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Abstract

In this paper, we investigate the effect of time-delay on a harvested fish-plankton model with a
food-limited growth rate of plankton. The corresponding ODE version of the proposed model
has already been studied in detail by Gupta et al. [7] where, the authors established the condi-
tions for the stability and bifurcation of various steady states. It is observed that the inclusion
of time-delay causes instability through Hopf bifurcation to the co-existing steady states after a
certain threshold for delayed parameter. It is also observed that an increase in delayed parame-
ter beyond the Hopf bifurcation threshold results in chaotic behaviour of the proposed system.
The positivity and boundedness of solutions for the delayed model are derived with the help
of differential inequalities. In addition, the conditions for Hopf bifurcation and the stability of
periodic solution through it are also presented. Mumerical results are also provided to support
our analytic Andings.
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1 INTRODUCTION

Time-delay plays an important role in the dynamics of prey-predator interaction, which has been
perceived to contribute eritically to the stable or unstable outeomes of prey populations due to pre-
dation. The original motivation for studying delayed models mainly comes from their applications
[9]. Time-delay is also an omnipresent phenomenon in ecological systems and has a prime role in
affecting population dynamics. In most natural systems, the population of one species does not
respond immediately to the changes in the environment or the interaction with the other species.
A large number of ecological models involving one or more time-delays have been evolved and
examined by several researchers (2, 4, 9, 13, 12, 14]. In particular, Chen et al. [2] have derived
the sufficient conditions for the existence of periodic solutions of a food-limited population model
with toxicants and the presence of state-dependent delays. It is believed that the time delays have
a destabilizing effect on the system of population dynamies. These are responsible for population
oscillations within a deterministic environment. Smith [11] has also observed that the species needs
more food for growth and maintenance when they are growing, and when they have reached their
saturation, they require less food for maintenance only.

Gopalsamy et al. [6] studied a population model for a single species with a food-limited growth
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rate and time lag, which they extended to understand the effect of environmental periodicity. An
explicit method to obtain the stability of periodic solutions through Hopf-bifureation in a delayed
food limited population model for two species is given by Wan and Wei [16]. Davidson et al. [3]
investigated the existence, unigueness, and asymptotic stability of the positive equilibrium states
in which the population is supposed to diffuse and the average growth rate is a function of a specific
delayed argument. Li and He [10] have proposed a delayed food-limited model to demonstrate the
existence of Hopf-bifureation and to understand the behaviour of bifurcating periodic solutions in
the presence of time-delay and feedback control. The existence and uniqueness of the solution of a
similar model have been analyzed by Dou and Li [4]. Tang and Chen [17] have derived the conditions
for global stability of the positive steady-state for a single species food-limited population model
with time-delay and impulsive effects. Bairagi and Jana [1] explored a delay-induced predator-
prey model in the presence of habitat complexity and introduced gestation delay in the predator’s
response funetion. Wang and Li [15] introdueed the existence of monotone travelling fronts in a
diffusive food-limited model with nonlocal delay with the help of different kernel functions. So
and Yu [12] considered a delayed food-limited population model and derived the conditions for the
uniform and asymptotic stability of the positive equilibrium state.

Motivated by the preceding work, we present a model with the goal of investigating the role of
time-delay on a predator-prey model with a food-limited growth rate. The remaining part of the
manuseript is arranged in the following order. In section [2], we present a brief deseription of a
plankton-fish interaction model without and with delay in the growth term of plankton population.
The feasibility of solutions of the delayed system is also guaranteed in this section. In section
[3], we analyze the sufficient conditions that ensures the existence of periodic solution through
Hopf bifureation. Taking time-delay as a bifureation parameter, we explore the direction of Hopf
bifurcation which provides the stability of bifurcated periodie solution in section [4] with the help
of center manifold theorem. In in section [5] numerical simulations are provided in support of
theoretical findings which is followed by a briel conclusion.

2 Mathematical model

In this section, we briefly present the model for plankton-fish interaction with nonlinear harvesting
[7] in absence of time-delay and introduce the delayed version of the model with an ecological
justification.

