FIXED POINT THEOREM IN FUZZY F-MENGER SPACES FOR OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS

SURENDRA KUMAR GARG AND MANOJ KUMAR SHUKLA

Abstract. In this paper we prove fixed point theorems in fuzzy F-menger space with occasionally mappings and rational expression.

1. INTRODUCTION

The notion of probabilistic metric space is introduced by Menger in 1942 [9] and the first result about the existence of a fixed point of a mapping which is defined on a Menger space is obtained by Sehgal and Barucha-Reid[12]. A number of fixed point theorems for single valued and multivalued mappings in menger probabilistic metric space have been considered by many authors [1], [2], [3], [4], [5], [6]. In 1998, Jungck [7] introduced the concept weakly compatible maps and proved many theorems in metric space. Hybrid fixed point theory for nonlinear single valued and multivalued maps is a new development in the domain of contraction type multivalued theory ([3], [6], [8], [10], [11], [13], [15]). Jungck and Rhoades [7] introduced the weak compatibility to the setting of single valued and multivalued maps. Singh and Mishra[14] introduced (IT)-commutativity for hybrid pair of single valued and multivalued maps which need not be weakly compatible.

In this paper, we choose to utilize the notion of occasionally weakly compatibility to prove our results in fuzzy F-Menger space, which is a wider and suitable framework in many situations. Here one may observe that we need not impose the completeness requirement of the space or the containment of the ranges of the involved mappings.

2. PRELIMINARIES

Let us define and recall some definitions:

Definition 2.1. A fuzzy F probabilistic metric space (FPM space) is an ordered pair (X, F^2_α) consisting of a nonempty set X and a mapping F^2_α from $X \times X$ into the collections of all distribution functions $F^2_\alpha \in \mathbb{R} \times \mathbb{R}$ for all $\alpha \in [0, 1]$. For $x, y \in X$ we denote the distribution function $F^2_\alpha(x, y)$ by $F^2_\alpha(x, y)$ and $F^2_\alpha(x, y)(u)$ is the value of $F^2_\alpha(x, y)$ at u in \mathbb{R}. The functions $F^2_\alpha(x, y)$ for all $\alpha \in [0, 1]$ assumed to satisfy the following conditions:

2010 Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. Fixed Point, Fuzzy F-Menger space, occasionally weakly compatible mappings.
SURENDR KUMAR GARG AND MANOJ KUMAR SHUKLA

(1) \(F^2_{\alpha(x,y)}(u) = 1 \forall u > 0 \) iff \(x = y \),
(2) \(F^2_{\alpha(x,y)}(0) = 0 \forall x, y \) in \(X \),
(3) \(F^2_{\alpha(x,y)} = F^2_{\alpha(y,x)} \forall x, y \) in \(X \),
(4) \(F^2_{\alpha(x,y)}(u) = 1 \) and \(F^2_{\alpha(y,z)}(v) = 1 \) then \(F^2_{\alpha(x,z)}(u+v) = 1 \) \(\forall x, y, z \) in \(X \) and \(u, v > 0 \).

Definition 2.2. A commutative, associative and non-decreasing mapping \(t: [0,1] \times [0,1] \to [0,1] \) is a t-norm if and only if \(t(a,1) = a \) for all \(a \in [0,1] \), \(t(0,0) = 0 \) and \(t(c,d) \geq t(a,b) \) for \(c \geq a, d \geq b \).

Definition 2.3. A Fuzzy F-Menger space is a triplet \((X, F^2_{\alpha}, t) \), where \((X, F^2_{\alpha}) \) is a F FPM-space, \(t \) is a t-norm and the generalized triangle inequality
\[F^2_{\alpha(x,z)}(u+v) \geq t(F^2_{\alpha(x,y)}(u), F^2_{\alpha(y,z)}(v)) \]
holds for all \(x, y, z \) in \(X \) \(u, v > 0 \) and \(\alpha \in [0,1] \).

