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Abstract. A new Markov model of epidemic spread in a closed population
is introduced, where, in addition to standard transitions reflecting infection

process of individuals and eliminating of infection sources, we also introduce

a transition associated with immunization of individuals. While in the known
model with natural immunization the probability of a last transition is pro-

portional to the number of possible contacts between infected and uninfected

individuals, in the model we consider this probability is proportional to the
number of infected individuals only, that is, as the number of infected indi-

viduals increases, the probability of immunization also increases.
For different values of the initial parameters of the introduced model, the

class of limit laws for the generalized extension of the epidemic (the number

of infected individuals plus the number of immunized individuals at the end
of the epidemic) is described under the assumption that the initial number

of infected and uninfected individuals tends to infinity and the parameters

depend on them (”Series scheme”). (at most 150 words)

1. Introduction

We introduce the following Markov model of the development of an epidemic in
a closed population, with the help of which we can compare the previously known
models with the model considered in this article. Let ξ(t) = (R(t), S(t)) -the state
of the population at a given time t ≥ 0,where R(t) -number of susceptible,and S(t)
-number of sources of infection at a time t,moreover ξ(0) = (n,m). We define the
Markov model of the spread of the epidemic using the following probabilities of
possible transitions beyond infinitesimal period of time ∆t

P (ξ(t+ ∆t) = (r − 1, s+ 1)/ξ(t) = (r, s)) = λϕ1(r)ψ(s)∆t+ o(∆t),

P (ξ(t+ ∆t) = (r, s− 1)/ξ(t) = (r, s)) = µψ(s)∆t+ o(∆t),

P (ξ(t+ ∆t) = (r − 1, s)/ξ(t) = (r, s)) = θϕ2(r)ψ(s)∆t+ o(∆t),

(1.1)

where the first and second transitions reflect the process of infection of susceptible
and elimination of patients, respectively, and the third transition is the process of
immunizing susceptible ones.
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2 SEDOV S.S.

The classical, so-called general probabilistic model, was proposed in 1927 and
is associated with the names English scientists Kermack and McKendrick [1].This
model is obtained from (1.1) for ϕ1(r) = r, ψ(s) = s, ϕ2(r) = 0.It was fur-
ther thoroughly investigated by Bartlett [2], and the process itself was called the
Bartlett-McKendrick process (see, for example, [3]).

A more generalized model with ϕ1(r) = r, ψ(s) = s, ϕ2(r) = r was reviewed by
Downton in 1968 [4] and independently of him Nagaev A.The. and Rachmanina
G.I. in 1970 [5], in the last of which the third transition has been interpreted
as natural immunization, i.e. it reflects the possibility of the transition of the
susceptible to the number of immunized as a result contact with the source of
infection.

For Bartlett’s general probabilistic model [2] established the Kolmogorov equa-
tion for the generating function of the probabilities of the process states

Πt(z, w) =

n∑
r=0

α+n−r∑
s=0

P (ξ(t) = (r, s))zrws, (1.2)

which looks like this:

∂Πt(z, w)

∂t
= (w2 − zw)

∂2Πt(z, w)

∂z∂w
+ ρ1(1− w)

∂Πt(z, w)

∂w
, (1.3)

where ρ1 = µ/λ -is the relative coefficient of elimination. In 1965, equation
(1.3) was solved explicitly independently of each other by Ghani [6] and Siskind
[7]. An equation of type (1.3) with explicit coefficients at the derivatives turned
out to be solvable only due to the special form of the unknown function Πt(z, w).

Unfortunately, the explicit form of the solution of equation (1.3) is so cum-
bersome that it is difficult to subject it to any asymptotic analysis, as well as to
reveal the ratios of the initial parameters characteristic of a particular behavior of
the process.In this regard, attempts were made (both before obtaining an explicit
solution to the model and after that) asymptotic analysis of the model mainly
regarding the distribution of epidemic size in a large population (n → ∞). The
most general approach to the asymptotic analysis of the distribution of this most
important functional was taken in the works of A.V. Nagaev. and his students
since 1968 ([9], [10],[11] and etc).In these works, a method was developed for re-
ducing the problem of the distribution of the size of the epidemic to a boundary
problem for the sums of independent random variables in the series scheme.

