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SOLUTIONS TO ABC-FRACTIONAL ORDER NEUTRAL
MIXED INTEGRO DELAY DIFFERENTIAL EQUATIONS WITH
IMPULSE

R. DEVIPRIYA, S. SELVI, KOTTAKKARAN SOOPPY NISAR*, AND C. RAVICHANDRAN

ABSTRACT. This work establishes the existence and uniqueness (EUS) of so-
lutions for impulsive neutral mixed integro fractional delay differential equa-
tions involving recently explored ABC-fractional derivatives. Fixed-point
techniques are applied to confirm EUS of solutions of ABC- fractional or-
der integrodifferential system with impulse.

1. Introduction

Fractional calculus is a generalised classical calculus with order of real or com-
plex values. In recent decades, it has developed tremendously and has turned into
one of the most powerful tools to describe dynamical systems in numerous sci-
entific disciplines. Unlike the ordinary differential operator, fractional derivatives
are global in nature and produce concise results by using minimum parameters
than that of the classical model. For the fundamental developments in this field,
one can refer [41, 44]. Because of these astonishing results and more flexibility,
some of the researchers not only exploited fractional operators in modelling and
understanding the complex system, but also enriched the calculus with various
fractional operators. Some of the fractional operators contain singular kernel. To
prevail over this, Caputo and Fabrizio defined an operator involving an exponential
function which is non-singular[17]. Many researchers have worked on developing
the theory of FDE using CF derivative [1, 3, 11, 26, 35, 37, 47, 48].

Motivated by CF derivative, Atangana and Baleanu (AB) put forward a novel
nonsingular fractional derivative possessing the Mittag-Leffler function and it in-
fluences new attributes [12]. Many researchers have tried to replace the ordinary
differential operator with AB fractional derivative in physical systems, as it is
more applicable and yields effective results [4, 5, 6, 7, 13, 23, 24, 28, 29, 30, 31,
33, 34, 38, 39, 40, 42, 43, 50, 51]. Alkahtani et al.[10] did numerical research on
dynamics of Chau’s loop. Gomez et al. [22] obtained analytical solutions for the
electric loop with AB derivatives. Chang et al. [54] applied AB derivatives to
solve variational Herglotz problems. Kamal Shah et al. [46] analyzed the quali-
tative behaviour of the mathematical model of SARS - COV -19 under fractional
non-singular derivative.
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Some dynamical problems subjected to short-term perturbations, which allow
discontinuities in the evolution phenomena, are studied using impulsive fractional
differential equations.[15, 16, 18, 19, 25, 36]. we refer the monographs [14, 32, 45].
Mathematical models involving the fractional differential operators with delay,
depend on duration of certain hidden processes as past history [2, 8, 21].Integro-
differential equations are generalizations of FDE, Fredholm and Volterra integral
equations and are approximation to partial differential equations, which represent
much of the continum phenomena. These kinds of equations are employed in
modeling many problems in mathematical physics, biophysics, rheology such as
heat conduction in materials with memory.[9, 20, 27, 52, 53, 55].

Hasib Khan et al.[28] ensured EU and data dependence of the solution of im-
pulsive FDE with ABC-derivative using Schauder fixed point theorem. Recently,
Ravichandran et al.[43] proved the EUS results of neutral impulsive FIDE’s in the
ABC sense of the form:

t
ABC DYy (t) — O(t, vy)] = f(t,vt,/o k(t,s,vs)ds>, 0<y<1
Av(te) = v(t)) — () = Liv(te),
U|[—T*,O] = o,
where v(t) € C[0,1], f : J x PC* x J — R™ is continuous. I} : R" — R", v(ts) =
v(t+s) for —7* < s <0 where v(t]) = éli%l+ v(ty+6) and v(t, ) = 611%1 vty —0).
— —0—

