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KOMATU INTEGRAL OPERATOR RELATED TO ANALYTIC
FUNCTIONS

S.SREELAKSHMI AND RAJKUMAR N.INGLE

ABSTRACT. The focus of this article is the introduction of a new sub-class
of analytical functions involving Komatu integral operator and obtained co-
efficient bounds, distortion bounds as well as convex linear combination and
partial sums for this class.

1. INTRODUCTION

Let A specify the category of analytical functions 1 represent on the unit disc
T = {w: |w| < 1} with normalization n(0) = 0 and #’(0) = 1, such a function has
the extension of the Taylor series on the origin in the form

n(w) :w—l—Za,,w”. (1.1)
v=2

Indicated by S, the subclass of A be composed of functions that are univalent in
T.

Then a n(w) function of A is known as starlike and convex of order ¥ if it
delights the pursing

w (w) w
§R{ () }>197 (we), (1.2)
wn' (w)
and 3‘%{1 + 7 (w) } >, (we), (1.3)

for specific 9(0 < ¥ < 1) respectively and we express by S*(9) and K(9) the
subclass of A be expressed by aforesaid functions respectively. Also, indicate by
T the subclass of A made up of functions of this form

n(w) = w — Za,,w”, (@, >0, weT) (1.4)
v=2

and let T*(¥) = T'N S*(Y¥),C(Y¥) = T N K(Y¥). There are interesting properties in
the T * (¢) and C(¢) classes and were thoroughly studied by Silverman [14] and
others.
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Recently, Komatu [5] added an integral operator I é indicated by
1

Ié = ij(;/ <log >el77(wt)dt, (1.5)

0

where p >0,/ >0 and w e Y.
Thus, n € A is of the form (1.1), so it’s easy to find out (1.5) that (see [5])

Ié’l(w) =w+ Z QV(@7 g)aku7 (16)
v=2

where Q,(p,0) = ( £ )Z.

o+r—1
From (1.5), it is quite obvious that

w (In(w)) = (p+ DIE n(w) — pIln(w)

and

" _ —
w? (Ign(w))” = (p+ 1)L n(w) — (2 + 1)(p + 1)1 n(w) + p(p + 1) Ign(w).
We point out that
(i). for p = 1 and ¢ = (v is an integer), the multiplier transformation
I'n(w) = I"'n(w) was studied by Flett [2]
(ii). for p = 1and ¢ = —y(y € N), the differential operator I; "n(w) = D'n(w)
was examined by Salagean [12]
(iii). for p = 2 and ¢ = (v is an integer), the operator Iin(w) = I"n(w) was
considered [16]
(iv). for p =2, Iin(w) = I'n(w) was examined by Jung et al. [4].
As a result of the work of see ([1, 6, 7, 9, 10]), we propose a new subclass ¢é(h, )
of A concerning Komatu integral operator [5] as below:

Definition 1.1. For 0 < < 1,0 <9 < 1,p > 0, > 0, we say n(w) € A is in
¢é(h, ) if it fulfils the requirement

o (2 on(w)) + hw? (Iin(w)”
Ign(w)
Also we indicate by Tqbé(h, 9) = (bé(h, I)NT

) >, (we). (1.7)

2. Coefficient Inequalities

This section gives us an adequate requirement for a function n given by (1.1)
to be in ¢ (h, V).

Theorem 2.1. A function n € A is assigned to the class qﬁé(m 9) if

oo

D v+ (v —1) =91 (p, )ay| < 1 - 9. (2.1)

v=2
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Proof. Since 0 <9 < 1 and k > 0, now if we put

w (Ién(w))/ + hw? (Ién(w)) -
o(w) Ton(w) ; (we)
Then it’s just a matter of proving it |[o(w) — 1| <1 -9, (w € T).
Indeed if n(w) = w (w € ), then we have p(w) = w(w € T).
Implies (2.1) holds.
If n(w) # w (Jw] = r < 1), then there exist a coefficient 2, (p, £)a, # 0 for some

o0
v > 2. The consequence is that Y Q,(p, £)|a,| > 0. Further note that
v=2

"

Yoty —1) =9 (p Olay] > (1 =0) Y Qulp, 6)]a]
v=2 v=2
= > Q(p.0)a| < 1.