2.1 Non-delayed model

The following model for interaction of plankton and fish with nonlinear harvesting, where plankton
follows a food limited growth rate with linear predation rate is proposed by Gupta et al. [7]

50 — N (1) P(t) — dP(t) — 25

with the initial condition

N(0) >0, P(0) > 0. (2.2)

Here, N(t) denotes the population density plankton population and P(t) denotes fish population
at time t. The parameters m, n and d represent the predation rate, growth rate of fish due to
predation and natural death rate of fish respectively. The remaining parameters have their usual
ecological representations as above. The parameters r, k. m, n, a, d, h and ¢ are all positive due to the
ecological and economic restrictions. This model is studied in detail for stability and bifurcation



of various equilibrium states. To decode the system from various aspects of ecology, Gupta et
al. [7] performed a detailed analysis for stability and bifureation of various steady-states. It is
shown that the system (2.1) exhibits saddle-node bifureation, Hopl bifurcation, and Bogdanov-
Takens bifureation around interior steady states. In particular, the system (2.1) has two interior
steady-states, one of which is always unstable and the other one is stable under certain parametric
conditions. The stability results of various steady states can be summerized as in the following
table:

Table 1: Stability of the equilibrium states in the non-delayed model

Equilibrium states Stability
L.;.{[]Tﬂh} Always unstable
Ly(k,0) LAS if h = e(nk — d)
Ly (Nis, Pre) Always unstable
Lay(Na,, Po,) LAS if hPs,(k + aN2,)? > rkNao (1 + a)(e + Pe.)?

Here, P, and [%, are the positive roots of the quadratic equation P2 + P+ 72 — 0 and the
first component of interior equilibrium states are

de+dPy, +h

N de 4 dPs, + h
1x — 'ﬂfﬂ-‘+ﬁl:]

and Ng; m ,

Where, 7y = mkn + mad, 1 = —rkn+ rd+ mkne + made + mah, T = —rkne+ rde +rh.

2.2 Delayed model

In the literature, time delays into mathematical models for population dynamies have been in-
corporated due to maturation time, capturing time, selective harvesting and many other reasons.
We assume that a population requires more food for growth and maintenance than a saturated
one which is for maintenance only. An additional assumption we consider here is that the average
growth rate of plankton is a funetion of an specified delayed argument ¢ — 7. This motivates us to
study the effect of time-delay 7(= 0) in food-limited growth term of the system (2.1) which takes

K Sowm dN({t) _ rN{£)(k—N(t—7)) N(OP(t
{ dﬁft} B kﬂﬁ‘;“_ﬂ o (hi’{r{ ) (2.3)
& = nN(t)P(t) — dP(t) — i
with initial conditions
No(@) = t(9), Tolo) = 0a(p), ¢ € [-7,0]. (24)

Since, we deal with population in system (2.3), therefore all initial condition will be positive i.e.
Oi(p) =0, 6;(0)>0, i=1,2 (2.5)

where, (8;(¢),02(¢)) € C([—7,0],R% ) and C(|—7,0], k%) be the Banach space of continuous map-

ping from [—7,0] to R = {(N(t), P(t)) e R*| N(t) = 0, P(t) = 0}.

2.3 Well-posedness of the delayed system

In this section, we will show that the solutions of system (2.3) defined on [—7, A) where, A € (0, )
are positive and ultimately bounded.

Lemma 1. The positive quadrant Int(R?) is invariant for system (2.3) w.r.t. initial conditions

(2.4) and (2.5).
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Proof. To show that for all t € (0, 4), N(t) > 0 and P(t) > 0. On the contrary, we assume that it
is not true i.e. there exists a 0 < T < A such that for all t £ [0,T"), P(t) = 0 and N(t) = 0 and
either N(T') = 0 or P(T) = 0. From system (2.3), we have

N(t) = N(0)exp ( fu t (‘ﬁ:ﬂﬂz - 2} - mPl[se]) ds)
N(t) = N(0)exp ( j: I:T %Mm - /; i m!’{s}d&)

P(t) — P(0)exp ( fn ; (nN{s]l e Fﬁ"}'ﬁ?}) ds) ,

for all t € [-7,T) and s — 7 = u. As N(t) and P(t) are defined and continuous on (—7,7T") there
exists an M > 0 such that

or

t—7 . t
N(t) = N(0)exp (/:T T_i_ﬂ—m&u—j; mf’(s]ds) > N(0)exp(—MT)

t
P(t) = P(0)exp (fu (nN{s] —d— ﬁ) ds) > P(0)exp(—MT),

for all ¢ € [—7,T). Taking the limit as ¢ — T' and using initial conditions (2.2), we get
N(T) =z N(0)exp(—MT) >0 and P(T) > P(0)exp(—MT) >0

which contradicts our assumption that either N(T') = 0 or P(T") = 0. Therefore, N(t) = 0 and
P(t) = 0 for all t € (0, A). O

Lemma 2. The solutions of the system (2.2) w.r.t. initial conditions (2.4) and (2.5) are bounded.