In papers [25], [38] and other, the existence of non linear FDE is proved using
Schuader and Krasnoselskii fixed point theorem, whereas in this manuscript, the
existence of Neutral FIDE of mixed type with impulses and delay is discussed
using Schaefer’s fixed point theorem and the obtained results are verified with an
example. Inspired by the above works [28] and [43], we have presented the EU
of the solution for the following impulsive ABC- fractional neutral mixed type
integrodifferential equation using Schaefer’s fixed point theorem,

t T
ABEDY | x(t) —o(t,xt)] :B(t,xt,/ n(t,s,xs)ds,/ f(t,s,xs)ds> (1.1)
0 0
tEJC:j—{tl,tQ ....... tm}, j:[O,T], x;«étk
Ax(ty) = z(t)) — 2(t);) = Liz(te), (1.2)
x'[*'r*,O] = C + F*.
where v € (0,1), F*(z) = Y iv, Nizi(t), x € PCY, Y N < 1lfori=1,2,...,m,
B(t, Ty, f(f n(t, s, xs)ds, fOT &(t, s, xs)ds) and o (¢, x;) are Lebesgue measurable func-
tions such that B € C(j XX xXxX — X) where X is a Banach space X,
o:J x PC' — R" are piecewise continuous and I} : R™ — R"™ are continuous on

PC" where PC! = PC*! ([—7’*, 0], R") is the space of piecewise continuous func-
tion with norm ||z||cc = sup |z(t)| and ¢ : [-7%,0] = R™". n,{:Dx X = X
t

cl—7*,
are continuous, where D = {(z,s) € J x J : ¢t > s}. Then x4(s) = z(t + s) for
—7* < s <0, z(tf) = lim z(t; +6) and z(¢;) = lim z(t —9).
5—=0+ 5—=0—
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Consider Px(t fo (t,s,xs)ds and Qz(t) fo &(t,s,ws)ds. Then (1.1)

becomes
ABC pyo [x(t) — ot xt)} = B(t, @, Pa(t), Qx(t)), (1.3)
tEjC:j—{tl,tQ, ....... ,tm}, j:[O,T], T # tg,
Ax(ty) = z(t)) — o(t),) = Liz(te),
l‘|[,.,.*’0] =(+ F*.

The aim of this paper is to obtain EUS of the above IVP of ABC-fractional order
impulsive neutral mixed integrodifferential equation with delay using Schaefer’s
fixed point theorem.

The rest of the paper is sorted out as follows: In Section 2, definitions and
lemmas of ABC-fractional derivatives are recalled. In Section 3, integral form of
ABC-derivative of the above-mentioned problem is proved. In Section 4, the main
result - EUS of the proposed ABC-fractional order impulsive neutral differential

equation is constructed. In the last section, the obtained results are verified with
an example.

2. Prerequisite

In this segment, we elicit definitions and tools on fractional operators with the
non-singular kernel[44, 41, 17, 12, 35].
For 0 < a < 1, the Caputo fractional derivative of order « starting at a is given as

6 Dy(t) = ﬁ/ﬂ (t—s)"“y'(s)ds.

Let ¢p € H*(a,b),a < b, v in [0,1]. The ABC - fractional derivative of 1 of order
v is defined by

ABC pyv (- :B*<U) ” (s —u(r" —s)" s
45 D) | von| d

1—w 1—w

where B*(0) = B*(1) =1
The associated AB fractional -integral of a function v is defined by

AB 1v *_1_U T* v ™ ST*_SU—IS
SPIU) = G+ G [ PO = e s

Lemma 2.1. Newton -Leibntiz formula holds for the ABC-fractional order differ-
ential and integral operators.

8217 (859D (0)) = (") - (0)
For 9 (t) defined on [e, f] and v € (m,m + 1) for some m € Ny,
APRDY (A ()] = ()

AB v ABR v _ S (k) Q
API(ABRDY (1)) = w(t) - Y o =
k=0
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Theorem 2.2. (Schaefer’s fixved point theorem) [49]: A continuous and compact
operator ¢ has a fized point, if the set {u € X;u = Apu for 0 < X\ < 1} is bounded.

3. Integral form of ABC - FIDE

Here, we analyse the impulsive neutral ABC - FIDE and its integral form.