By (2.1), we obtain

i v+ hv(v—1) =1 (p, £)a,w’ !

lo(w) — 1] = |“=2 S
1+ Y Q(p, Ha,wr—?
v=2
Z [V + hl/(V — 1) - 1]QV(P»€)|GV|
v=2
<

1- 22 Qu(p7 g)‘au‘

S5ty = 1)~ 90,6, O] — (1~ )6, |
) 1= 3 .0l

(1=0) = (1=9) 3 2le.Ola]
) 1= 3 Q(p.0lal

=1-9, (weT).
Hence we obtain

R (w (Ign(w)’ +h? (Zn(w)”

>—§R(g(w))>1—(1—19)—19,.

Iin(w)
Then n € (bé(h, 9). . O
Theorem 2.2. Let n be given by (1.4). Then the function n € T(;S?J(h, 9)
& Y thvv—1) =9 (p,0)a,| <1 -0, (2.2)
v=2
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Proof. In view of Theorem 2.1, to examine it n € Tqﬁﬁ,(h, 9) fulfils the coefficient
inequality (2.1). If n € T¢,,(h, 9) then the function

~w (Ihn(w))" + hw? (Thn(w))”
ofu) = ) (e

satisfies R(o(w)) > 9. This implies that

Ién(w) =w— ZQ,,(p, O)|ay|w” # 0; (w € T\ {0}).

v=2

£
Noting that IMT(T) in the open interval (0,1), this is the real continuous function

with 7(0) = 1, we have

I‘n(r >
L() :1fZQV(p,€)|al,|r”71 >0, (0<r<l). (2.3)
r v=2

oo

1= 3 4w (v =1)]2 (p,6)|lay [r”
Now 9 < o(r) = —=2— and consequently by (2.3),
_ a,|rv—1
1 VX::Q Q(p,0)|aw]

we get Y [v+hv(v —1) —9]Q, (0, )|ay|r*~t <1 -9.

v=2
Letting r — 1, we get > [v+ (v — 1) — 9)Q(p, )]a,| <1 — 9.

v=2
This proves the converse part. (]

Remark 2.3. If a function 7 of the form (1.2) belongs to the class Trj)é(h, 9¥) then
1-9

v| < , > 2).
o] < v+ hv(v—1)— 9. (p,f) (v22)
The equality holds for the functions
(W) =w — L-9 w", (we YT, v>2). (2.4)

v+ vy —1) =9 (p, )

3. Distortion Theorem

In the section, the distortion limits of the functions owned by the class T¢2(h, 9).

Theorem 3.1. Let n € Tqbé(h, 9¥) and |lw| =r < 1. Then

1—9 L
TR0+ 20(p, 0) r? < In(w)| <7+ TN 2 (3.1)

and
1— 2(1 -9) r < ()] <1+ 2(1—9) . 652)

20— 9 + 20, (0, ) 20— 0 + 2] (9, )

The approximation is sharp, with the ne(w) extreme function indicated by (2.4).
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Proof. Since n € T¢%,(h, V), we apply Theorem 2.2 to attain

25— 9+ 2] (0, 0) > lay| < v+ hw(v — 1) = 9] (0, 0)|a, |
v=2 v=2
<1-9.
Thus |n(w)| < |w|+|w|2§o:|a,,| <r+ L-9 r?
= =TT 2R =9+ 20, (p, 0)
1—9 )

2
Also we have, |n(w)| < |w] — |w| VZ:Z|aV| <r- 2= 0+ 200 (0. 0 e,

and (3.1) follows. In similar way for #’, the inequalities

' ()] <14+ vlaylwl™" <1+ |wl Y via|

v=2 v=2
and
i vla,| < 21— 9)
= T 2 =9+ 2]Q,(p, 4)
are satisfied, which leads to (3.2). O

4. Radii of close-to-convexity and starlikeness

A close-to-convex and star-like radius of this class Tqbé(h, 1) is obtained in this
section.