Proof. In the first equation of system (2.3), we make use of the above result to get

dN (1) N(t—7)
7 iiert}(l— . )

From the above equation it is clear that ﬂﬁﬂ < rN(t). Integrating the above inequality from t —7

tot, fort = 7, we have N(t) < N(t —7)e"™ or N(t —7) = N(t)e "". So, we obtain

dN(t) erT
- iier[L](]— - N[t}).

Hence, limsup,_,,, N(t) = ke"™. Similarly, from the second equation of system (2.3), for sufficiently
large £, we have, ipéﬂ < aN(t)P(t) < nke™ P(t). This gives P(t) < P(0)e™*™, which proves the
lemma. O

3 Local stability and Hopf bifurcation

In this section, we discuss the change in stability behavior of the interior equilibrium state Lo, (Na,, Pay)
and existence of Hopl bifureation about it whenever the time delay T crosses a threshold value
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of Hopf bifureation. We take the transformations z(t) = N(t) — N,, and y(t) = P(t) — Fs,. Using
Taylor's series expansion the system (2.3) becomes

& — apz(t) + ay(t) + buz(t — 1) + D iitise T'm'!?’(;;}i'"[ﬂfj (t —7)yl(t),
(3.1)

% = anz(t) + any(t) + Yoyys0 #205 T OW(0),

where, a;y = 0, a1z = —mNa, <0, an = nhs, > 0, an = (:hpz > 0, b 'TJ—HAE‘N""; <0,

1) i3+ f(1) (2) _ anisp
Jil = sepm—tya (Naw, Pov) and [ = 2L (N, Pay).
The Linearized system corresponding to (3.1) is given by:

% = anz(t) + ar2y(t) + bnz(t — 7),

(3.2)
¥ = anx(t) + any(t).
The characteristic equation corresponding to the system (3.2) is
R4 Ad+ A+ (A +AzN) e A7 =0, (3.3)
where, Ap = —az2, Ay = —apam, Az = anbn, Az = —by.
The stability of the interior equilibrium state [-,(Na,, b)) is given as follows:
Case I: When (7 = 0), then equation (3.3) can be written as
24 (Ao + A3+ (A +Az) =0 (3.4)

By the Routh-Hurwitz ecriterion, all roots of the equation (3.4) have negative real parts if the
eonditions Ay + Az = 0 and A; + A; > 0 are satisfied together. Thus, in absence of delay, the in-
terior equilibrium -, of system (2.3) is locally asymptotically stable if Ag+Az = Oand Ay + Az = 0L

Case II: When (7 # 0), we investigate the existence of purely imaginary roots and the insta-
bility caused by time-delay. Now, by putting A = wv, where, w > 0 in the equation (3.3), we
have

(ww)? + Ao(w) + A1 + (A2 + Astw)e ™ =0
—w? + thogw + A + (Az + tAzw) (cos wT — tsinwt) = 0.

After separating real and imaginary parts, we get

—w® + A7 + Az coswT + Agwsinwr = 0,

MApw — Ag sinwT + Agweoswr = 0L
It follows that w satisfies the following quartic equation,
wh 4+ (—2A1 + Ao? — As®) w® + AT — A =0, (3.5)

Thus, we obtain,

—2A; + Ap? — AP £ \/{—zﬁ. + A% — A% — 4(A)2 — AgP)
= :

w? =
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We take two basic assumptions —2A; + Ag? — A3? = 0 and A% — A2 < 0 for w to be real positive.
The expression for 7 can be given as follows:

) {{.-..l‘gﬁg —MAs 4+ ﬁuﬁz}) T

1
e w e ( w? {J‘Lz — ﬂgﬁg} — ﬁ]ﬁz

w
where, n =0,1,2,3...

3.1 Transversality condition for Hopf bifurcation

We need to verify the transversality condition 4 [ReA(7)] = 0, to ensure the occurrence of Hopf
bifurcation. As A depends upon 7 so A can be taken as A(1). Therefore, differentiating equation
(3.3) with respeet to 7 and manipulating the resulting equation with the help of equation (3.3), we
get,

(d}.{r))-l _ 25+ Ay Aq T

ar e A Azt Azd) A(Az+Azh) A

Putting A = ww, the real part is given by

-1 2 2 2
Re (dl{?’]) 2 —2;'11+ﬁu 2— As _ (3.6)
dr Ao +w2h3
From equation (3.5), a unique positive root of w exists, if
—2A, 4+ AP —A2=0

A2 — K =l

Thus, we conclude that transversality condition is satisfied and hence Hopf bifurcation occurs when
T passes through the critical value 75. We summarized this result in the following theorem.