Remark: If \(t \) is continuous, then Fuzzy F-Menger space \((X, F^2_{\alpha}, t) \) is a Hausdorff space in \((\epsilon, \lambda) \)-topology.

Definition 2.4. Let \((X, F^2_{\alpha}, t) \) be a Fuzzy F-Menger space. If \(x \in X, \epsilon > 0 \) and \(\lambda \in (0, 1) \), then \((\epsilon, \lambda) \)-neighbourhood of \(x \), called \(U_x(\epsilon, \lambda) \), is defined by
\[U_x(\epsilon, \lambda) = \{ y \in X : F^2_{\alpha(x,y)}(\epsilon) > (1-\lambda) \} \]
An \((\epsilon, \lambda)\)-topology in \(X \) is the topology induced by the family \(\{ U_x(\epsilon, \lambda) : x \in X, \epsilon > 0, \alpha \in [0,1] \text{ and } \lambda \in (0,1) \} \) of neighbourhood.

Definition 2.5. A sequence \(\{ x_n \} \) in \((X, F^2_{\alpha}, t) \) is said to be convergent to a point \(x \) in \(X \) if for every \(\epsilon > 0 \) and \(\lambda > 0 \), there exists an integer \(N = N(\epsilon, \lambda) \) such that \(x_n \in U_x(\epsilon, \lambda) \) for all \(n \geq N \) or equivalently \(F^2_{\alpha}(x_n, x; \epsilon) > 1-\lambda \) for all \(n \geq N \) and \(\alpha \in [0,1] \).

Definition 2.6. A sequence \(\{ x_n \} \) in \((X, F^2_{\alpha}, t) \) is said to be Cauchy sequence if for every \(\epsilon > 0 \) and \(\lambda > 0 \), there exists an integer \(N = N(\epsilon, \lambda) \) such that \(F^2_{\alpha}(x_n, x_m; \epsilon) > 1-\lambda \) \(\forall n, m \geq N \) for all \(\alpha \in [0,1] \).

Definition 2.7. A Fuzzy F-Menger space \((X, F^2_{\alpha}, t) \) with the continuous t-norm is said to be complete if every Cauchy sequence in \(X \) converges to a point in \(X \) for all \(\alpha \in [0,1] \).

Definition 2.8. Let \((X, F^2_{\alpha}, t) \) be a Fuzzy F-Menger space. Two mappings \(f, g: X \to X \) are said to be weakly compatible if they commute at coincidence point for all \(\alpha \in [0,1] \).

Lemma 2.1. Let \(\{ x_n \} \) be a sequence in a Fuzzy F-Menger space \((X, F^2_{\alpha}, t) \), where \(t \) is continuous and \(t(p,p) \geq p \) for all \(p \in [0,1] \), if there exists a constant \(k(0,1) \) such that \(\forall p > 0 \) and \(n \in N \)
\[t(F^2_{\alpha}(x_n, x_{n+1}; kp)) \geq t(F^2_{\alpha}(x_{n-1}, x_n; p)) \]
for all $\alpha \in [0,1]$ then $\{x_n\}$ is a Cauchy sequence.

Lemma 2.2. If (X, d) is a metric space, then the metric d induces a mapping $F^2_{\alpha}: X \times X \to L$ defined by $F^2_{\alpha}(p, q) = H_\alpha(x - d(p, q))$, $p, q \in R$ for all $\alpha \in [0,1]$. Further if $t: [0,1] \times [0,1] \to [0,1]$ is defined by $t(a, b) = \min\{a, b\}$, then (X, F^2_{α}, t) is a Fuzzy F-Menger space. It is complete if (X, d) is complete.

Definition 2.9. Let (X, F^2_{α}, t) be a Fuzzy F-Menger space. Maps $s: X \to X$ and $T: X \to CB(X)$

1. s is said to be T weakly commuting at $x \in X$ if $ssx \in Tsx$.
2. are weakly compatible if the commute at their coincidence points, i.e. if $sTx = Tsx$ whenever $sx \in Tx$.
3. are (IT) commuting at $x \in X$ if $sTx \subseteq Tsx$ whenever $sx \in Tx$.