Theorem 3.1. Forv € (0,1) and B,o € PC'(0,T] such that o(0,z¢) =0 and
B(O,xo,o, fOT§(07s,$s)ds) =0, z(¢t) is a solution of (1.8) provided that

C+F* tel-m%0]
C(0) + F*(0) + o(t,x) +48 I'B(t, s, Px(t), Qu(t)), te[0,t]
¢(0) + F*(0) + o(t, x¢) —|—64B I"B(t, z¢, Px(t), Qx(t)

o(t) = +1; (2()), teltte]

C(0) + F*(0) + o(t, ) +{8 I”B(t, zy, Pa(t), Qx(t))

+> 0 I (x(t,;)). t € [tm,T]

Proof. The solution (t) of the problem (1.3), we have for ¢ € [0, 1],
AB v [E;‘BCDv{x(t) s :ct)}] = ABp [B(t, a0, Pa(t), Qx(t))}
x(t) — o(t,xt) =SB [B(t,xt,P:c(t),Qx(t))] + ¢o
2(t) = ¢(0) + F*(0) + o(t, ) +AB 1Y [B (t, e, Pa(t), Qx(t))}

and
#(t7) = C(0) + F*(0) + o(tr, ) +47 1°[B(t1, 20, Pa(tr), Qu(ta) )|
For t € (t1,ta], Ax(ty) = I;z(ty), we have x(t]) — x(t]) = I{z(t;)
x(t) = 2(tf) — x(ty) + (t)
= a(t7) + I (2(7)) = ot 2,) = €(0) = F*(0)-
AB v [B (tl, 0., Pa(ty), Qx(tl)} +C(0) + F(0) + o(t, )
2B v [B (t, w1, Pa(t), Qx(t))]

Using x(t; ) in the above equation, we get

z(t) = C(0) + F*(0) + o(t,zy) + I} (m(t;)) +5B v [B (t, x4, Px(t), Qm(t))} .
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For t € (ty,t3], we have
a(t) = a(ty) — a(t2) + z(t)
= a(ty) + 13 (2(17) ) = o(t2,21,) = C(0) = F*(0)
_AB [B(@, 21y, Pr(ts), Qx(tQ)] +C(0) + FH0) + ot, )
+B 17 B(t, 20, Pa(t), Qu(1)) .

Using z(t5 ) in the above equation, we get

2
2(t) = C(0) + F*(0) + ot w) + Y i (a(t7) ) +07 1° [B(t, 0, Pa(t), Qa(®)) |
k=1
As we proceed, it leads to the case when t € (¢, T] and we get

(1) = C(0) + F0) + olt.z0) + 301 (x07)) +8 1 [B(1.20, Pr(t). Qa(1) |
k=1
O

4. Theorems for Main Results

Let h: J — R is measurable in £¥(J) with the norm:

1

e =4 (Uplatergran)™ 1< e <o
E - .
lnfu(j) (SuptEJ—ng(tvxt”) yw = 0

where p(J) is the Lebesgue measure on J and ||hl|; < co. Now we define an
operator (2 as

C+F*, te[-1%0]

¢(0) + F*(0) + (t xt)—i—AB IB(t, 2, P2(t),Qx(t)), t€][0,t]
C(0) + F*(0) + o (t, ) +58 I'B(t,z¢, Px(t), Qu(t)

+I1( (ty ))v t € [t1,to]

C0) + F*(0) + o(t, )+ I°B(t, w1, Pa(t), Qu(t))
FY T (x(t,:)). t € [tm, T]
For the proof of our main result, we need the following assumptions

(A1) Let z € PC*[0,T] and suppose that B € C’(jxX x X xX, X) is piecewise

continuous and there exists positive constants £1, Lo and £ such that

1B(t,ar,ur, 20) = Blt, e, g, )| < La(Jlos =+ |fur = ual + 122 — =2l )

for all z,u,z in Y, where Y=C[J, X] be the set of continuous functions
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on J with values in the Banach space X, Lo = max ||IB(t,0,0,0)| and L=

max{ﬁl, ,Cg}
(A2) There exists poistive constants Ny, Ny and N such that
Hp(t,&l'l) - P(tvsva)” < Nl(”xl - .’tg”)
for all x1, 25 in Y, Ngz(m)axD |IP(¢,s,0)| and N=max{Nj, Ny}.
t,s)E

