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Abstract. Tandem of infinite-server queues with MMPP arrivals feedback
at the second stage is considered. Service times at the stages of the tandem

have non-exponential distribution. We use the method of Markovian sum-

mation to obtain the Kolmogorov differential equations for the probability
distribution of the number of arrivals at the second stage (repeated arrivals).

An expression for the characteristic probability distribution function of the

number of repeated arrivals during given period is derived under the asymp-
totic condition of high intensity of the MMPP arrivals.

1. Introduction

Queueing systems with an unlimited number of servers and feedback [1, 2] can
be used to describe various real processes in economics [3] as well in communication
networks and other technical systems [4].

Queueing systems and tandems with an unlimited number of servers, Poisson
arrival process and instant feedback were considered in [5, 6, 7]. The obtained
equations for the probability distributions were solved analytically by the method
of generating or characteristic functions. In these papers, the method of limit
decomposition is used for study, but this method can be used only for the analysis
of queueing models with Poisson arrivals.

Models with non-Poisson arrivals were considered in [8, 9]. In these papers,
systems with exponential service were considered. To solve balance equations,
the authors used asymptotic analysis methods under the asymptotic condition of
increasing of service time.

In the paper, we consider tandem with MMPP arrivals, non-exponential service
times and a feedback at the second stage. We consider non-stationary regime and
we propose to use the Markov summation method [4, 10, 11, 12] in order to obtain
the Kolmogorov (balance) differential equations for the probability distribution of
the number of arrivals in a flow of repeated calls (arrivals at the second stage) over
a certain time interval. To solve established balance equations, we use the asymp-
totic analysis methods [13, 14] under the asymptotic condition of high intensity of
MMPP arrivals.
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Figure 1. Tandem of queues with MMPP arrivals and feedback
at the second stage.

2. Mathematical model

Consider a queue tandem (Fig. 1) with unlimited number of servers at each
stage. Customers arrive according to Markovian modulated Poisson process (MMPP).
The process is given by generator matrix Q = ||qij ||, i, j = 1, 2, ...,K and con-
ditional intensisites λ1, ..., λK which we compose into a diagonal matrix Λ =
diag{λn}, n = 1, 2, ...,K. Denote the underlying Markov chain of the MMPP
as k(t) ∈ {1, 2, ...,K}. Arriving customer instantly occupies a server at the first
stage of the system. Service time at this stage has distribution function B1(x).
When the service is complete, the customer may leave the system with probability
(1 − r1) or may go to the second stage for the further service with probability
r1. Service time at the second stage has distribution function B2(x). When the
service is complete at the second stage, the customer may go to the second stage
again with probability r2 or may leave the system with probability (1− r2).

Consider arrivals at the second stage of the tandem. They consist of customers
that completed their service at the first stage and go to the second and customers
that completed their service at the second stage and go for the repeated service
at this stage. We will call this aggregate flow of customers as repeated arrivals, or
as repeated flow, or r-flow.

We suppose that at the initial moment of time t0 = 0, the system is empty and
we analyze the number of customers arrived in the repeated flow during period
[0, T ], where T > 0 is given time of observation. So, we consider non-stationary
regime of the system evolution.

The goal of the study is to find probability distribution of the number of arrivals
in the repeated flow during period [0, T ].
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3. Markov summation method

Each customer arrived at the system in instant t generates arrivals in the r-flow
that will occur after moment t. Let us denote by m(t) the number of arrivals
in r-flow generated by customers that arrived before time moment t, that is, the
number of arrivals at the second stage of the tandem occurred during the period
[0, T ] generated by customers arrived during period [0, t], where t ≤ T .

Considering two-dimensional stochastic process {m(t), k(t)}, we use the nota-
tion

Pk(m, t) = P{m(t) = m, k(t) = k}
for its probability distribution. Also, let us use the following notations:

• ξ(t) is the number of events in the r-flow generated during the period [t, T ]
by a single customer arrived at the system at time moment t,

• g(i, t) = P{ξ(t) = i} is the probability that a customer arrived at the
system at time moment t will generate i arrivals in the r-flow up to instant
T .

Based on the total probability formula, we can write the following equations:

Pk(m, t+ ∆t) = Pk(m, t)(1− λ∆t)(1 + qkk∆t)+∑
ν 6=k

Pν(m, t)qνk∆t+ λk∆t

m∑
i=0

Pk(m− i, t)q(i, t) + o(∆t).

Then we obtain the Kolmogorov differential equations for probability distribution
Pk(m, t):

∂Pk(m, t)

∂t
= −λkPk(m, t) + λk

m∑
i=0

Pk(m− i, t)g(i, t) +
∑
ν

Pν(m, t)qνk.