Theorem 4.1. Let n be specified by (1.4) is in Tqbé(h, ¥). Then n is the order of
close-to-convez £ (0 < £ < 1) in the disc |w| < t1, where

e [0+ A = 1) = 912, (0, 0) =
LT v(1—19) '

(4.1)
The estimate is sharp with the extremal function n(w) is indicated by (2.4).
Proof. If n € T and 7 isorder of close-to-convex ¢ then we get
' (w) — 1] <1—4. (4.2)
For the L.H.S of (4.2), we obtain
' (w) =11 < vayfw] ™t <1—¢

v=2

oo
v
= § — vl <1,
V:ZI_KGU‘w| B

We know that 7(w) € T¢!,(h,9) <

i [v+vh(v—1) — 9 (p, )

< 1.
1-9) a <1

v=2
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Thus (4.2) holds true if

[v+vh(v—1) = 9. (p, £)

Tl <
- =)

1-7

(1- O+ vh(v —1) — ﬁ]ﬂy(p,z)} =
v(l—1)

hence the proof. O

= Jw| < [

Theorem 4.2. Letn € Tq’)é(h, ¥). Then n is order of starlike ¢, (0<{<1) in
the disc |w| < ta, where

(4.3)

t2: in

{(1 — O+ vh(v—1) — ﬁ]ay(p,z)] =
(v —0(1-9) '

The estimate is sharp with the extremal function n(w) is indicated by (2.4).

Proof. We have nn € T and n is order of starlike ¢, we have

‘wn’(w)

o) 1‘<1£. (4.4)

For the L.H.S of (4.4), we have

We know that n € Tcéﬁ;(h, v

Z [v+vh(y—1) =9 (p, ) o <1,

v=2 (1 o 19)

Thus (4.4) is true if
v—{
1-¢

w1t < [v+vh(v —1) — 9] (p,¢)

- (1-9)

1-=0v+vh(v—1) -9 (p,0) P
- 01-0) -

It yield starlikeness of the family. O

= |w| <
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5. Convex Linear combinations
Theorem 5.1. Let n1(w) = w and
1-9

Ny (w) =w — 1) = ﬁ]QV(p,é)wV’ (weT,v>2). (5.1)

Then n € Tqbfé(h, ¥) < n in the way it can be expressed

n(w) =" (w), (1 >0) (5.2)
v=1
and § sy = 1.
v=1
Proof. If a function 7 is of the form n(w) = ioj oy (W), gy > 0 and ioj ty =1
v=1 v=1
then
D+ —1) =9 (p,0)|a |
v=2
_ = (1 -
_;[u +hv(v-1)—9%(p,0) v o —1) — 010 (9.0)
=2 (1= = (1 - p)(1 )
v=2
<(1-9)

which provides (2.2), hence 7 € T¢é(h, 9), by Theorem 2.2.
On the other hand, if 7 is in the class n € T(bé(h, %), then we may set
v+ (v — 1) = 0] (p,6)
fo = 1—9

lay], (v >2),

o)
and p1 =1— > u,.
v=2
Then the function 7 is of the form (5.2) .

6. Partial Sums

Silverman [14] examined partial sums 7 for the function n € A given by (1.1)
Established Through

i (w) = w and nm(w):w+2a,,w”,m:2,3,4,-~- . (6.1)

v=2

In this paragraph, In the class qbﬁ,(h, ), partial function sums can be considered
and sharp lower limits can be reached for the function. True component ratios of
7 t0 Ny, and 7’ to ).
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Theorem 6.1. Let n € ¢f,(h,9) and fulfils (2.1). Then

n(w) ) 1
R >1- J(weY,meN), 6.2
<77m(w) o dpmt1 ( ) ( )
where
v+hw(-1)-1
d, = 6.3
1 g (6.3)
Proof. Clearly, dyy1 >d, >1,v=2,3,4,---.
Thus by Theorem 2.1 we get,
o0 o0 o0
Z|ay| +dm+12|ay| < Zdy|al,| <1. (6.4)
v=2 v=2 v=2
. n(w) ( 1 )}
Settin w) = dm, —(1-
8 9(w) i {Wm(w) dm+1
o0
dmy1 Y. a,w’t
glw) =1+ —5 (6.5)
1+ > a,uwv?!
v=2

it be good enough to show R(g(w)) > 0,w € Y. Applying (6.4) we think that

00
dm1 Z |a|
v=2

S m o0
2-2% lay| —dnt1 X la
v=2 v=m+1

which gives,

hence the proof.