(A3) There exists positive constants Cy, Cy and C such that

1Q(, 5,21) = Q(t, 5, 22)[| < Co([|1 — w2])
for all 1,22 in Y, (Cg:(m)axD 1Q(t, s,0)| and C=max{C;,Cs}.
t,s)e

(A4) Let the impulses I} € C(R",R™) be bounded and for a ¥* > 0, we have
ult) € L (J) with || 17 (2(6) ) = I () ) | < 0* (@) l2 = ull
for each z,z € PC" ([—T*,T])(C)7 and foreachr € IT, k=1,2,---,m
then N* = maux{HI,;k (m(t;)) H )| < r}.

(A5) Let for a § € (0,h) and there exists function u(t) in £3(J) such that
o (t, ) — o(t,up)|| < p(t)||zy — ug), for t € T and x4, us € PC*.

Lemma 4.1. If (A1) — (A3) are satisfied, then for any t € J and x1,22 €Y,
[Pz1(t) = Pra(t)|| < Ntl|lzy — 22|, [[Q21(t) — Qua(t)]| < CT[|zy — 2],

IP2(ll < t(Millz] +N2), Q)| < T(Cilall +C2).

Theorem 4.2. : If the conditions (A1) — (Ab) hold, and (L||$t2 —xy, ||+ Ntf|ay, —
xt, || + CT||wey, — T4, ||) =q(ty —t1) and q € LY(T,R+) and if the inequality

1—w n tY
B*(v) = B*(v)'w

[160) + F* )| + llr(t, ) | + mA* + ( Jolled] < 0" (41)

holds, then the problem (1.3) has a solution where p||xt|\:<£|\xtH + Ntz +
(CT||:E,5||> and for each positive r, B, € {x €Y : ||z|| <r}, k=1,2,--- ,m.

Proof. We divide the proof in the following parts.
Part 1: Q is continuous
Let {x,} be a sequence such that x,, — z in PC! ([—T*, T])

Since B(t,xt, Pz(t), Qx(t)), o(t,x¢) and the impulses I} (x(t;)) are continuous
operators on PC'! ([—T*,R”])(C) for k = 1,2--- ,m. By using (A1) and lemma
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4.2, then for each t € [0,¢1], we have
Q0 — Q|| < |lo(tn,) — ot z0)]| + Hg‘BIvB(t, T,y P (1), an(t)>
— B(t, a1, Pa(t), Qa(t))

< u(®)||zn — z|| + %“B(t,xm,Pxn(t),an(t)>
7

- B(t, xy, Px(t), Qm(t)) H + IgB(t, T, s Py (), an(t)>

~ [§B(ti, Po(t), Qa() ) |
1—w
B*(v)

(Lllen = @)l + Ntllzn - 2] + CTlwn - o))

v v
+ gy (Lllen = 2l Neljen = 21| + €Tz = 2] 70
1—w tY
< pOllen = 21+ [ oo + Frgoyma 1o 4l

|z, — Qx| — 0 as z, — =.
Similarly for ¢ € (¢1,t2], by using (A4) and (A5), we have

1900 — Qall < llo(t, @n,) = o(ts) | + |2 17B(t, 2, Pa(t), Qua(t))
= B(te, Pe(t). Qa(0) )| + [ (t7) = Bty
< ()| — || + ;*;(;)HB(@ T, Pn(t), Q1))

_ B<t,xt,Px(t),Q:r(t)) H + B*L

IgB(t, @y Pan(t), an(t)>

()
_ Igs(t, 4, P(t), Qx(t)) H + 0¥ ||z — 2
< () + 9" (1) lwn - o + ;‘() (L2 — all + Nefjon — o]

B+ (v)
+CT | — 2] ) 15 (1)

+CTljen — o) + o (Llon — ol + Nella, — o]