Theorem 1. Suppose that the interior equilibrium state L, satisfies the conditions given in (3.7).
Then (i) The equilibrium state Lo, is locally asymptotically stable if 7 € [0,7) end unstable if
T Tp-

(ii) The system (3.2) undergoes Hopf-bifurcation with respect to the bifureation parameter T = 7.

4 Direction of Hopf bifurcation

In the previous section, we have observed that the system (3.2) undergoes a Hopf-bifurecation as
T approaches towards the eritical value 7. Now, we are interested to find the direction of Hopf
hifurcation with the help of normal form theory and center manifold theorem introduced by Hassard
et al. [8]. For this purpose, we consider x(f) = N(f) — Na., y(t) = P(f) — Po, and 7 = 79 + ¢,
where, € € R. Therefore, ¢ = 0 is the bifurcation point of the system. Normalizing the delay 7 by
re-scaling ¢ — 15_ and considering,

X(t) = L(Xe) + f(Xe,e), (4.1)

where, X(t) = (z(t),y(t)) e R%, Le : C > R?2and f : R x C — R2, for ¢ = (d1,02)7 €
C([-1,0],R2), ie.

o -eol(or o) (56)+(% ) (23]
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hP kN1
where, ai =0, a1z = —mN az = nP, az = {5, bu = -0

F DA 0)61(=1) + [ 61(0)62(0) + L fEad2(—1)
(6,6 = (0 +¢) ,
{2}!,?5*1 (ﬂ {]) 4+ 1 2 quﬁ%{ﬂ}

N - B e T
where, fi1} = %’%ﬂ—m” £)P(t), f® =nN( !};'-’{E}_d‘p(fj pﬂﬁ]’ff;i} a‘?w:;{'uuapf[

i3 p(2) r E a)
and ffz-‘" a—ﬂ%%r{ﬁu Fy) which gives fm]. = {:im : ||::|1 = {1} = EET:’::IE':‘; [23' -

5 (2) _  zhe
Jor' = Gy

Now, by Riesz representation theorem, there exist a 2 x 2 matrix (0, ¢) whose each components
have bounded variation such that for all ¢ € C'([—1,0],R?)

Le(¢) = jj @(@)dn(f,€). (4.2)
We choose,
n(f,€) = (To+€) [( ﬁ; g; )&[B}+ ( E"lj‘ g )a(m 1}] ; (4.3)
where, 4 is a Dirac delta funetion for ¢ € C(|—1,0], R?). Now, we define
e [-1,0)
Ale)g = { .%1 b(0)dn(0, ), 80 (4.4)
R 1} 1,0
Hge= o PN (45)
Thus, system (4.1) can be re-written as
‘i‘ A(e)x; + B(e)zy, (4.6)

with z4(f) = =, (t + 0) for @ € [-1,0]. Now, for ¢ € C'([0, 1], R?), we define

g s € (0,1]
* — i
A0le) { 1 o(—t)dn(z,0). 0
For ¢ € [—1,0] and ¢ € [0, 1], we consider a bilinear produet:
o
<p(9),600) >= "0 — [ [ 7 (¢~ 0)dn@)8(0)ek. (48)
-1Jo

where, 5 = (0,0). Here, A = A(0) and A* = A*(0) are adjoint operators such that fumw are the
eigenvalues of A(0) and Firew are eigenvalues A*(0).

Now, we assume that g(f) = (q1, g2 )T et i5 the eigenveector of A with respect to the eigenvalue
tTpw. So, from the definition of A(0), we have (A(0) — wwrpl)g(0) = 0 and

Tﬂ(au—uu+b“e—”‘"'m 2 )(‘i‘l)_(n)
Qg gz — W 2 07"
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After solving the above matrix equation, we get

s —wwm _ 4
a(0) - (l,tw blli ﬂll) o (4.9)
12

Similarly, if g*(s) = D(g7,q3)e"™™* be the eigenvector of A* associated with the eigenvalue —uwy.
Then, A*q*(2) = —t7pwg* (=) and from the definition of A", we get

o[ 8w bye— v Iz q7 0
" i1z fpa + L 7 D/}

Therefore, from the above matrix equation, we obtain

(4.10)

= —44TD 4

I'.]'*(S} E D(i, |:E'-||_|E! +|‘.111+H.d}) (s
a2y

Now, for showing < ¢*(s),q(f!) >= 1, we have to calculate [?. We know that

< q*(8),q(0) == ¢ (0)q(0) — [°, [y a*" (< — O)dn(0)q({)d¢
= D{(q7,83) (. &) — [°, J3 (a5, a3)e 6~ dn(6) (g1, g2) T e ™ed(}
= D{1+ @ — [°, 5 (g}, B)e*mdn(0) (a1, ¢)Td}
= D’{i + qrzq':'j + Tgblle_““‘m}.

