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Abstract. In this work we study the existence of transverse odd periodic

oscillations of the movable electrode in a Comb-drive finger device, when a cu-
bic nonlinear mechanical stiffness and a periodic input voltage are considered

in the modeling. We prove the existence of a family of odd periodic responses

with a prescribed number of zeros. The results are obtained by means of tools
as the shooting method, the Sturm Comparison theory and the truncation

technique. Some numerical examples are provided in order to illustrate the

existence results and give an insight about the stability properties.

1. Introduction

The comb-drive devices are commonly used in MEMS (microelectromechanical
systems) as sensing and actuation mechanisms. These micro-scale devices are
based on two comb structures, one fixed and the other movable. Since each comb
structure has electrodes called fingers, the device can have interdigitated or non-
interdigitated fingers. Additionally, the movable comb is attached to flexures or
flexible structures (tethers) that act like springs in order to limit the movement.
In particular, they can be stiff to prevent some undesired motions [18]. Precisely,
this is a sort of the nonlinear mechanical stiffness.

We notice that the presence of linear and nonlinear (constant or time-varying)
stiffness coefficients is common in some models for oscillators. There is active
research about the nonlineal stifness effects in MEMS based on comb-drives. It is
worthy to mention [17, 5, 1] where authors study chaos in MEMS through models
with cubic stiffness coefficients (via a nonlinear version of the Mathieu Equation)
and consider applications to secure communication schemes based on synchronized
chaos, they present a method to independently tune both stiffness coefficients in
a MEMS oscillator with linear and cubic restoring forces, without affecting some
important factors as the resonant frequency [1].

Additionally, authors in [15, 4, 6, 9] consider nonlinearities of structures and
applications as MEMS-based filters, gyroscopes and folded-MEMS Comb-drive
resonators. We notice that most of these works consider micro devices that utilize
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non-interdigitated comb-drives along with the nonlinear stiffness effects. Never-
theless, we will focus on the in-plane interdigitated ones which provide the basis
of some MEMS with applications as accelerometers [12, 18], particularly, in the
transverse movement of their fingers when a cubic nonlinear mechanical stiffness
term is considered in the model. Figure 1 shows the classical configuration of the
comb-drive devices in this paper.

Figure 1. Scheme of a transverse in-plane Comb-drive actuator.

Next we introduce a dimensional second order ODE that describes the dynamics
of the movable finger sandwiched between two fixed fingers in this Comb-drive
device. We consider a spring-mass model where x denotes the displacement of the
movable finger in the transverse direction to the longitudinal axis of the stationary
electrode, thus it is ruled by

ẍ+ ω̂2x+
c

m
x3 =

4dhxV 2(t)

(d2 − x2)
2 , (1.1)

where V (t) denotes the input voltage, m denotes the mass of the movable electrode,
d denotes the gap between the movable finger and the fixed electrode, k and c are
the linear and nonlinear mechanical stiffness coefficients respectively, ω̂2 = k/m
and h = εel/2m > 0 for ε the dielectric constant of vacuum, e the width of the
electrodes and l the length of the electrodes in the interacting zone (overlapping
zone) [18].

We notice that in appropriate units of distance and time, the spring-mass model
(1.1) can be written as (see [13, 18])

ẍ+ x

(
1 + αx2 − 4βV2(t)

(1− x2)2

)
= 0, |x| < 1, (1.2)

where α and β are positive physical constants given by

α =
cd2

k
, β =

elϵ

2kd3
. (1.3)
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We also consider a positive T -periodic AC-DC voltage of the form

V(t) = V0 + δq(t), (1.4)

where V0 > 0, q ∈ C(R/TZ) is an even function such that
∫ T

0
q(t)dt = 0, and

δ ∈
]
0,− V0

qm

]
for qm = min

t∈R
q(t) < 0. For example, we can set q(t) = cos(ωt) with

ω = 2π
T . Moreover, we define

Vm := min
t∈[0,T ]

V(t), VM := max
t∈[0,T ]

V(t).

Regarding to the more basic dynamical aspects like existence of periodic re-
sponses for the model (1.2), it is worthy to mention [13] where authors provide
sufficient conditions (in terms of the system parameters) to determine the existence
and the stability properties of constant sign periodic responses, when a periodic
and variable voltage is supplied. More precisely, the dynamics depends on the
cubic stiffness coefficient α, thus if it is greater than certain constant it is possible
to get a stable positive sign (lateral) periodic response. In [7] the existence of
even periodic solutions for the corresponding linear model (α = 0) and with a
prescribed number of zeros is studied by means of topological techniques.