Definition 2.10. Two self maps f and g of a set X are occasionally weakly compatible (o.w.c.) iff there is a point x in X which is a coincidence point of f and g at which f and g commute.

Definition 2.11. A function $\phi: [0, \infty) \to [0, \infty)$ is said to be a ϕ-function if it satisfies the following conditions:

1. $\phi(t) = 0$ if and only if $t = 0$,
2. $\phi(t)$ is strictly increasing and $\phi(t) \to \infty$ as $t \to \infty$.
3. ϕ is left continuous in $(0, \infty)$ and
4. ϕ is continuous at 0.

An altering distance functions with the additional property that $h(t) \to \infty$ as $t \to \infty$ generates function ϕ in the following way.

$$\phi(t) = \begin{cases}
\sup\{s : h(s) < t \text{ if } t > 0 \} & \text{if } t > 0 \\
0 & \text{if } t = 0
\end{cases}$$

It can be easily seen that ϕ is a ϕ-function.

Lemma 2.3. Let (X, F^2_{α}, t) be a fuzzy F-Menger space, A and B are occasionally weakly compatible self maps of X. If A and B have a unique point of coincidence, $w = Ax = Bx$, then w is the unique common fixed point of A and B.

Proof: Since A and B are occasionally weakly compatible, there exists a point $x \in X$ such that $Ax = Bx = w$ and $ABx = BAx$. Thus, $AAX = ABx = BAX$ which says that Ax is also a point of coincidence of A and B. Since the point of coincidence $w = Ax$ is unique by hypothesis, $BAX = AAX = Ax$ and $w = Ax$ is a common fixed point of A and B. Moreover, if z is any common fixed point of A and B, then $z = Az = Bz = w$ by the uniqueness of the point of coincidence.

3. MAIN RESULTS

Theorem 3.1. Let (X, F^2_{α}, t) be a complete F-Menger space and let p, q, f and g be mappings of X on X. Let pairs $\{p, f\}$ and $\{q, g\}$ be occasionally weakly compatible (owc). If there exists $k \in (0,1)$ and $a \geq 1$ such that $F^2_{\alpha px, qy}(kt)$
\[
\begin{align*}
\geq & \min \left\{ \frac{F^2_{\alpha fx,gy}(t) + F^2_{\alpha px,fx}(t) + F^2_{\alpha qy,gy}(t) + F^2_{\alpha px,qy}(t)}{2}, \frac{F^2_{\alpha px,gy}(t) + F^2_{\alpha px,qy}(t)}{2} \right\} \\
\text{for all } x, y \in X \text{ and for all } t > 0 \text{ and } \alpha \geq 1, \text{ then there exists a unique point} \\
w \in X \text{ such that } pw = fw = w.
\end{align*}
\]

Proof. Since the pairs \{p, f\} and \{q, g\} are occasionally weakly compatible (owc), there exists points \(x, y \in X\) such that \(px = fx = qy = gy\). We claim that \(px = qy\). If not, by inequality (1)

\[
\begin{align*}
F^2_{\alpha px,qy}(kt) \\
\geq & \min \left\{ \frac{F^2_{\alpha px,qy}(t) + F^2_{\alpha px,fx}(t) + F^2_{\alpha qy,gy}(t) + F^2_{\alpha px,qy}(t)}{2}, \frac{F^2_{\alpha px,gy}(t) + F^2_{\alpha px,qy}(t)}{2} \right\} \\
= & \min \left\{ \frac{F^2_{\alpha px,qy}(t) + F^2_{\alpha px,fx}(t) + F^2_{\alpha qy,gy}(t) + F^2_{\alpha px,qy}(t)}{2}, \frac{F^2_{\alpha px,gy}(t) + F^2_{\alpha px,qy}(t)}{2} \right\} \\
= & \min \left\{ \frac{F^2_{\alpha px,qy}(t) + F^2_{\alpha px,fx}(t) + F^2_{\alpha qy,gy}(t) + F^2_{\alpha px,qy}(t)}{2}, \frac{F^2_{\alpha px,gy}(t) + F^2_{\alpha px,qy}(t)}{2} \right\} \\
= & F^2_{\alpha px,qy}(t)
\end{align*}
\]

Thus, we have \(px = qy\). Therefore, \(px = qy = fx = gy\).