Thus, il we take,

— — - ot 3 I
D = (1+ qu3 + Tobne™™) " ie. D = (1 + G203 + Tobre™)’

we obtain < g*(2),q(#) == 1. Since, we know that < p, Ad >=< A%, ¢ =, s0 —wwT < ¢*,§ >=<
q*, A§ >=< A*q*,§ >=< —wToeg*.§ >= wtp < q*,q > . This shows that < g*(s), §(#) == 0.

Now, we compute the coordinates to describe the center manifold Cy at € = 0, for which, we
define
z(t) =< q*,z; > and V(1,8) = z,(0) — 2R{=(t)q(0)}. (4.11)

On the center manifold Cy,

Ii'III-{‘EJ;]' - V(z(t}1f(”rﬂ}-.
which can be written as
V(z(t),z(t),0) = Vm{ﬂ}%f + Vi(@)zz + VW(E?]%E +.... (4.12)

Here, z and # are the local coordinates for the center manifold Cy in the direction of g and §,
respectively. For real value of x;, V becomes real. Hence, only the real solutions are considered.
Now, for solutions =, € Cy

Ht) =< ", 5 >=< q", A(O) T+ B(0)z; >=< ¢", A(0)z¢ > +§7(0)f (0, 7) = wwroz(t)+q"(0)" fo(z.2).

Thus
2(t) = wurpz(t) + £(2, 2), (4.13)
where,
72 22 22z
£(z,2) = ?’{D]Tfa{z: Z) = fzc-i +&nzz+ furzi T EZIT +... (4.14)
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2,(0) = V(z,2,0) + 2R{=(1)q(0)}

with 0 ) )
Iyt B ( 1 wld | = 1 —ewmnd
(2@ )= (vew ) +=(a)e™+2(g )
which gives
14 (0) = VI (0) + 2e™f 4 ze=™8 and 1,,(0) = VB (0) + 2g, ™8 4 zg,e— ™8,
We also have
$1(0) = V;;’m}z + VP 0)z+ VI 0)F +2+2+.
o (0) = {2} D}z + Vlli, }{D )2Z + Vu':z}{ﬂjzﬂ + 2q2 + i + .
di(—1) =V (—1)Z + VP (—)zz + VI (- 1)Z + 2e gy
92(—1) = Vo (1) + VP (—1)22 + Vo3 (= 1) 5 + 2ne™"™ + 5gpe’™

which gives
= F[].z2 4222 4 Flgzz g PMEEE
fol2.2) = T”( 3122 + Fgp22 + Ta2? + Tay2®z ) 70

% Fllz + [p22 4 T332 + Ty2%2
£(2,2) = DU,%}""IJ( 12t 4 Tazz 4+ Tnz® | Tyy2®z *

Now, comparing the coefficients of 2%, 2z, 72 and 2*z, from both the sides, we get

Lo = 2D70(Tn4+qal'a), oz = 2D70(Ta+qal'z), &1 = Do(Tia+qal'x) and & = 2D7o(lM1a+gal24),

where, I'}, = E:,;E_ﬁ“""“ +3 fg{?e_zwm + fmlh:
2 - 1) _ 1 1
'z ”"‘f{mf wm+ffu{?2+f;[1g-cmm+ffu;:qz

Iz = %fzuﬂzm + f110e"™ + fi1 @z,
T =2V I}E’"‘”“+IfﬂV{”(D}Qz+2f{ﬂ¥’mfﬂﬁ+ fm.v'i”(u}m;fﬁavzﬂ*(—1}+fféi‘-ﬁ?*mt:+
f{z}'if':l}{ 1)e—wm f"an{ﬂ']l et + fllﬂvﬁ} (—1) + 3 1[:%]';{1} (0},

Iz = H]qz-i-g 53}@

I'ss = fqgj*}’zﬁ + ffl}ﬁ_’z + fﬁ)qh

r23 = fﬁjﬁz + 2 ﬁ}Q§: and
Ian = 35 @V 0) + 2 RViP 0) + 319V, + [PV O + APV 00 + 51V 00

Since, £2; contains the terms of Vi, and Vag, so, for finding the value of £, for 8 € [-1,0], we
have

V=1, —3q— 37

{ A —2ret it Su0) 0¢[-1,0)
R A{D]V == ERE l?_* {]}.IFD Z z]q{:& + fg{z,é}.., 0= 0.
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The above equation can be written as
V = AV + H(z,%,0),
where,
= 22 n B
H{(=(t), z(t),0) = Hx.[ﬂ}i + Hn(8)zz + Hug(ﬂ]E +...