1—-v n [
B*(v)  B*(v)Tw

< [u(t) + ﬂ*(t)} |2n — || + [ }pllxn -z

Hence ||z, — Qx| — 0 as x, — . Ultimately for ¢ € (¢,,,T], we have

1920 = Qall < llo(t,@n,) = o(twe) | + || # 51 B(t2n,, Pra(t), Qua(t))

4P 1B (1,0, Pr(r), Q) | + zmj |15 (2atD)) = 13 (D) |
k=1
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< [0+ m O]l = 21+ [5755 + ey e =l

19z, — Qx| — 0 as n — co. Hence, € is continuous.
Part 2: Q is bounded in PC! ([—T*,T])

It is enough to show that for any * > 0, then z € Bs» = {x € PC? ([77'*7 7], ]R"]);
lz]] < 6*}. By using the inequality (4.1) and lemma 4.2, for each t € [0, 4],

— v

I02(0)] < 10) + 7 O) + ot 20l + e [B (10 Pate). Qa0))|

- B*U(v)HB(t,xt,Pa:(t),Qx(t)) I3 (t)
1—-w

<160+ F Ol + ot 20l + | 55

+ #;)F(v)] (LthH + Nt ||| + (CTthH)
< 16(0) + F* ()| + ot zo)l| + | ;‘U + = (SF(U)}pnxtn

<o
|||, by using (A4), for each t € (t,,,T].
96 < 1C0) + F* O + llo(t, 0]l + g |B(t,22, Pa(t), Qu(t))|
( = o(l, Tt W y Tty L , T

5o+ 3|5 (=6)|
k=1

+ B*L(U)HB(t’ xy, Px(t), fo(t)>

<1€(0) + FH O + llo (2, o)

+ [;_(:) + B*(i;f‘(v)} (L||xt|| + Nt || + (CTHLEtH) +mN*
< 16(0) + F* )] + ot zo)l| + | ;‘() + = (jr(v)}puxtu +mA”

<o
This proves that € is bounded.

Part 3: Q is equicontinuous in PC! ([—T*, 1], R”).
Let t1,t2 € (0, 1]

1Q2(t2) — Qa(ty) | s;*;@%”zs(tz%Px<t2>,c2x<t2>)

— B(tlthwpx(tl)’ Qm(h)) H
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) [|B(t2: 212, Palt2), Qa(t2) ) 1 (12)

- B(tl, 0, Pa(ty), Qx(tl))lg(tl)m
+ [lo(t2, x1,) — o (t1, 24, |

<

— v
By (Ll = 0|+ Nellar, = o0, ]|+ CT ey, 0, ])

v
+ B (0)T{) (LH%Q =, || + Nt[|a, — x4, ||

ty —ty
€T, — o) [ B ) e, —

1o (13-
<u(t — { ] to — 1t t t1.
_,u( )”xb xtl” + B*(’l}) + B*(U)F’U ||q( 2 1)” —0asty >t

Similarly, for ¢t € (g, tk+1], |Qx(tes1) — Qx(tr)]] — 0 as tg41 — ¢ where k =
1,2,..... ,m.

With the help of (A4) and (A5), we have proved  is equicontinuous.

As result of part (1)-(3) € is completely continuous.

Part 4: A priori bounds.

Now it is left to show that that the set

A={te PCl([—T*,T],R”);x = AQ(z), for some 0 < A < 1} is bounded.

Let x € A, for some 0 < A < 1, for each t € [0, 77,
we have z(t) = AQx(¢),

£(t) =A[C(0) + F*(0) + o(t, ) + ;* . )B(t 0, Pr(t), Qu(1))
”B(tmt,Px ) Zlk( )}

This implies by (A4) and for each ¢ € [0, T], we have

B*(v)

(0] =A2()
éMd®+fmm+Abwmﬂ+¥%%ﬂbﬁﬂmPﬂﬁQﬂﬂﬂ

+ T’B(t e, Px(t), Qu(t) )

Al —wv) )\t” }

qum+fWW+*W@%”+[me B*(v)I(v)

(x)(]L|x\ + Ntjz| + (CT|x\) + A
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Thus by using the inequality (4.1), for every ¢ € [0,T] and for A < 1,

Jell £ M) + 7 O+ Al + [ + 2ol + A

< o".