Consider characteristic functions

Hk(u, t) =

∞∑
m=0

ejumPk(m, t),

G(u, t) =

∞∑
i=0

ejuig(i, t),

where j =
√
−1. Then we obtain the following differential equations for the

characteristic function of the process m(t):

∂Hk(u, t)

∂t
= λkHk(u, t)(G(u, t)− 1) +

∑
ν

Hν(u, t)qνk.

The characteristic function G(u, t) of process ξ(t) was found in the paper [12]
and has the form

G(u, t) = 1 + r1(eju − 1)B1(T − t)+
r1r2
2π

(eju − 1)eju
∫ +∞

−∞

b∗1(α)b∗2(α)
(
1− e−jα(T−t)

)
(1− r2ejub∗2(α)) iα

dα,

where

b∗1(α) =

∫ ∞
0

ejατdB1(τ),

113



4 MARIA SHKLENNIK, ALEXANDER MOISEEV, AND ANNA MOROZOVA

b∗2(α) =

∫ ∞
0

ejατdB2(τ).

We denote

ϕ(u, t) =
1

2π

∫ +∞

−∞

b∗1(α)b∗2(α)
(
1− e−jα(T−t)

)
(1− r2ejub∗2(α)) iα

dα,

then we can write the following equations

∂Hk(u, t)

∂t
= λkHk(u, t)r1(eju − 1)

[
B1(T − t) + r2e

juϕ(u, t)
]

+

∑
ν

Hν(u, t)qνk. (3.1)

Denoting H(u, t) = {H1(u, t), H2(u, t), ...,HK(u, t)}, we derive the matrix equa-
tion

∂H(u, t)

∂t
= H(u, t)

(
Q + r1(eju − 1)

[
B1(T − t) + r2e

juϕ(u, t)
]
Λ
)

(3.2)

with the initial condition

H(u, 0) = R, (3.3)

where R is a vector of the stationary distribution of the underlying Markov chain.
Vector R satisfies the following linear system:{

RQ = 0,
Re = 1,

(3.4)

where e is a column vector with all entries equal to 1. The exact solution of equa-
tion (3.2) is not possible in general case, but it may be solved under an asymptotic
condition. We will consider this equation under the condition of growing MMPP
arrivals’ rate.

4. Asymptotic analysis

We represent the intensity of the arrival process in the form Nλ, where λ is a
fixed value determined by the expression

λ = RΛe,

and N is some parameter which characterizes high intensity of the arrival process
(N → ∞ in theoretical studies). Then the high-rate MMPP will be given by the
matrices NQ and NΛ.

In this case we can rewrite equation (3.2) in the form

1

N

∂H(u, t)

∂t
= H(u, t)

(
Q + r1(eju − 1)

[
B1(T − t) + r2e

juϕ(u, t)
]
Λ
)

(4.1)

with initial condition (3.3). We will obtain a solution of problem (4.1) in the form of
approximations which we call first-order asymptotic and second-order asymptotic.

The main result is the following theorem.
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Theorem 4.1. The asymptotic characteristic function of the distribution of the
number of repeated arrivals over the time interval [0, T ] under the condition of high
rate of MMPP arrival process has the form

h(u, T ) = M{ejum(T )} = exp

{
juNλr1

[∫ T

0

B1(y)dy +

r2
2π

∫ +∞

−∞

b∗1(α)b∗2(α)

jα(1− r2b∗2(α))

(
T − 1− e−jαT

jα

)
dα

]
+

(ju)2

2
r1N

[
λ

∫ T

0

B1(y)dy+

λ
r2
2π

∫ +∞

−∞

b∗1(α)b∗2(α) (3− r2b∗2(α))

jα(1− r2b∗2(α))2

(
T − 1− e−jαT

jα

)
dα+

κ

∫ T

0

(
B1(y) +

r2
2π

∫ +∞

−∞

b∗1(α)b∗2(α)

jα(1− r2b∗2(α))

(
1− e−jαT

jα

)
dα

)2

dy

]}
, (4.2)

where κ = 2g(Λ− λI)e and row vector g satisfies the linear matrix equation

gQ = r1(λR−RΛ).

Proof. We will carry out the proof of the theorem in two steps.