Motivated for these considerations, in this work we concern about non-constant
sign periodic responses for (1.1), when an even periodic input voltage is supplied
and the damping effects are neglected. Specifically, we are interested in its odd
periodic responses. Thus the main purpose of this paper is to determine sufficient
conditions over the system parameters that lead to odd periodic responses with
a prescribed number of oscillations. Here the approach is more elementary than
the one of the papers mentioned above, and it is based on the ideas of [14]. More
precisely, the theorems in [14] cannot be directly applied in this case, thus the
model is modified through a truncation process by using a priori bounds, in order
to obtain an equivalent equation with the same periodic solutions.

This paper is organized as follows. In section 2 we present our main results
regarding to the existence of odd periodic responses with a prescribed number
of zeros for the Comb-drive finger model with cubic stiffness (Theorem 1 and
Corollary 1 in section 2). This is complemented in section 4 with some numerical
simulations that support theoretical results and let us give an insight about the
stability properties from a numerical point of view. In section 3 we prove our main
results and in section 5 we present some concluding remarks about this work.

2. Main Results

In order to present the main results of this paper we first consider a key result
due to R. Ortega for symmetric driven oscillators [14].

Let G ∈ C0,1([0, L]×R) for some L > 0, where C0,1([0, L]×R) denotes the space
of all functions that are continuous in its first variable and have partial derivative
with respect to its second variable continuous on R. We will consider the following
Dirichlet problem {

ẍ+ xG(t, x) = 0,

x(0) = x(L) = 0.
(2.1)
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Thus, the variational equation associated to (2.1) at x = 0 is given by

ü+G(t, 0)u = 0. (2.2)

Moreover, if ϕ(t) denotes the solution of (2.2) such that ϕ(0) = 0 and ϕ̇(0) = 1
then we define νϕ as the cardinality of the set

{t ∈ ]0, L[ | ϕ(t) = 0}. (2.3)

Notice that by uniqueness ϕ(t) has isolated zeros, therefore νϕ is well defined.
Next we present an equivalent form of Proposition 4 in [14]. The hypothesis (7)
in this paper has been substituted by the equivalent condition xG(t, x) bounded.

Proposition 2.1 (Ortega’s principle). Consider the Dirichlet problem (2.1) such
that the non-linearity xG(t, x) is bounded, and G(t, x) < G(t, 0) for all t ∈ R and
x ̸= 0. Then the problem (2.1) has a solution with N ≥ 0 zeros in ]0, L[ if and
only if νϕ > N .

On the other hand, for a positive integer m it is a well known fact that the
problem of finding odd mT -periodic solutions for the second order differential
equation

ẍ+ xG(t, x) = 0, (2.4)

where G ∈ C0,1(R/TZ× R) verifies the following symmetries

G(−t, x) = G(t, x), G(t,−x) = G(t, x), (2.5)

can be reduced to solve the Dirichlet problem in (2.1) for L = mT/2, [8, 2]. Notice
that (1.2) has the form of equation (2.4). Therefore the associated variational
equation at x = 0 is (see (2.2))

ü+ (1− 4βV2(t))u = 0. (2.6)

Besides, if u0(t) denotes the solution of (2.6) such that u0(0) = 0 and u̇0(0) = 1,
then we define ν0 as the cardinality of the set (2.3) for the solution u0(t) and
L = mT/2.

Proposition 2.1 along with a truncation of (1.2) lead us to our main result about
the existence of odd periodic solutions for the equation (1.2). We focus on the odd
periodic solutions having positive initial velocities because from the symmetries
(2.5) it deduces that if x(t) is a periodic solution of (2.4) then −x(t) also is.

Theorem 2.2. Consider m > 0 and N ≥ 0 two integers numbers, and assume
that the following conditions hold

a) VM <

√
1

4β
, b) α ≤ 8βV2

m.

Then the equation (1.2) has an odd mT -periodic solution φN with N zeros in]
0, mT

2

[
such that φ̇N (0) > 0 if and only if ν0 > N . Moreover, if ν0 > 0 then φ0

is the unique odd mT -periodic solution of (1.2) positive in
]
0, mT

2

[
and therefore

has minimal period mT .