As it is true for every z € A, A is bounded. By Schaefer’s fixed point theorem,
we claim that Q has a fixed point which is a solution of the ABC- fractional order
impulsive neutral mixed integrodifferential equation (1.3). O

Theorem 4.3. If the assumptions (A1) — (A5) hold, then the ABC- fractional
order impulsive neutral mized integrodifferential equation (1.1) has a unique solu-
tion, provided that

1—w n tv
B*(v)  B*(v)I'(v)

md* + u(t) + | p<1 (4.2)

where S, HI;; (ml(tk)) I (:Eg(tk)> H = md* ()| z1 — 22

Proof. :We assume the contradiction to prove uniqueness, let z; and x2 be two
solutions of (1.1).

Case 1:For t € [-7%,0], ||Qz1 — Qa2|| — 0 implies z1 = x2.

Case 2: For t € [0, 4],

l—v+ tY }
B*(v) = B*(v)Iw

(<) (Lller = @2 + Ntllay = @sl| + CTljay - 2]])
L P
B*(v) | B*(v)Dp PIT 20

|21 = Q| < p(t)]la1 - @l + |

< ullar - ol + |

Case 3: For t € [tg, tgt1],

1—-w v
B*(v) * B*(’U)FU} (L”xl — |

+ Nt|lz1 — 22| + CT |2y — x2||>
1—w tv

T * T

s = Qs < (pat) +md* () e = ol + |

< (lt) +mo*(0)) e — ] + |

By the assumptions (A1) to (A5) and the inequality (4.2), Q is a contraction.
Then by Banach fixed - point theorem, the impulsive neutral FIDE (1.1) has a
unique solution. O
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5. Illustration

Consider the following problem

ABC o ) e~ta(t) } = 1 () +/tt 5 T T (s)ds
0

O+e)(I+zt)) ~ t+12)1+a()

t
—|—/ s3cos(s* — t)x(s)ds
0

.’I,‘(t):1+¢0, te[—T*,O], (bO_ Z)\wz

=1

1,17 1
Ax(t;) = Em(7>7 where t; = 3 B*(v) =1.

By assuming

e ta(t)
(9+e)(1+ z(t))

o(t,zy) = ; Pa(t) = /Ott\/Zs + lz(s)ds

Qx(t) = /0 s3cos(st — t)x(s)ds;

B(t,xt,Pa:(t),Qx(t)> = (75_‘_112)1_7_(215) —I—/O tV2s + 1x(s)ds

tSSCOS 84 — x\s)das.
" / (s — t)a(s)d

efox(O) B 0 _ E
(9+60)(1+x(0)) 9+ D(140) 10

B(O,xo,Px(O),Q:v(O)) o+12) (2) /o\/25+1m()

+ / s3cos(s )z (s)ds.

1
B(O,xo,Px(O),Qx(0)> - % +0+ 7sin0 =0

where 0(0,z0) = =0;

Then || Pa(t) = Pay(t)]| < 1t — 2] and HQx(t) —Qui(t)| < 4t -l

[B (11, a0, Qu(0) = 51118, Pra). Qa0
< Le) - ) + %Hx(t) —z1(t)]|

1
29
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o(t,z:)|| < 45 and ¢* < 1. Therefore, the above problem has following solution

() =14+ ¢o+on_1(t) + (1 —v)fn_1(t) + 11?1)0 /0 (t—5)""  f_1(s)ds.

6. Conclusion

The theory of fractional operators with non-singularity is contemporary, and it

is essential to study qualitative attributes of mixed integrodifferential equations
involving ABC- derivatives. In this paper, we have proved EUS of ABC - fractional
dynamical system using Schaefer’s and Banach’s fixed - point theorem. As a future
work, it would be interesting to find new properties and numerical methods of this
ABC - fractional operator and some real applications for main results of this paper.
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