In this paper, we carry out a similar asymptotic analysis of model (1.1) for
ϕ1(r) = ra, ψ(s) = s, ϕ2(r) = 1, where a is the probability of infection of a
susceptible person upon contact with a source of infection. In contrast to the
general probabilistic model and the model with natural immunization, specific
difficulties arise in the implementation of boundary problems, as well as new effects
in the ratio of the initial parameters.As for the explicit solution of the equation for
the generating function in the model under consideration, as well as in the model
with natural immunization, this question still remains open, but, nevertheless, the
question of asymptotic analysis, by virtue of the above, remains relevant. [12]-[14].
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We also note that the asymptotic analysis of the non-Markov analogue of the
general probabilistic model, which takes into account the state of the immune sys-
tem of the susceptible, and the infectious period is arbitrary (other than indicative)
distribution, was further considered in works [12]-[14].

2. Problem statement and formulation of results

Thus, the work will consider the following Markov model of the development of
the epidemic

P (ξ(t+ ∆t) = (r − 1, s+ 1)/ξ(t) = (r, s)) = rαs∆t+ o(∆t),

P (ξ(t+ ∆t) = (r, s− 1)/ξ(t) = (r, s)) = ρ1s∆t+ o(∆t),

P (ξ(t+ ∆t) = (r − 1, s)/ξ(t) = (r, s)) = ρ2s∆t+ o(∆t),

(2.1)

where ρ1 = µ/λ, and ρ2 = θ/λ - the relative rates of elimination and immunization,
respectively.

Values will act as regulating parameters θ1 = ρ1/n and θ2 = ρ2/n, in relation
to which the classification of various cases of process behavior will be carried out.

It is clear from the definition that states of the form (k, 0), 0 ≤ k ≤ n are
absorbing for the process ξ(t).

The object of the study will be the generalized size of the epidemic ν = ν1 +
ν2,where ν1 and ν2 -the number of those who had recovered and were immunized
susceptible to the end of the epidemic.

Throughout what follows in this work, it will be assumed that m→∞, n→∞,
m = o(n),and also that lim

n→∞
θ2 = θ20, 0 ≤ θ20 <∞. Moreover, with respect to the

parameter θ1 the transition case of the 1st type will be considered:limn→∞ θ1 =
θ10 = 1.

For this case, the following preliminary general comments can be made.In a
transitional case of type 1, at the initial stage of the development of the process,
the number of initial patients will change (provided that the change has occurred)
by +1 or -1 with probabilities close to 1/2, i.e. the process has no tendency (trend)
and absorption occurs due to random fluctuations, and the absorption probability
itself is approximated by the probability of the first exit by the Wiener process of
a certain smooth boundary.This happens with a relatively fast aspiration θ1 to 1
so that 1− θ1 = O(1/m).

Let’s start formulating the results.The symbol =⇒ everywhere means weak
convergence.

Theorem 2.1. If θ1 → 1 , β ≡ m(1 − θ1) → β0 , m3

n → γ0 < ∞, | β0 |< ∞ ,
then for any fixed x¿0

P

(
ν >

(1 + θ2)m2

2
x

)
=⇒

=⇒ P

(
w(t) <

1√
x

+ β0

√
x

2
t− (1 + θ20)γ0x

3
2

4
√

2
t2 , 0 ≤ t ≤ 1

)
.

where ω(t) -standard Wiener process.
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Consequence 1. If γ0 = 0, then under the conditions of Theorem 1,

P

(
ν >

(1 + θ2)m2

2
x

)
=⇒ 1− e

−(β0+|β0|)√
2(1+θ20)

β2
0/4(1+θ20)∫

0

p(u)du,

where p(u) =
| β0 | e

|β0|√
2(1+θ20)

2
√

2π(1 + θ20)
u−3/2e−u−β

2
0/8u(1+θ20) .

Consequence 2. If in addition β0 = 0, then

P
(
(1 + θ2)m2x/2

)
=⇒

√
2

π

1/
√
x∫

0

e−u
2/2du.

