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Abstract. An analytical proof based on the method of characteristic func-

tions of Sakhonenko theorem on the validity of a strong option of the law of

large numbers is presented in the paper: when a condition of the Lindeberg
type is satisfied, the absolute value of the sum of independent random vari-

ables tends to zero on average. The mathematical expectation of the absolute

value of a random variable uses the above proof through the corresponding
characteristic function.

Let a ”series scheme” of independent random variables (r.v.) be given in some
probability space (Ω,=, P ) :

{Xn1, ..., Xnn} , n = 1, 2, · · ·

and

Sn = Xn1 + . . .+Xnn.

From the point of view of summation of independent r.v. results (available in
theory), we can assume, without loss of generality, that

EXnj = 0, j = 1, 2, ..., n. (1)

Assume that

Dn (α) =

n∑
j=1

Emin
(
|Xnj | , |Xnj |1+α

)
, α > 0.

It is easy to check that if at certain α = α0 > 0

Dn (α0)→ 0, n→∞,

then Dn (α)→ 0, for all α > 0.
Taking into account the latter, we assume that the following condition is met:

Dn = Dn (1) =

n∑
j=1

Emin
(
|Xnj | , |Xnj |2

)
→ 0 (D)

as n→∞.
In [1, p. 158] the following two versions of the law of large numbers (l.l.n.) are

presented.
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The first version consists of a statement about the validity of the ordinary l.l.n.

(Sn
P−→ 0) when conditions (1), (D) are met.

The second version, based on stronger convergence on average, is presented as
the following theorem.

Theorem A (A.I.Sakhonenko). When conditions (1), (D) are met, E |Sn| →
0 is true (or Sn

P−→ 0 which is the same). The statement of the above theorem
means, obviously, the uniform integrability of the sequence {Sn, n ≥ 1} , from it

follows the ordinary version of the l.l.n. Sn
P−→ 0 so that

P (|Sn| ≥ ε) ≤
E |Sn|
ε
→ 0,

as n→∞.

The proof of Theorem A in [1, p. 159–160] was completed by the probabilistic
method of ”r.v.truncating”. Here we give an ”analytic proof” of Theorem A, based
on the method of characteristic functions (ch.f.).

Assume that

Fnj (x) = P (Xnj < x) , Fn (x) = P (Sn < x)

fnj (t) = EeitXnj , fn (t) = EeitSn , j = 1, ..., n.

First we prove the following auxiliary statement.

Lemma 0.1. For any r.v. with distribution function (d.f.) F (x)

E |X| =
∞∫
−∞

|x| dF (x) =
2

π

∞∫
−∞

1− Re f (t)

t2
dt, (2)

where f (t) is the ch.f. corresponding to the d.f. F (x) .

The assertion of the lemma is presented as an independent problem in [2, ch. 2,
p. 409].

Proof. Changing the order of integration on the right-hand side of (2), we have

∞∫
−∞

1−Re f(t)
t2 dt =

∞∫
−∞

∞∫
−∞

((1− cos tx) dF (x)) t−2dt =

=
∞∫
−∞

∞∫
−∞

(
1−cos tx

t2 dt
)
dF (x) = 2

∞∫
−∞

(∞∫
0

1−cos tx
t2 dt

)
dF (x)

(3)

Furthermore
∞∫
0

1− cos tx

t2
dt =

T∫
0

+

∞∫
T

= I
(1)
T + I

(2)
T . (4)

Obviously, for any x ∈ R

I
(2)
T =

∞∫
T

1− cos tx

t2
dt ≤ 2

∞∫
T

dt

t2
=

2

T
.
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So

sup
x
I
(2)
T (x) ≤ 2

T
. (5)

After integrating by parts, we obtain:

I
(1)
T (x) = −

T∫
0

(1− cos tx)d

(
1

t

)
= −1− cosTx

T
+ x

T∫
0

sin tx

t
dt. (6)

Taking into account the last relations (5) and (6), we obtain:

∞∫
0

 ∞∫
0

1− cos tx

t2
dt

 dF (x) =

∞∫
0

lim
T→∞

I
(1)
T (x) dF (x) =

=

∞∫
0

x

 ∞∫
0

sin tx

t
dt

 dF (x) =
π

2

∞∫
0

xdF (x). (7)

Here the well-known equality (the Dirichlet integral) is used
∞∫
0

sin tx

t
dt =

{
π
2 , x > 0
−π2 , x < 0

, (8)

Applying formulas (6) and (8) in a similar way, we obtain:

0∫
−∞

 ∞∫
0

1− cos tx

t
dt

 dF (x) = −π
2

0∫
−∞

xdF (x) =
π

2

0∫
−∞

|x| dF (x) (9)

Now from equalities (3), (7), (9) it follows that

∞∫
−∞

1− Re f (t)

t2
dt =

0∫
−∞

 ∞∫
0

1− cos tx

t
dt

 dF (x)+

∞∫
0

 ∞∫
0

1− cos tx

t
dt

 dF (x) =

=
π

2

0∫
−∞

|x|dF (x) +
π

2

∞∫
0

xdF (x) =
π

2

∞∫
−∞

|x|dF (x).