Theorem 6.2. Let 1 in T¢L (h,9) and fulfils (2.1). Then

nm(w) A1
%(n(w) >21+dm+1’ (weY,meN), (6.6)

where
v+ hv(yv—1) -9
1-9

Proof. Clearly, d,41 >d, >1,v=2,3,4,---.

d, =
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Thus by Theorem 2.1 we get,

Z‘aul“i’dm—i-l Z ‘aul Szdu|au| S 1.

v=2 v=m+1 v=2

Setting h(w) = (1 + d,, -
o) = (o {05 - (52

(1+dms1) > ayw™!
h(w) =1 - S ian
14+ > awr—t
v=2

to show R(h(w)) >0, (w € T). Implementing (6.8) we attain

(1+ dim+1) 2_:2 |ay|

’h(w)1‘<
M)A g 0 0= (Lt dsr) > o]
v=2 v=m+1
<1

)

which gives,

R (Um(w>> S dm+1

n(w) T l+dmt 7

and hence the proof.

Theorem 6.3. Let 1 in T¢L (h,9) and fulfils (2.1). Then

/
%(Tl(w))zlerl, (weT,me N),

nin(w) dm+1
and
n;n(w) dm+1
>
§R<77’(w) ) 2 T it (weY,meN)

where
v+ hv(yv—1) -9

dv = )

Proof. By Setting

ot (3 ()} e

(6.9)

(6.10)

(6.11)

(6.12)

andh(w):(m+1+dm+1){n’/”(w)—< dm+1 )} (we ),

n('w)

m+1+dm+1

The evidence is close to that of the 6.1 and 6.2 theorems, so the specifics are

omitted.
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7. Convolution properties

We will prove in this section that the Trbé(h, 9) class is closed by convolution.
Theorem 7.1. Let g(w) of the form

g(w) =w— Zbyw”
v=2
be regular in Y. If n € T(bé(m 9) then the function n* g is in the class T(bé(h, 9).

Here the symbol x denoted to the Hadmard product .
Proof. Since n € T¢%,(h,9), we have

o0

> v+ by — 1) = 91 (p, )ay| < 1 - 9.

v=2

Employing the last inequality and the fact that
n(w) x g(w) = w — Za,,bl,w”.
v=2

‘We obtain

oo

Z[V + hw(v — 1) = 9] (9, £)|av|[by |

v=2
< Z[V +hv(v —1) = 9]Q(p, £)|ay |
v=2

<1-9

and hence, in view of Theorem 2.1, the result follows.

8. Neighbourhood for the class T'¢. (h, )
Following [3, 11], we defined the a—neighbourhood of the function n(w) € T' by

Ny(n) = {g eT:g(w)=w-— Zbyw” and Zu|al, —-b,| < a} . (8.1)
v=2 v=2

Definition 8.1. The function n € A is defined in the class T¢ﬁ)(h, ) if the function
h € Tgbé(h, ) occurs in such a way that the function is h € T(;Sﬁ)(h, )

n(w)
’h(w) ‘<17, (weY, 0<y<1). (8.2)

Theorem 8.2. If h € T(bé(h, 9) and

. a(2h — 9+ 2)Qa(p, h)
T T 2k — 0+ 2)(p k) — (14 0)

then No(h) C T¢5Y (h, 0).
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Proof. Let n € No(h). We then find from that

o0

Zy|al, —b,| <a,

v=2

which is easily implies the coefficient inequality

oo

S ay —b| < 2
v

v=2

Since h € T(;Sﬁ)(h, ), we have from equation (2.1) that

o0

Z lay| < 1-9
= (28— 9+ 2)Qs(p, h)
and
vla, — b,
ww) [ =
Mw) TS
1—> b,
v=2
_a (@942 (ph)
T2 2h—9+2)Q(p,h)—(1+9)
=1—1.
hence the proof.
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