Suppose that there is another point \(z\) such that \(pz = fz\) then by (1) we have \(px = fz = qy = gy\), so \(px = qz = g\) and \(w = px = fx\) is the unique point of coincidence of \(p\) and \(f\).

By Lemma 2.3 \(w\) is the only common fixed point of \(p\) and \(f\). Similarly there is a unique point \(z \in X\) such that \(z = qz = gz\).

Uniqueness: Assume that \(w \neq z\) and taking \(x = w, y = z\) in inequality(1), we get

\[
\begin{align*}
F^2_{\alpha w,z}(kt) = & \min \left\{ \frac{F^2_{\alpha w,z}(t) + F^2_{\alpha pw,fx}(t) + F^2_{\alpha qz,gz}(t) + F^2_{\alpha px,qy}(t)}{2}, \frac{F^2_{\alpha w,z}(t) + F^2_{\alpha px,gy}(t)}{2} \right\} \\
= & \min \left\{ \frac{F^2_{\alpha w,z}(t) + F^2_{\alpha w,z}(t) + F^2_{\alpha w,z}(t) + F^2_{\alpha w,z}(t)}{2}, \frac{F^2_{\alpha w,z}(t) + F^2_{\alpha w,z}(t)}{2} \right\} \\
= & \min \left\{ \frac{F^2_{\alpha w,z}(t) + F^2_{\alpha w,z}(t) + F^2_{\alpha w,z}(t) + F^2_{\alpha w,z}(t)}{2}, \frac{F^2_{\alpha w,z}(t) + F^2_{\alpha w,z}(t)}{2} \right\} \\
= & F^2_{\alpha w,z}(t)
\end{align*}
\]

Therefore we have \(z = w\) by lemma 2.3 and \(z\) is a common fixed point of \(p, f, q\) and \(g\). The uniqueness of the fixed point holds from (1) \(\square\)
Theorem 3.2. Let \((X, F^a, t)\) be a complete \(F\)-Menger space and let \(p,q,f\) and \(g\) be self mappings of \(X\). Let pairs \(\{p, f\}\) and \(\{q, g\}\) be occasionally weakly compatible (owc). If there exists \(k \in (0,1)\) such that
\[
F^2_{\alpha px,qy} (kt) \geq \phi \left(\min \left\{ \frac{F^2_{\alpha fx,gy} (t), F^2_{\alpha px,fx} (t), F^2_{\alpha qy,gy} (t), F^2_{\alpha px,gy} (t), F^2_{\alpha fx,gy} (t), F^2_{\alpha px,gy} (t)}{2}, \frac{F^2_{\alpha px,gy} (t), F^2_{\alpha px,gy} (t)}{2} \right\} \right) \quad \quad \text{(2)}
\]
for all \(x, y \in X\) and \(\phi \in \phi \) for all \(0 < t < 1\) and \(\alpha \in [0,1]\), then there exists a unique common fixed point of \(p, f, q\) and \(g\).

Proof. The proof follows from theorem 3.1. \(\square\)

Theorem 3.3. Let \((X, F^a, t)\) be a complete \(F\)-Menger space and let \(p, q, f\) and \(g\) be self mappings of \(X\). Let pairs \(\{p, f\}\) and \(\{q, g\}\) be owc. If there exists \(k \in (0,1)\) such that
\[
F^2_{\alpha px,qy} (kt) \geq \phi \left(\frac{F^2_{\alpha fx,gy} (t), F^2_{\alpha px,fx} (t), F^2_{\alpha qy,gy} (t), F^2_{\alpha px,gy} (t), F^2_{\alpha fx,gy} (t), F^2_{\alpha px,gy} (t)}{2}, \frac{F^2_{\alpha px,gy} (t), F^2_{\alpha px,gy} (t)}{2} \right) \quad \quad \text{(3)}
\]
for all \(x, y \in X\) and \(\phi : [0,1] \to [0,1]\) such that \(\phi (t, 1, 1, t, t, t) > t\) for all \(0 < t < 1\), then there exists a unique common fixed point of \(p, f, q\) and \(g\).