From the Sturm Comparison theory it is straightforward to deduce the following
result
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Corollary 2.3. Consider m and N0 two positive integers numbers, and assume

that conditions of Theorem 2.2 hold. Assume that T > 2π(N0+1)
m and

Vm, VM ∈


√√√√√1−

[
2π(N0 + 1)

mT

]2
4β

,

√√√√√1−
[
2πN0

mT

]2
4β

 .
Then ν0 = N0 or ν0 = N0+1, and (1.2) has an odd mT -periodic solution φN with
N zeros in

]
0, mT

2

[
for each N = 0, 1, 2, . . . , N0 − 1.

3. Proofs

Proof of Theorem 2.2. The proof is presented in several steps as follows.

Bounding all periodic solutions: Assume that hypotheses a) and b) of Theorem
2.2 hold, and consider m > 0 an integer number. Then every mT periodic solution
φ(t) of (1.2) satisfies

|φ(t)| ≤ R0, for all t ∈ R, (3.1)

where R0 := r0 + ϵ0, for r0 the unique positive real solution of ϕ(x) = 4βV2
m in

]0, 1[, with
ϕ(x) := (αx2 + 1)(1− x2)2

and ϵ0 a fixed positive constant such that R0 < 1.

In order to prove this, we consider the following lemma which is a standard way
to get a priori bounds for periodic solutions and has similar conditions to those
known in the literature as Hartman conditions (see [3]). An analogous result for
a priori bounds of periodic solutions in a transverse comb-drive device whenever
α = 0 was first established in Proposition 2 of [7].

Lemma 3.1. Consider h : R × ]a, b[ → R a continuous and locally Lipschitz
function, and the following differential equation

ẍ = h(t, x). (3.2)

Assume that h is T -periodic in t for each fixed x, and that there exist R1, R2 ∈ ]a, b[
with R1 < R2 such that for all t ∈ R: h(t, x) < 0 for all x ∈ ]a,R1] and h(t, x) > 0
for all x ∈ [R2, b[. Then any T -periodic solution ψ(t) of (3.2) satisfies for all
t ∈ R that

R1 ≤ ψ(t) ≤ R2.

Proof of Lemma 3.1. Assume that hypotheses of the Lemma hold and that ψ(t)
denotes a T -periodic solution of (3.2) such that a < ψ(t) < b, ∀t.

If we assume that a < ψ(t) < R1 for some t ∈ R we obtain a contradiction since
ψ(t) is continuous and hence there exists t∗ such that

min
t∈[0,T ]

ψ(t) = ψ(t∗) ≤ ψ(t) < R1, and therefore 0 ≤ ψ̈(t∗) = h(t∗, ψ(t∗)) < 0.

Then for all t ∈ R we have that ψ(t) ≥ R1. An analogous reasoning can be used
to prove that ψ(t) ≤ R2. □
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Now, we shall present some important facts about ϕ(x) in the first place. Notice
that the function ϕ(x) defined above is an even continuously differentiable function
that vanishes only at x = ±1. Moreover, since the hypothesis a) is equivalent to
4βV2

M < 1 and by definition 0 < Vm < VM , we have that 0 < α ≤ 8βV2
m implies

that 0 < α < 2. Therefore, the function ϕ′(x) = 2x(1−x2)(α−2−3αx2) vanishes
only at x = ±1 and x = 0, and thus it is not difficult to verify that hypothesis
b) implies that the function ϕ(x) has a maximum value at x = 0 in the interval
]−1, 1[ with ϕ(0) = 1. Figure 2 illustrates the general form of function ϕ(x) under
hypothesis a) and b). Since the function ϕ(x) is monotone increasing in the interval
]−1, 0[ and monotone decreasing in the interval ]0, 1[, and 0 < 4βV2

m < 1, there
exists a unique positive real solution in ]0, 1[ of equation ϕ(x) = 4βV2

m which will
be denoted by r0. Notice that −r0 is also a solution because ϕ(x) is an even
function. Figure 2 shows the location of r0 and −r0, which can be understood as
the x-coordinates of the intersection between the graph of function ϕ(x) and the
graph of the horizontal line y = 4βV2

m for x ∈ ]−1, 1[.

