
 

 

 

NORMALIZED LAPLACIAN ENERGY OF COMPLETE, COMPLETE 

BIPARTITE AND COMPLETE TRIPARTITE GRAPHS 

 

D.NAVETHA *, T.LENIN, M.SUMATHI 

Abstract. Let G be a finite, undirected and simple graph. The normalized 
laplacian energy of the graphs are found on the basic of the energy concepts in 
graphs. The normalized laplacian matrix of a graph, NL(G) (with no isolated 

vertices) is defined as 1, if i=j and deg(vi) ≠0, 
−1

√𝑑𝑖𝑑𝑗
 , if i=j and they are adjacent 

and 0 otherwise. Here the normalized laplacian energy of the complete with 
bipartite and tripartite graphs are explained.. 
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1. Introduction  

Zadeh [28] have initiated fuzzy sets [30] [31] [32]. Parvathi and Karunambigai[13] have 

initiated the idea of Intuitionistic Fuzzy Graphs (IFGs). Gani and Begum [5] talked 

about the extension of fuzzy graphs. Products in IFGs were discussed by Sahoo & Pal 

[17].Sahoo and Pal [18,19] studied some types of fuzzy graphs. Sahoo et al [21] 

initatied new ideas in intuitionistic fuzzy graphs. Kalaiarasi and Mahalakshmi have 

also expressed fuzzy strong graphs [8].Shanmugavadivu  and Gopinath, suggested non 

homogeneous ternary five degrees equation [24]. Shanmugavadivu and Gopinath, 

have also expressed on the homogeneous five degree equation [25], Bozhenyuk et al[2] 

has talked about dominating set and Mapreduce Methodology for Elliptical Curve 

Discrete Logarithmic Problems [29]. 

Ore and Berge introduced the concept of domination in 1962. Cockayne and 

Hedetniemi have further studied about domination in graphs[6]. Somasundaram and 

Somasundaram have initiated domination in fuzzy graphs by making use of effective 

edges[23]. Xavior et al. [27] has talked about domination in fuzzy graphs but 

differently. Dharmalingam and Nithya have also expressed domination parameters for 

fuzzy graphs[3]. Equitable domination number for fuzzy graphs was introduced by 

Revathi and Harinarayaman in [16]. Sarala and Kavitha have also expressed (1,2)-

domination for fuzzy graphs[22]. Gani and Chandrasekaran have talked about strong 

arcs[12]. Sunitha and Manjusha have also expressed strong domination [26]. Kalaiarasi 

and Mahalakshmi  have also expressedfuzzy inventory EOQ optimization 

mathematical model [9]. Kalaiarasi and Gopinath  suggested fuzzy inventory order 

EOQ model with machine learning [10]. Fuzzy Incidence Graphs (FIGS) discussed by 

Dinesh [4]. Mordeson talked about incidence cuts in FIGS [11].Priyadharshini et 

al.[18] have also expressed a fuzzy MCDM approach for measuring the business impact 

of employee selection [15]. 
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The design of this articlein section 2 provides some preliminary results which are 

required to understand the remaining part of the article. In section 3 CIFIG is 

defined. In section 4 conveys meaning domination in CIFIG. In section 5 we examine 

Strong Intuitionistic Fuzzy Incidence Dominating Set (SIFIDS) and SIFIDN and 

Weak Intuitionistic Fuzzy Incidence Dominating Set (WIFIDS) and WIFIDN. In 

section 6 application of intuitionistic fuzzy incidence domination number is given. 

The concept of energy originated in chemistry. The energy of G was first defined by 

Gutman in 1978 as the sum of the absolute values of the eigen values of A[G]. 

According to R.B. Bapat and Sakanta Pati, if the energy of a graph is rational then it 

must be an even integer. Shanmugavadivu & R.Gopinath have also expressed on the 

homogeneous five degree equation. Kalaiarasi & R.Gopinath analysed and introduced  

Fuzzy inventory and arc sequences in different graphs and explained the join product 

in mixed split IFGs. Priyadharshini  & R.Gopinath [18]have also expressed a fuzzy 

MCDM approach for measuring the business impact of employee selection. An 

important result is that the energy of the graph is greater than the number of vertices 

of the graph. Here the normalized laplacian energy of complete graphs with bipartite 

and tripartite are explained. 

 

2.Normalized Laplacian Energy of the Complete, Complete Bipartite and Complete 

Tripartite Graphs 

Normalized Laplacian Matrix 

The normalized laplacian matrix of a graph(with no isolated vertices), is defined as 

 NL(G) =  {

1, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 deg (𝑣𝑖) ≠ 0
−1

√𝑑𝑖𝑑𝑗
, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Normalized Laplacian Energy 

Let λ1,λ2,…λn  be the eigen values of L+(G),then the normalized laplacian energy is 

defined as 𝑁𝐿𝐸(𝐺) = ∑ |𝜆𝑖(𝐿) − 1|𝑛
𝑖=1 . 

Theorem 1 

The normalized laplacian energy of the complete graphs Kn of order n≥3 is n-1 

Proof 

Let Kn be a complete graph of order n≥3.  

To Prove: The normalized laplacian energy of Kn is n-1. To calculate the normalized 

laplacian energy, we have to construct the normalized laplacian matrix. 