3. Reduction to a boundary value problem for sums of independent
random variables

The general scheme of the proof is close to the works [5] and [10].Absorption of
the Markov process (2.1) into the state (n-k, 0) corresponds to the generalized size
of the epidemic ν = k and so to study this distribution, it is sufficient to restrict
ourselves to considering the corresponding embedded Markov chain:

P
(

(r, s)→ (r − 1, s+ 1)) =
( r
n

)a
/(θ1 + θ2 +

( r
n

)a)
,

P ((r, s)→ (r, s− 1)) = θ1/
(
θ1 + θ2 +

( r
n

)a)
,

P ((r, s)→ (r − 1, s)) = θ2/
(
θ1 + θ2 +

( r
n

)a)
.

It should be noted that a similar random walk in the case of a general probabilistic
model was introduced by Foster [15].

For convenience, we pass to an equivalent random walk using the transformation
r′ = n− r , s′ = n− r − (s−m) :

P ((r′, s′)→ (r′ + 1, s′)) =

(
1− r

n

)a
θ1 + θ2 +

(
1− r

n

)a = p
(1)
nr′ ,

P ((r′, s′)→ (r′, s′ + 1)) =
θ1

θ1 + θ2 +
(
1− r

n

)a = p
(2)
nr′ ,

P ((r′, s′)→ (r′ + 1, s′ + 1)) =
θ2

θ1 + θ2 +
(
1− r

n

)a = p
(3)
nr′ .

(3.1)

It is easy to see that the walk (3.1) starts at the point (0,0), and the integer
points of a straight line s′ = m+ r′, r′ = 0, . . . , n.

Next, we introduce auxiliary random variables ξni as the residence times of a
wandering particle at straight r′ = i − 1, i = 1, 2, . . . , n.It is easy to understand,
since the walk (3.1) is Markov, that these r.v. independent and geometrically
distributed

P (ξni = k) = (1− p(2)ni−1)(p
(2)
ni−1)k, k = 0, 1, . . . , n. (3.2)
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In addition, we introduce the random variables ηni,which take the value 1 if the
transition to the line r′ = i occurred by immunization susceptible and 0 if it was
carried out by disease, i.e.

ηni =

1 , θ2
θ2+(1− i−1

n )
a ,

0 ,
(1− i−1

n )
a

θ2+(1− i−1
n )

a .
(3.3)

It is easy to understand that random variables ηn1, ηn2, . . . .ηnn−1 will also be in-
dependent.Note also that in the model with natural immunization, the random
variable ηni takes values 1 and 0 with probabilities θ/(λ+θ) and λ/(λ+θ) respec-
tively.

Now we introduce the basic random variables

ξn1 = ζn1 , ξni = ζni + ηni−1 if i ≥ 2.

It is easy to establish from (3.2) and (3.3) that

P (ξni = k) =

{
p
(1)
ni−1 ,if k = 0,

(1− p(1)ni−1)(1− p(2)ni−1)(p
(2)
ni−1)k , if k ≥ 1.

(3.4)

Next, we introduce the sums

SnK =

k∑
i=1

ξni , k=1,2,. . . n-1 and S∗nk =
Snk −Mnk

Bn
, where

Mnk = ESnk, B2
nk = DSnk, B2

n = B2
nkn .

In terms of the introduced quantities, the distribution ν will be written as

P (ν > k) = P (Sn1 < Sn2 < m+ 1, . . . , Snk+1 < m+ k). (3.5)

If we now introduce a continuous random polyline ξn(t) with vertices at
points (tnk, S

∗
nk) and I determine the broken line gn(t) with vertices at points

(tnk,
m+ k − 1−Mnk

Bn
), k = 1, 2, . . . , kn, where tnk =

B2
nk

B2
n

then (3.5) can be rewritten as

P (ν > kn) = P (ξn(t) < gn(t), 0 ≤ t ≤ 1). (3.6)

Relation (3.6) serves as the basis for obtaining limiting distributions using the
invariance principle,whereby f(ξn(t)) =⇒ f(w(t)) for any continuous in C [0,1]
functional f, where w (t) is a standard Wiener process (see, for example, [16]).To
substantiate the applicability of the invariance principle, it is necessary to study
the asymptotics of the moments and check Linderberg’s condition.