Proof. Since the pairs \(\{p, f\}\) and \(\{q, g\}\) are occasionally weakly compatible (owc), there exists points \(x, y \in X\) such that \(px = fx\) and \(qy = gy\). We claim that \(px = qy\). By inequality (3) we have
\[
F^2_{\alpha px,qy} (kt) \geq \phi \left(\frac{F^2_{\alpha fx,gy} (t), F^2_{\alpha px,fx} (t), F^2_{\alpha qy,gy} (t), F^2_{\alpha px,gy} (t), F^2_{\alpha fx,gy} (t), F^2_{\alpha px,gy} (t)}{2}, \frac{F^2_{\alpha px,gy} (t), F^2_{\alpha px,gy} (t)}{2} \right) \quad \quad \text{(3)}
\]
This contradiction, thus, we have \(px = qy\). Therefore, \(px = qy = fx = gy\).

Suppose that there is another point \(z\) such that \(pz = fz\), then by (3) we have \(pz = fz = qy = gy\), so \(px = pz\) and \(w = px = fz\) is the unique point of coincidence of \(p\) and \(f\).

By Lemma 2.3 \(w\) is the only common fixed point of \(p\) and \(f\). Similarly there is a unique point \(z \in X\) such that \(z = qz = gz\). Thus \(z\) is a common fixed point of \(p, f, q\) and \(g\). The uniqueness of the fixed point holds from (3).
Example: Let $X = [0, 1]$ with metric d defined by $d(x, y) = |x - y|$ and for each $t \in [0, 1]$ define

$$F^2_{a(x, y)}(t) = \begin{cases} \alpha e^{-|x-y|^2 t}, & \text{if } t > 0; \\ 0, & \text{if } t = 0. \end{cases}$$

For all $x, y \in X$. Clearly (X, F^2_{a}, Δ) is a Fuzzy F-Menger Space. Define p, q, f and $g : X \rightarrow X$ by

$$p(x) = \begin{cases} x^2, & \text{if } 0 \leq x \leq \frac{1}{2}; \\ 1, & \text{if } \frac{1}{2} < x \leq 1. \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{2}, & \text{if } 0 \leq x \leq \frac{1}{2}; \\ 0, & \text{if } \frac{1}{2} < x \leq 1. \end{cases}$$

$$q(X) = \begin{cases} \frac{1}{2}, & \text{if } 0 \leq x \leq \frac{1}{2}; \\ 1, & \text{if } \frac{1}{2} < x \leq 1. \end{cases}$$

$$g(X) = \begin{cases} \frac{1}{2}, & \text{if } 0 \leq x \leq \frac{1}{2}; \\ \frac{x^2}{4}, & \text{if } \frac{1}{2} < x \leq 1. \end{cases}$$

Then p, q, f and g satisfy all the conditions of theorem 3.1 for $k \in (0, 1)$ with respect to the distribution function $F^2_{a(x, y)}$. Thus $\left(\frac{1}{2}\right)$ is the unique common fixed point of p, q, f and g and also we see that the mappings p, q, f and g are discontinuous at $\left(\frac{1}{2}\right)$. For all $\alpha \geq 1$.

Remark: In all the above theorems p, q, r, s all may be set valued functions then uniqueness cannot be obtained.

References

Surendra Kumar Garg: Research Scholar, Department of Mathematics and Computer Science, R.D.V.V., Jabalpur, M.P., India.
E-mail address: surendragargji2007@gmail.com

Manoj Kumar Shukla: Department of Mathematics, Institute for Excellence in Higher Education, Bhopal, (MP), India.
E-mail address: manojshukla012@yahoo.com