Thus, formula (2) is proved. �

Now we will prove Theorem A using the lemma (or formula (2) which is the
same) Assume that

E |Sn| =
2

π

∞∫
−∞

1− Re fn (t)

t2
dt =

2

π

(
I(1)n + I(2)n

)
, (10)

where

I(1)n =

∫
|t|≤T

Re (1− fn (t))

t2
dt, I(2)n =

∫
|t|>T

Re (1− fn (t))

t2
dt, T > 0.

139



4 SH.K.FORMANOV AND B.B.KHUSAINOVA

It is evident that

I(2)n =

∫
|t|>T

 ∞∫
−∞

(1− cos tx) dFn (x)

 dt

t2
≤ 2

∫
|t|>T

dt

t2
≤ 8

T
.

So

lim sup
n→∞

I(2)n ≤ 8

T

and, by the randomness of T > 0 we obtain

I(2)n → 0, n→∞. (11)

Next, we use the following equality

1− fn (t) =

n∏
j=1

1−
n∏
j=1

fnj (t) =

n∑
j=1

(1− fnj (t))

n∏
k=j+1

fnk (t) =

=

n∑
j=1

(1− fnj (t))

1 +

 n∏
k=j+1

fnk (t)−
n∏

k=j+1

1

.
By virtue of this equality, we have

Re (1− fn (t))

t2
=

n∑
j=1

Re (1− fnj (t))

t2
+ ψn (t) , (12)

where

ψn (t) =

n∑
j=1

Re

1− fnj (t)

t2

 n∏
k=j+1

fnk (t)−
n∏

k=j+1

1

.
By Lemma 3 from [1, ch.7, §6, p. 142]∣∣∣∣∣∣

n∏
k=j+1

fnk (t)−
n∏

k=j+1

1

∣∣∣∣∣∣ ≤
n∑

k=j+1

∣∣E (eitXnk − 1
)∣∣ =

=

n∑
k=j+1

∣∣E (eitXnk − 1− itXnk

)∣∣ ≤ 2h (t)

n∑
k=1

Eg (Xnk),

where h (t) = max
(
|t| , |t|2

)
, g (x) = min

(
|x| , |x|2

)
.

So, for each j = 1, ..., n∣∣∣∣∣ n∏
k=j+1

fnk(t)−
n∏

k=j+1

1

∣∣∣∣∣ ≤ 2h(t)

[
n∑
k=1

( ∫
|x|≤1

x2dFnk(x) +

+
∫
|x|>1

|x|dFnk(x)

)]
= 2h(t) (Mn + Ln) = 2h(t)Dn → 0.

(13)

Here

Mn =

n∑
k=1

∫
|x|≤1

x2dFnk(x), Ln =

n∑
k=1

∫
|x|>1

|x| dFnk(x).
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Then, according to formula (6)

n∑
j=1

T∫
−T

Re (1− fnj (t))

t2
dt = −2

n∑
j=1

∞∫
−∞

 T∫
0

(1− cos tx) d

(
1

t

) dFnj (x) ≤

≤ 2

 n∑
j=1

∞∫
−∞

(
1− cosTx

T

)
dFnj (x) +

n∑
j=1

∞∫
−∞

x

 T∫
0

sin tx

t
dt

dFnj (x)

 (14)

It is easy to see that the following estimates hold

n∑
j=1

∞∫
−∞

(
1− cosTx

T

)
dFnj (x) =

n∑
j=1

∫
|x|≤1

(
1− cosTx

T

)
dFnj (x)+

+

n∑
j=1

∫
|x|>1

(
1− cosTx

T

)
dFnj (x) ≤ T

n∑
j=1

∫
|x|≤1

2sin2 Tx
2

4
(
Tx
2

)2 · x2dFnj (x) + (15)

+
2

T

n∑
j=1

∫
|x|>1

|x| dFnj (x) ≤C (T ) (Mn + Ln) = C (T )Dn → 0.

Hereinafter, C(T ) denotes a positive constant (depending on T ), which is dif-
ferent in different points.

Then

n∑
j=1

∞∫
−∞

x

 T∫
0

sin tx

t
dt

 dFnj (x) ≤
n∑
j=1

∫
|x|≤1

|x|

∣∣∣∣∣∣
T∫

0

sin tx

t
dt

∣∣∣∣∣∣ dFnj (x) +

+

n∑
j=1

∫
|x|>1

|x|

∣∣∣∣∣∣
T∫

0

sin tx

t
dt

∣∣∣∣∣∣ dFnj (x) ≤T
n∑
j=1

∫
|x|≤1

|x|2dFnj (x)+ (16)

+
π

2

n∑
j=1

∫
|x|>1

|x| dFnj (x) ≤ max
(
T,

π

2

)
(Mn + Ln) ≤ C (T )Dn → 0.

Now from relations (14) - (16) we obtain:

n∑
j=1

T∫
−T

Re (1− fnj (t))

t2
dt ≤ C (T )Dn → 0. (17)

By relations (12), (13), and (17), we obtain

T∫
−T

ψn (t) dt ≤ C (T )D2
n → 0. (18)
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Finally, from relations (12), (17), and (18), we can conclude that

T∫
−T

Re (1− fn (t))

t2
dt ≤ C (T )

(
Dn +D2

n

)
.

Thus

I(1)n =

T∫
−T

Re (1− fn (t))

t2
dt = O

(
Dn +D2

n

)
→ 0 (19)

the proof of Theorem A follows from relations (11) and (19).
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