Based on (3.2) and (3.3), it is easy to establish that

mni ≡ Eξni =
θ1 + θ2

θ2 +
(
1− i−1

n

)a ,

σ2
ni ≡ Dξni =

θ21(
θ2 +

(
1− i−1

n

)a)2 +
θ1

θ2 +
(
1− i−1

n

)a +
θ1
(
1− i−1

n

)a(
θ2 +

(
1− i−1

n

)a)2 .
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Asymptotics of quantities mnk and B2
nk with the help of the following lemma,

the proof of which is not difficult.
Lemma.

If h(x) ≥ 0 and does not increase at [0, 1], then for any α ∈ (0, 1] and kn < n

kn∑
k=0

h(1− αk
n

) =
n

α

1∫
1−αknn

h(x)dx+Rn,

where

1 ≤ Rn ≤ h(1− αk
n

) .

From this it is not difficult to obtain that if k ≤ n(1− δ), 0 < δ < 1,then

Mnk+1 = −n
a

(θ1 + θ2)ln

(
1− ka

n(1 + θ2)

)
+
θ1 + θ2
1 + θ2

Rn1 , (3.7)

B2
nk+1 =

kθ21
(1 + θ2)2

1

1− ka
(1+θ2)n

+ θ21Rn2
, (3.8)

where

1 ≤ Rn1
≤ 1 + θ2
θ2 + δ

, 1 ≤ Rn2
≤ (1 + θ2)2

(θ2 + δ)2
.

The sum of the third points can be estimated in a similar way.Using these results,
it is easy to estimate the Lyapunov fraction.For kn →∞ and kn ≤ (1− δ)n:

L3n ≡
1

B3
n

kn∑
i=1

M | ξni −mni |3= O

(
1√
kn

)
.

Note also that for k →∞ and k = o(n):

Mnk+1 =
(θ1 + θ2) k

1 + θ2
+

ak (k + 1)

2(1 + θ2)2n
+O

(
k3

n2

)
, (3.9)

B2
nk+1 ∼ σ2(n)k , σ2(n) =

(
θ1

1 + θ2

)2

+
θ1

1 + θ2
+

θ2
(1 + θ2)2

. (3.10)

4. Proofs of the main statements

Proof of the theorem 1 Under the conditions of this theorem kn = o(n)
therefore, from (3.9) and (3.10) we have that tnk ∼ k

kn
and

gn(tnk) =
m+ k − θ1+θ2

1+θ2
k − θ1+θ2

(1+θ2)2
ak(k+1)

2n +O(k3/n2)

σ(n)
√
kn

By choosing kn = (1 + θ2)m2x/2 and noticing that σ2(n) ∼ 2
1+θ20

, we have

gn(tnk) =
1√
x

+
(1− θ1)m

√
x√

2
√

1 + θ2
tnk −

(θ1 + θ2) a
√
a (1 + θ2)

5
2 n

m3x
3
2 t2nk +O

(
1

m

)
.

134



LIMIT THEOREM IN ONE MARKOV’S EPIDEMIC MODEL 7

Now if k ∼ knt, 0 < t < 1, then

gn(t) = lim
n→∞

gn(tnk) =
1√
x

+
β0
√
x/2√

1 + θ2
t− (θ1 + θ2)aγ0

4(1 + θ2)
5
2

(x)3/2t2.

Thus, by virtue of the invariance principle

P (νn > kn) =⇒ P (w(t) < g(t), 0 ≤ t ≤ 1).

Corollary 1 follows from the explicit representation of the following probability

P (w(t) < b+ kt, 0 ≤ t ≤ T ) = 1− e−b(k+|k|)
Tk2/2∫
0

pbk(u)du,

where pbk(u) =
b | k | eb|k|

2
√
π

u−3/2e−u−b
2k2/4u-Wald distribution density.
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