Figure 2. Graph of function ϕ(x) for 0 < α ≤ 2 and location of
the root r0.

Now let us fix ϵ0 > 0 such that R0 := r0 + ϵ0 < 1. Then we can define
R2 := R0 > r0 > 0 and R1 := −R0 < −r0 < 0. It is not difficult to check that the
hypotheses of Lemma 3.1 hold for x ∈ ]−1, 1[ and

g(t, x) = x

(
4βV2(t)

(1− x2)2
− (αx2 + 1)

)
,

where g(·, x) is mT -periodic for each x. Notice that g(t,−x) = −g(t, x), and since

g(t, x) = x

(
4βV2(t)− ϕ(x)

(1− x2)2

)
,

we have that for all t ∈ R

x

(
4βV2

m − ϕ(x)

(1− x2)2

)
≤ g(t, x), if x ∈ ]0, 1[ ,
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ODD PERIODIC OSCILLATIONS FOR COMB-DRIVE FINGERS MEMS 7

and

g(t, x) ≤ x

(
4βV2

m − ϕ(x)

(1− x2)2

)
, if x ∈ ]−1, 0[ .

Moreover, definitions of R1 and R2 imply that 4βV2
m > ϕ(x) whenever x ∈

]−1, R1] ∪ [R2, 1[ (see figure 2). Therefore g(t, x) > 0 for all t ∈ R and x ∈ [R2, 1[,
and g(t, x) < 0 for all t ∈ R and x ∈ ]−1, R1]. So that the mT -periodic solutions
of (1.2) have their range contained in [−R0, R0].

An equivalent modified differential equation: In order to tackle the difficulties
derived from the singularities in equation (1.2), we introduce a truncated equation
which will have the same periodic solutions of (1.2) (see [3] for more about the
truncation technique in a boundary value problem). For that purpose we need to
consider an odd increasing function T (x) such that T ∈ C1(R), |T (x)| < 1 for all
x ∈ R and T (x) = x whenever |x| ≤ R0. Thus a particular definition, with R0

defined as above, is the following. Consider

Tµ(x) =

 x if 0 ≤ x ≤ R0,
(1 + µR0)(x−R0) +R0

µ(x−R0) + 1
if x > R0.

where µ > 1
1−R0

. Notice that Tµ(x) is a C1-function on its domain with T ′
µ(R0) = 1

since

T ′
µ(x) =

 1 if 0 ≤ x ≤ R0,
1

(µ(x−R0) + 1)2
if x > R0.

Moreover, Tµ(x) is a monotone increasing function with sup Tµ = R0 + 1
µ < 1.

Therefore we can set

T (x) =

{
Tµ(x) if x ≥ 0,

−Tµ(−x) if x < 0.
(3.3)

Thus, the truncated equation for (1.2) is given by

z̈ = H(t, z), H(t, z) = −zĜ(t, z) (3.4)

where

Ĝ(t, z) =


T (z)

z
G(t, T (z)) if z ̸= 0,

G(t, 0) if z = 0.

and

G(t, x) = 1 + αx2 − 4βV2(t)

(1− x2)2
.

It is not difficult to prove that H ∈ C0,1(R × R). On the other hand, notice
that (3.4) and (1.2) coincide for |z| ≤ R0. Moreover, equation (3.4) satisfies the
hypotheses of Lemma 3.1 since for z ≥ R0 we have that R0 ≤ T (z) < 1. Thus the
definition of r0 and R0 imply that for z ≥ R0

G(t, T (z)) =
ϕ(T (z))− 4βV2(t)

(1− T 2(z))2
< 0. (3.5)
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Therefore H(t, z) > 0 for z ≥ R0. On the other hand, −1 < T (z) ≤ −R0

whenever z ≤ −R0, thus G(t, T (z)) < 0 again, and therefore H(t, z) < 0 for
z ≤ −R0. Lemma 3.1 implies that all mT -periodic solution of (3.4) has its range
contained in [−R0, R0], then both equations have the same periodic solutions. So,
we shall apply Proposition 2.1 to the Dirichlet problem{

z̈ + zĜ(t, z) = 0,

z(0) = z(L) = 0.

in order to reach the conclusion.