We know that, V = V.3 + Vi% and using (4.12), we get

V = (Vool(®)z + Vi1z + .. JwToz + £(2, 2) + (Vin(0)z + Viez + .. )(—wmoz + &(2, 2)).

Comparing the coefficients of 2%, 27 and * from equations (4.17) and (4.16), we have

AVi1(8) — —Hy1(0)
(A — 2ol )Vao(0) = —Hao(8).

For 0 € [-1,0), H(z(t),z(t),0) = —ERE{q'*T_fu{z, Z)g(0)} = —&(2, z)q(0) — E(z,f}ﬁ(ﬂ}
z2 22z

=2 2 2

2 .
— (Ezu% + E11zf+&m% +-‘52|z—2Z +.. ) q(9) — (S‘m% +HnzZ+log Hen—+...

Again, comparing the equations (4.19) and (4.16}, we get
Ha(0) = —£209(0) — €02(0) and H11(0) = —£nq(0) — £ng(0).
Now, from the definition of A{#) and from the equations (4.20), for # € [-1,0)
Vao(0) = A(0)Vap(0) = 20wf1oVan (0) — Hao(0)
Voo(8) = 2uwfoVao(B) + L20g(0)e“0™ + £paif(0)e 0™,
Solving the differential equation for Vag(#), we get

0y etwdm ) P
Vin(6) — i&wqijj i i%u:aq{&jiu et

Similarly, by using the definition of A(f) and equations (4.20), we solve for V;(#) to get

_ sy o
Vi (0) LElliiESjE‘. 5 LEIIQ(EEIZ

+ Fs.

(4.15)

(4.16)

(4.17)

(4.18)

q(0).
(4.19)

(4.20)

(4.21)

(4.22)

Here, I} and F£5 are two dimensional constant vectors and we can find these values from the

definition of A(0) and the equation (4.18). Also

0
fldn{ﬂ]'ifgg{ﬂ} = 20wt Vap(0) — Hap(0) and ﬁdﬂ(ﬂ}‘.ﬁ.(ﬂ} = —Hy1(0)
with 5(f, 0) = n(?) and taking # = 0, we get
H(2(t),%(1),0) = —2Re{g*" fo(2,2)q(0)} = —&(2,2)q(0) — £(2,2)a(0) + fo(2, 2)

ie.

22 =z

#2 > " . o @
H{=(t),2(£),0) = — (&DE +€1|zf+$u‘zi +. ) g(0) — (&DE +€HZE+&EE +. )

+ fﬂ[zaf}'
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Now, ecomparing the coefficients of 22 and 22 from both the sides, we get

Hag(0) = —£50q(0) — Euz‘?{n]' + 279 ( }1: ) and Hy(0) = —£&;,4(0) —£ng(0) + 7y ( }—'; )
(4.24)

According, to the definition of A(0) having eigenveetor q(0) with respect to wwr, we have

wro— [ dn(@)e=om) q(0) 0 and (—wry— [ dn@)com)gqo)—0  (425)
(sem~ [ @) (e[, )

By using the values of V5u(0) and Vi1(0) together with the equation (4.20), we get the following

matrix equation
2w — ayy — by e—2wm —y3 e\ _ I'n
L ( —dz] 2ue — ag €2 A T (4.26)

By using Cramer’s rule, we get

I'n —a1z 2w — ayy — bpye™ I'y

1 1
U7 Di My 2u0 —an and ex = ’ —(z1 I'n |’
where,
D 2uw — ayy — bye—m™ —ii12
s —il2] 20 — L1 ] :

Similarly, from,
0
f !f‘i'jl{ﬂ}v“I{E] —;H”{[]]I,
~1

—ap — by —ag2 £3 [z )
T - T , . 4.27
“( —ay —ﬂzz)(&i) “( 5 (450

After solving the above equations, we get

we got

1 (T2 —a12 d 1 |- —bn T2
Ex Th T and €4 = 3 3
Uy —am —iiz] a2
where,
Dy —an — b —ai2
—ilz —3z

From these ealeulations, we can find Vog(f) and V},(f) to compute the value of £9;. Consequently,
we can obtain the following quantities:

