,NX U F A X X U 
 

    (3. )  ( ) ,7 X AV F X X V  
 

      (3.8) ( ) ,  .NX F Y u Y A X B X Y U 
 

Applying X  to  ( , ) 0g      and  ( , ) 0g N  , we have  

 ,(3   0.9) .B X    

Thorem: Let M  be an indefinite cosympletic manifold with a lightlike 
hypersurface M, then if F is parallel with respect to the induced connection 

 , then M  and M are flat manifolds and the transversal connection of M 
is also flat. 
Proof: If F is parallel, then by (3.8), we have 

 (3.10) X B(X,Y )U 0.NAu Y    
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Replacing X by U and Y by V, we have 0,   So M  is a flat manifold. 
Taking Y = U in (3.10), we have 

 (3.1  1) ( ) .N UA X X  

Taking scalar product with V to (3.10), we have 

   ,Y  u(Y) ,B X X  

i.e. * , )  g( ( Y( )V, ).X Y Xg A   

As *A X  and V belong to S(TM), and S(TM) is non-degenerate, so we have 

 *(3.12)    .XA X V   

 
Using  (3.11) and (3.12) in (2.10) with 0,    we have  

( , ) { ( ) ( ) ( ) ( )} (Z) U 0.R X Y Z Y X X Y u       

Therefore R = 0 , hence M is flat. 
Using (3.11) in (3.6) and with FU = 0, we have 

                   X U X U  

Using this in [ , ]  0 ,X Y Y X X YU U U        we have 0.d   

Hence transversal connection of M is flat.  
 
4. Hopf  lightlike hypersurfaces 

 
Definition: The canonical structure vector field U is called principal [16], 

with respect to the shape operator *A  , if there exists a smooth function f 

such that  

(4.1)       *A U fU  .  

 

A lightlike hypersurface M of an indefinite almost complex manifold M  is 
said to be a Hopf lightlike hypersurface [16] if it admits a principal 

canonical structure vector field U, with respect to the shape operator *A .  

Taking scalar product with X to (4.1) and with (3.5), we have 
 
 (4.2)               

( , ) f (X), ( , ) f (X), ( ) f (X).B X U C X V X      . 

  

Theorem 4.1 : Let M  be an indefinite cosympletic  manifold  with a Hopf 

lightlike hypersurface M. Then M  is a flat manifold.  

Proof: Replacing X by    in (4.2) and with (3.9) , we have  
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( , ) f ( ) f (JN) 0.B U          

Therefore 0,   so M  is a flat manifold. 

Theorem 4.2 : Let M  be an indefinite cosympletic  manifold  with a Hopf 
lightlike hypersurface M. If F is parallel with respect to induced connection 
   of  M, then f 0 and S(TM) is totally geodesic in M. 

Proof: As M is Hopf lightlike hypersurface , by (3.11) and  (4.2), we have 

(4.3)              f (X) U.NA X    

Taking scalar product with Y to (3.12) and with (4.2) , we have 
         ( , ) f ( ) ( ).B X Y X u Y   

Replacing X by V and Y by U and X by U and Y by V one by one, we get 
              ( , ) f, B(U,V) 0.B V U    

Therefore 0.f    

Hence by (4.2) , we have 0NA   and S(TM) is totally geodesic in M. 

Theorem 4.3 : Let M  be an indefinite cosympletic  manifold  with a Hopf 
lightlike hypersurface M. If U is parallel with respect to induced connection 
   of  M, then  S(TM) is an integrable distribution . 
Proof: As M is Hopf lightlike hypersurface , by (3.11) and  (4.2), we have 

                        f (X) U.NA X    

Taking scalar product with Y to this equation , we have 

         ( , ) f ( ) ( ).Ng A X Y X Y    

So NA   is self adjoint linear operator with respect to g. So by (2.6) C is 

symmetric on S(TM) . By (2.3), we have              
([ , ]) ( , ) ( , ) 0, , ( ( )).X Y C X Y C Y X X Y S TM       

Therefore [ , ] ( ( )) for any , ( ( )).X Y S TM X Y S TM    

Hence S(TM) is an integrable distribution . 
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