Towards to the hypotheses of Ortega’s Principle: The functionH(t, z) is bounded
since for all (t, z) ∈ R2 we have by construction that

|H(t, z)| ≤ H∞ := γ

(
1 + αγ2 +

4βV2
M

(1− γ2)2

)
, (3.6)

for γ = R0 +
1
µ .

On the other hand, consider the following function for w ∈ [0, 1[

S(w) =
2− w

(1− w)2
.

Hence we have that

S′(w) =
3− w

(1− w)3
> 0,

and thus S(w) reaches to its minimum value at w = 0 with S(0) = 2. Then
0 < α ≤ 8βV2

m leads to
0 < α ≤ 4βV2

m min
u≥0

S(u).

Thus for z ̸= 0 we obtain that

0 < α < 4βV2(t)
(2− z2)

(1− z2)2
,

αz2(1− z2)2 + 4βV2(t)(z4 − 2z2)

(1− z2)2
< 0,

αz2 + 4βV2(t)

(
1− 1

(1− z2)2

)
< 0.

In consequence, for all t ∈ R and z ̸= 0 such that |z| < R0 we have that

Ĝ(t, z) = 1 + αz2 − 4βV2(t)

(1− z2)2
< 1− 4βV2(t) = Ĝ(t, 0),

and for |z| ≥ R0 the above inequality is trivial because sign Ĝ(t, z) = signG(t, T (z)) =

−1 (see (3.5) and the subsequent claim), and Ĝ(t, 0) is positive by hypothesis a)
of Theorem 2.2.

Towards the uniqueness: For x ∈ ]0, 1[ we have that the condition b) implies
that

2α− 16βV2
m

(1− x2)3
< 2α− 16βV2

m ≤ 0,
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because s(x) = (1 − x2)3 reaches to its maximum value at x = 0 and s(0) = 1.
Notice that Proposition 5 in [14] is still true for an open z-interval of positive
numbers. Hence, a direct application of this result leads to the conclusion since
for all t ∈ R and x ∈ ]0, 1[ we have that

Gx(t, x) = x

(
2α− 16βV2(t)

(1− x2)3

)
≤ x

(
2α− 16βV2

m

(1− x2)3

)
< 0.

□

Remark 3.2. We notice that the last proof requires to find a priori bounds of peri-
odic solutions for both the original equation and its equivalent modified equation,
nevertheless, singularities of the original equation prevent the direct application
of known results for a priori bounds using the so called Hartman conditions [3].
For this reason we have introduced the Lemma 3.1.

Remark 3.3. The main results in this section could be dependent on the particu-
lar truncating that is employed with the required properties, and therefore they
provide certain flexibility for searching odd periodic oscillations.

4. Numerical Examples

In this section we provide numerical simulations in order to illustrate the main
results of this paper. We consider the following data for the truncated differential
equation (3.4) with µ = 1.0× 103, ϵ ≈ 8.854× 10−12 Fm−1, m = 9.33× 10−11 kg,
l = 100µm, e = 10.0 µm, d = 1.0µm, k = 1.0Nm−1 and c = 3.10× 109 Nm−3.

Thus α = 3.10 × 10−3 and β ≈ 4.427 × 10−3 V−2. Furthermore, we fix the
inputs m, N0 for Corollary 2.3 and consider the period

T = 2π

(
m

N0 + 1
− θε

)−1

with θε = 0.1,

and Vm, VM as the extremes values of the interval given by Corollary 2.3.
The panel figure 3 sums up the results regarding to the case m = 1 and N0 = 3

as follows. Table in 3a shows the initial velocities ωN = φ̇N (0). Figure 3b shows
the graph of the solutions φN (t) in the interval

[
0, mT

2

]
for N = 0, 1, 2. Finally,

figure 3c shows the associated Stroboscopic map on the left, and a close-up to
some regions of interest that contain the fixed points corresponding to the odd
T -periodic solutions on the right. The Stroboscopic map, was performed using the
Taylor method with automatic differentiation, with relative and absolute error of
order 10.0× 10−12, this method offers high precision and is very fast [10].

We recall that those ωN in table 3a agree with the critical velocities for which
the number of zeros of the solution of the associated Dirichlet problem in

]
0, mT

2

[
for the truncated differential equation changes. In order to compute them we have
performed a strategy of bisection.