By the definition, 

The normalized laplacian matrix of a graph(with no isolated vertices), is defined as 

 NL(G) =  {

1, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 deg(𝑣𝑖) ≠ 0
−1

√𝑑𝑖𝑑𝑗
, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The normaliized laplacian matrix of Kn is n×n matrix of the form 
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𝑁𝐿𝑖𝑗 = 𝐴𝑖𝑗 = {

1, 𝑖𝑓 𝑖 = 𝑗
−1

𝑛 − 1
, 𝑖𝑓 𝑖 ≠ 𝑗

 

For this matrix, the eigen values are (n-1) rationals and a zero whose sum is equal to n. 

By the definition 

The normalized laplacian energy is defined as 

 𝑁𝐿𝐸(𝐺) = ∑ |𝜆𝑖(𝐿) − 1|𝑛
𝑖=1  or 𝑁𝐿𝐸(𝐺) = ∑ |𝜆𝑖(𝐼 − 𝐿)|𝑛

𝑖=1  

Therefore, 

NLE(G)=|(0 + 𝑛) − 1| 

             =|𝑛 − 1| 

NLE(G)=n-1 

Hence it is proved. 

Example: K3. 

                                                         V1 

 

 

 

 

 

 

 

                    V2                                                                 V3 

The eigen values are = 0,1.5,1.5 

The sum of the eigen values is 3 

The normalized laplacian energy is 2. 

 

3. Energy Relations 

Theorem 3.1 

The normalized laplacian energy of the complete bipartite graphs Kn,n, n≥2, is 2n-1. 

Proof 

Let Kn,n be a complete bipartite graph of order n≥2. 

To Prove: The normalized laplacian energy of  Kn,n is 2n-1 

To calculate the normalized laplacian energy, we have to construct the normalized 

laplacian matrix. 

By the definition, the normalized laplacian matrix of a graph(with no isolated 

vertices), is defined as  NL(G) =  {

1, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 deg(𝑣𝑖) ≠ 0
−1

√𝑑𝑖𝑑𝑗
, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The normaliized laplacian matrix of  Kn,n is 2n×2n matrix of the form 

𝑁𝐿𝑖𝑗 = 𝐴𝑖𝑗 = {

1, 𝑖𝑓 𝑖 = 𝑗
−1

2𝑛
, 𝑖𝑓 𝑖 ≠ 𝑗

 

For this matrix, the eigen values are n rationals whose sum is equal to 2n. 
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By the definition,  The normalized laplacian energy is defined as 

 𝑁𝐿𝐸(𝐺) = ∑ |𝜆𝑖(𝐿) − 1|𝑛
𝑖=1  or 𝑁𝐿𝐸(𝐺) = ∑ |𝜆𝑖(𝐼 − 𝐿)|𝑛

𝑖=1  

Therefore, 

NLE(G)=|(2𝑛) − 1| 

             =|2𝑛 − 1| 

NLE(G)=2n-1 

Hence it is proved. 

            

 

 

 

The eigen values are = 

4. Energy Relations 

Theorem 4.1 

The normalized laplacian energy of the complete tripartite graphs Kn,n,n, n≥2 is 3n-1. 

Name of the Graph Energy of Kn,n 

K2,2 

K3,3 

K4,4 

K5,5 

K6,6 

3 

5 

7 

9 

11 

Proof 

Let Kn,n,n be the complete tripartite graph with n≥2. 

To Prove: The normalized laplacian energy of the complete tripartite graphs Kn,n,n, n≥2 

is 3n-1. 

To calculate the normalized laplacian energy, we have to construct the normalized 

laplacian matrix. 

By the definition,the normalized laplacian matrix of a graph(with no isolated vertices), 

is defined as  NL(G) =  {

1, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 deg(𝑣𝑖) ≠ 0
−1

√𝑑𝑖𝑑𝑗
, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The normaliized laplacian matrix of  Kn,n,n is 3n×3n matrix of the form 

𝑁𝐿𝑖𝑗 = 𝐴𝑖𝑗 = {

1, 𝑖𝑓 𝑖 = 𝑗
−1

3𝑛
, 𝑖𝑓 𝑖 ≠ 𝑗

 

For this matrix, the eigen values are n rationals whose sum is equal to 3n. 

By the definition 

The normalized laplacian energy is defined as 

V1 

V2 
V3 

V4 
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 𝑁𝐿𝐸(𝐺) = ∑ |𝜆𝑖(𝐿) − 1|𝑛

𝑖=1  or 𝑁𝐿𝐸(𝐺) = ∑ |𝜆𝑖(𝐼 − 𝐿)|𝑛
𝑖=1  

Therefore, 

NLE(G)=|(3𝑛) − 1| 

             =|3𝑛 − 1| 

NLE(G)=3n-1 

Hence it is proved. 

 

5. Energy Relations 

Here, incorporates an everyday life model. Assume there are five energy relations 

clinics are working (24 hours) in a city for giving crisis treatment to individuals. Here 

in our energy relations e are not referencing the original names of these clinics in this 

manner think about the clinics 332211 ,, hhh
, 44h  and 55h

. Energy relations the 

vertices show the clinics and edges show the contract conditions between the clinics to 

share the facilities. The incidence pairs show the transferring of patients from one 

clinic energy relation to another because of the lack of resources. 

Name of the Graph Energy of Kn,n 

K2,2,2 

K3,3,3 

K4,4,4 

K5,5,5 

K6,6,6 

5 

8 

11 

14 

17 

 

6. Conclusion 

The idea of domination in CIFIGs is imperative from religious just as an applications 

perspective. In this paper, the possibility of complete intuitionistic fuzzy incidence 

graph, strong and weak intuitionistic fuzzy incidence dominating set and strong and 

weak intuitionistic fuzzy incidence domination number is talked about. Further work 

on these thoughts will be accounted for in impending papers.  
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