2
C1(0) — g (et — 2065 - ) 4 2,

~_ Re{C,(0)}
B2 = " Re(N ()}
By — 2Re{C1 (0)},
7, GO} + palm{) ()}
Wy

Here, the notations p,, #» and T, respectively determines the direction, stability and period of
bifurcating periodic solutions. If, g; > 0(p; < 0) then the Hopf bifureation is supercritical (sub-
eritical). Further, A5, decides the stability of the bifurcating periodic solutions, so when 3, < 0
(#s = 0) the periodic solutions are stable (unstable). Periods of the bifureating solutions increases
(decreases) if T5 = 0 (T3 < 0) respectively. The following theorem gives the outline of the results.
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Theorem 2. The delayed system (2.3) undergoes a supereritical Hopf bifurcation as 7 approaches
towards Ty if Re{C(0)} < 0 and otherwise, if Re{C,(0)} = 0 it possess suberitical Hopf bifurcation.

5 Numerical Simulations

In this section, we apply numerical simulations to verify our analytical results obtained in the
earlier sections. Since, Gupta et al. [7] have already discussed the corresponding ODE version of
this model for two sets of parameters corresponding to the number of interior equilibrium states.
Therefore, we consider these two sets of numerical values for which interior equilibrium are stahle.

Example 1. Gupta et al. [7] have observed that the interior equilibrium Lo, in the absence of
delay (i.e. T = 0) is stable for the set of parameters r = 025, k=10, a = 0.2, m = 0.5, d = 0.9,
h=102 =02 n=0194. The plots for the lime-series and phase portrait for T = 0 around
the interior equilibrium state Lo, — (8.6256,0.0586) are given in Figures 1(a), 1(b) and i{e). So,
here we check the impact of delayed parameter T of the model (2.3) on the stability of the interior
equilibrium. For this set of parameters, wy, = 0.2963 (3.5) and the threshold value of time-delay T is
To = 3.9665. The corresponding periodic solulions (time-series and phase portmits) of the system
(2.3) through Hopf-bifurcation are given in Figures 2(a), 2(b). 2(e).

To observe the dynamics of the system, we have constructed bifurcation diagrams in which we
plotied the sucessesive local marima and minima of both the populations with respeet to the bifur-
cation parameter 7. It can be seen from these bifurcation diagrams that the interior equilibrium
Lo, is locally asymptotically stable for T < 1y and it is unstable for T > 1y whieh iz clear from
bifurcation dingrams {(a) and 4(b). By using the expressions given in the last seefion we computed
the quantities as C'1(0) = —0.5816 — 0.1699], 5> = 0.0568, gz = —1.9692 and T3 = 0.4693, which
indicates that the system erhibits stable supercritical Hopf-bifurcation. As we increase the value
of T beyond T, the solutions become chaotic in nature. This is ensured in 3(a), 3(b), 3(c). The
sensitivity of solutions are also verified to ensure the chaotie nature of the system in Figure {(e) by
taking two nearby initial conditions (8.6256,0.0586) (green color curve) and (8.6356, 0.0686) (red
eolor eurve) with T = 6.84.

I

e e s e k- e T T T Ty
4 5 i i 1 ¥ i I I 1 L 1 [ i ¥ E N 15N I55 155 155 155 10N 0 155 18N 155
i

(a) ' (b) " (c)

Figure 1: Here, (a) and (b) represent time series for N(t) and P(t) respectively and (¢) shows phase
portrait between both the species corresponding to stable solutions in absence of delay.
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(a) ) | (©)

Figure 2: Here, (a) and (b) represent time series for N(t) and P(t) respectively and (e) shows
phase portrait between both the species corresponding to periodie solutions at the threshold value
of delay parameter T = 15 — 3.9665.

(a) ' (b) ' (c)

Figure 3: Here, (a) and (b) represent time series for N(t) and P(t) respectively and (e) reflects
chaotic trajectory between both the species when 7 << 7 = 6.84.

L

(a) (b) (<)

N E @ F 3 1E )
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Figure 4: Here, (a) and (b) display bifureation diagram for N(t) and P(t) with respect to 7
respectively and (¢) represents the sensitivity of plankton species.
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Example 2. For the second set of parameters r = 01, k=1, a =03, m = 003, d = 0.07, h
0.11, ¢ = 0.4, n = 0.25 there are two interior equilibrium states from which Lo, = (0.5322,1.3446)
Figure 5(a) iz stable in absence of delay T [7]. It can be seen that system(2.3) ezhibits periodic
solution af the threshold walue Ty 11.8020 Figure 5(b) and shows gquasi-periodic behavior al
T = 13.92 in Figure 5(c). For this set of parameter, we obtain wy = 0.9112 and T = 11.8020,
C1(0) = —242.1958 + 122.98121, B — 1.2237, pz = —484.3915 and T3> = 203.9729. Therefore,
we conclude that the Hopf-bifurcation is supercritieal in this case as well that iz the amplitude of
periodie solution bifurcating through Hopf-bifurcation increases with inecreasing value of 7. The
further inerease in value of T beyond threshold value o provides quasi-periodic solutions which are
shoum in Figure 6(a), and it iz also observed that the chaotic solution can be obtained for a very
small mange of T € (14.040,14.064) and the corresponding chaotic solution is depicted in Figure
6(b). The bifureation dingram of N(t) with respect Lo T is represented in Figure 6(c).