On the other hand, table 1 shows the values of N0 and N for which the oddmT -
periodic solutions of equation (1.2) φN (t) obtained in Corollary 2.3 are linearly
Lyapunov stable. This conclusion follows from the numerical evidence provided
by the Stroboscopic map, since we can observe the appearance of invariant closed
curves around of fixed points of the form (0, ωN ) for some N (see figure 3c).
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10 O. LARREAL, L. MURCIA, AND D. NÚÑEZ

N ωN

2 1.025 594 466 101 665 5× 10−1

1 1.129 623 793 301 107 2× 10−1

0 1.130 395 831 096 393 5× 10−1

(a) Critical velocities ωN for which the num-
ber of zeros changes.

(b) Solutions φN (t) in the interval[
0, mT

2

]
with φ̇N (0) = ωN , N = 0, 1, 2.

(c) Stroboscopic map for m = 1, N0 = 3

Figure 3. Table and graphics about of critical velocities for m =
1, N0 = 3.

Notice that because of the Hamiltonian character of (1.2) its associated Strobo-
scopic map is area preserving, and thus the stability of its fixed points is marginal
or neutral type and can be studied by observing simple closed invariant curves
around of them (see [16]). Additionally, we complement this study by computing
the Floquet multipliers for the linearization at each periodic solution through a
numerical software, for example Auto (see [11] for more details). Hence, for the
cases in table 1 we obtain that the Floquet multipliers are complex numbers with
modulus equals to 1, and thus the corresponding solutions are elliptic or linearly
stable. The other solutions have multipliers outside of unit circle and therefore
are unstable.

We have also included the case m = 4, N0 = 4 in panel figure 4. Table in
4a shows the initial velocities ωN = φ̇N (0). Figure 4b shows the graph of the
solutions φN (t) in the interval

[
0, mT

2

]
, for N = 0, 1, 2, 3. Finally, figure 4c shows

the associated Stroboscopic map on the left, and a close-up to the fixed points
corresponding to the odd mT -periodic solutions on the right.
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m N0 N

1

3 2
4 3
5 3
6 4
7 6

Table 1. Values of N0 and N for which there exist stable odd
mT -periodic solutions of (1.2) with N zeros in half period of the
voltage.

N ωN

3 3.032 408 680 824 740 8× 10−1

2 3.314 532 595 408 081 8× 10−1

1 3.315 276 475 167 028 3× 10−1

0 3.640 908 005 638 721 1× 10−1

(a) Critical velocities ωN for which the num-
ber of zeros changes.

(b) Solutions φN (t) in the interval[
0, mT

2

]
with φ̇N (0) = ωN , N =

0, 1, 2, 3.

(c) Stroboscopic map for m = 4, N0 = 4

Figure 4. Table and graphics about of critical velocities for m =
4, N0 = 4.
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5. Concluding Remarks

Next we discuss the the main contribution of this work regarding to the equa-
tion (1.2). Given m and n positive integers there exist a suitable adjustment for
the extreme values of the input voltage, its frequency and the cubic stiffness coef-
ficient α (the latter below certain quantities) such that the movable electrode in a
transverse in-plane Comb-drive device exhibits odd mT -periodic responses with j
zeros in Jm =

]
0, mT

2

[
for each j = 0, 1, . . . n− 1. Additionally, the solution with

no zeros in the interval Jm is unique and therefore it has minimal period mT .
Our approach is elementary because it is based on the Sturm Comparison theory

and the continuity properties respect to initial conditions in ODEs. The fundamen-
tal idea is due to R. Ortega [14] and consists in the following variational principle
applied to the particular truncating of (1.2) employed in our proof: the solution
starting from x = 0 with minimum kinetic energy between those solutions with N
inner zeros in a half period of the voltage, is odd and periodic. Thus, the results
could depend on the particular truncation, however this approach provides some
flexibility for searching odd periodic solutions.

The stability properties of these periodic solutions for a particular truncating of
this type are unknown. The numerical evidence shows that some of them could be
elliptic (see table 1). We will consider this problem from the analytical approach
in future works.

Acknowledgment. This work has been supported by Pontificia Universidad
Javeriana Cali, Colombia, Call Capital Semilla project number 020100750.

References

1. S.G. Adams, F.M. Bertsch, K.A. Shaw, and N.C. MacDonald, Independent tuning of linear

and nonlinear stiffness coefficients [actuators], Journal of Microelectromechanical Systems

7 (1998), no. 2, 172–180.
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