i

(a) (b) (c)

Figure 5: These pictures display the phase portrait of the system between N(t) and P(t), where,
(a) represents stable solution in absence of delay, (b) displays periodie solution for ¥ = 11.80 and
(e) shows the quasi-periodie solution for T = 13.92.

(a) {b) ic)

Figure 6: Here, (a) and (b) represents quasi-periodic phase portraits for and ™ = 14.04. (e) It
represents bifureation diagram for N (f) with respect to T.

These numerical examples show that to control chaotic behavior of solution of the system (2.3),
the time-delay should not execeed a certain threshold. That is system (2.3) will present stahle
eo-existence of species if the time-delay does not cross a eritical threshold.
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6 Conclusion

Phytoplankton are the main food souree for the marine food chain. They consume energy from the
Sun and utilize it to convert carbon dioxide into earbohydrates that sustain ocean life. Almost all
small marine predators consume plankton as their major food intake. So if the plankton’s growth
rate is delayed, the growth rate of tiny predators, such as juvenile fish, will also be delayed. If the
population of young fishes or tiny predators declines, the growth rate of large sea creatures suffers.
As a result, a terrible food-chain would swiftly spread beyond the ocean’s boundaries, because fish
is essential to a healthy diet in many parts of the globe. Fish accounts for more than 20 percent of
the average per eapita animal protein consumption for approximately 3.3 billion individuals. Not
only would those inhabitants be deprived of a key food source, but loecal trade would suffer, and
their economies would begin to deteriorate. Thus, we conclude that plankton development and
decay have a profound impact on the marine food-web and, as a consequence, on ecology.

In this work, we introduced a delay in the food-limited growth rate of prey (plankton) of a plankton-
fish interaction model with nonlinear predator (fish) harvesting. The objective was to find out how
delay affects the stability of the model (2.3). According to stability analysis, the presence of a time
delay has no influence on the stability of the equilibrium states Lp and L, lying on the boundaries.
However, it acts as a destabilizing factor in the system near the interior equilibrium state, driving
it to approach it asymptotically for values less than the eritical value . We demonstrated that
the solutions of the governing equations are limited for all Mture times. The feasibility of solutions
has been guaranteed for the delayed model. Since, Gupta et al. [7] have already performed the
stability analysis of all equilibrium states. We summerize these results in the table [1]. We have
observed that the delayed model exhibits more complex and fascinating dynamical behaviour. A
local periodie orbit appears about Lo, through Hopl bifurcation for 7 = 7 and the solutions ap-
proach to this orbit asymptotically. A further inerease in the value of T causes the periodie orbit
to lose its stability, and a strange attractor is formed, resulting in the chaotic instability of the
svstem. This is evident by the fact that a temporal delay may cause a stable equilibrium state to
become an unstable one, as well as being responsible for population oscillations.

We have considered two sets of examples in this paper with different parametric values. The
first example is taken with such parameters that the system (2.3) has one interior equilibrium
state, and after adding time-delay, the system shows a drastie change and becomes chaotic after
the threshold value. The system in the second case displays chaotic behavior over a limited range
and reflects a quasi-periodic nature after the threshold value 7 = 11.80. The dynamics of the
svstem change from a stable equilibrium to a periodie oscillation, and further bifureations gen-
erate new excessive quasi-periodic fluctuations. We develop the explicit formulas that determine
the stability and direction of the bifureating periodic solutions using normal form theory and the
center manifold theorem. From Theorem (2), we can determine the direction and stability of the
Hopf bifureation, and it is found to be supercritical and stable for the considered parameter values.
Since we have no control over the duration of delays in the natural environment, the stability of the
model system can be maintained by adjusting the strategies of harvesting. Thus, the coexistence
of prey and predator populations may be maintained by limited harvesting, which also precludes
the possibility of large-amplitude oscillations in population densities near their eqguilibrium levels.
Otherwise, the high amplitude oscillation leads to the extinetion of both species.
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