4.1. First-order Asymptotic Analysis. Let us make the following substitu-
tions in (4.1) and (3.3):

1

N
= ε, u = εw, H(u, t) = F1(w, t, ε). (4.3)

Then we derive the problem

ε
∂F1(w, t, ε)

∂t
= F1(w, t, ε)

(
Q + r1(eju − 1)

[
B1(T − t) + r2e

juϕ(u, t)
]
Λ
)
, (4.4)

F1(w, 0, ε) = R. (4.5)

1. Substituting ε = 0 into (4.4) and denoting F1(w, t) = lim
ε→0

F1(w, t, ε), we

obtain

F1(w, t)Q = 0. (4.6)

Then, taking into account the first expression in (3.4), we can conclude that we
can express F1(w, t) in the form

F1(w, t) = RΦ1(w, t), (4.7)

where Φ1(w, t) is some scalar function that satisfies the equality

Φ1(w, 0) = 1. (4.8)

2. We multiply (4.4) by vector e, substitute (4.7) and taking into account that
RQ = 0, Re = 1, RΛe = λ, we obtain a differential equation for the function
Φ1(w, t)

ε
∂Φ1(w, t)

∂t
= Φ1(w, t)r1λ(ejwε − 1)

[
B1(T − t) + r2e

jwεϕ(w, t, ε)
]
. (4.9)
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For ε→ 0, we can write the following expansions for the exponent ejwε and for
the function ϕ(w, t, ε):

ejwε = 1 + jwε+O(ε2), (4.10)

ϕ(w, t, ε) = ϕ(w, t, 0) + ϕ′ε(w, t, 0)ε+O(ε2) = a0(t) + a1(t)jwε+O(ε2), (4.11)

where

a0(t) =
1

2π

∫ +∞

−∞
b∗1(α)

b∗2(α)

1− r2b∗2(α)

(
1− e−jα(T−t)

jα

)
dα, (4.12)

a1(t) = r2 ·
1

2π

∫ +∞

−∞
b∗1(α)

(
b∗2(α)

1− r2b∗2(α)

)2(
1− e−jα(T−t)

jα

)
dα. (4.13)

Taking into account (4.9) and making a transition ε→ 0, we obtain the following
differential equation for the function Φ1(w, t):

∂Φ1(w, t)

∂t
= r1λjwΦ1(w, t) [B1(T − t) + r2a0(t)] .

The solution of this equation with initial condition (4.8) is as follows:

Φ1(w, t) = exp

{
jwr1λ

∫ t

0

ψ(x)dx

}
,

where

ψ(x) = B1(T − x) +
r2
2π

∫ +∞

−∞
b∗1(α)

b∗2(α)

1− r2b∗2(α)

(
1− e−jα(T−x)

jα

)
dα. (4.14)

Therefore, the first-order asymptotic solution of equation (4.4) has the form

F1(w, t) = lim
ε→0

F1(w, t, ε) = R exp

{
jwr1λ

∫ t

0

ψ(x)dx

}
. (4.15)

4.2. Second-order Asymptotic Analysis. Taking into account (4.15), we in-
troduce vector function H2(u, t) that satisfies the expression

H(u, t) = H2(u, t) exp

{
juNr1λ

∫ t

0

ψ(x)dx

}
. (4.16)

Substituting this expression into (4.1) and (3.3), we obtain the problem for function
H2(u, t):

1

N

∂H2(u, t)

∂t
+ H2(u, t)juλr1ψ(t) =

H2(u, t)
(
Q + r1(eju − 1)

[
B1(T − t) + r2e

juϕ(u, t)
]
Λ
)
, (4.17)

H2(u, 0) = R. (4.18)

1. Let us make here the following substitutions:

1

N
= ε2, u = εw, H2(u, t) = F2(w, t, ε). (4.19)

We obtain

ε2
∂F2(w, t, ε)

∂t
+ F2(w, t, ε)jwελr1ψ(t) =

F2(w, t, ε)
(
Q + r1(ejwε − 1)

[
B1(T − t) + r2e

jwεϕ(u, t)
]
Λ
)
, (4.20)

F2(w, 0, ε) = R. (4.21)
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If we let ε→ 0 in (4.20) and denote F2(w, t) = lim
ε→0

F2(w, t, ε), we obtain

F2(w, t)Q = 0.

Therefore, we can assume that the function F2(w, t) has the form

F2(w, t) = RΦ2(w, t), (4.22)

where Φ2(w, t) is some scalar function that satisfies the equality

Φ2(w, 0) = 1. (4.23)

2. Using expression (4.22), we can represent function F2(w, t, ε) in the expan-
sion form

F2(w, t, ε) = Φ2(w, t) [R + g · jeεψ(t)] + O(ε2), (4.24)

where g is some row vector, O(ε2) is a row vector of infinitesimals of the order ε2.
Substituting (4.24), (4.10) and (4.11) into (4.20) and making transition ε→ 0,

we obtain matrix equation for vector g:

g ·Q = r1(λR−RΛ).

3. We multiply (4.20) by vector e, substitute (4.10), (4.11) and take into
account that RQ = 0, Re = 1, RΛe = λ. Then we divide the left and right sides
of the obtained equality by ε2 and make transition ε→ 0. As a result, we obtain
the following differential equation for the function Φ2(w, t):

∂Φ2(w, t)

∂t
= Φ2(w, t)

(jw)2

2
[r1λ (ψ(t) + 2r2a0(t) + 2r2a1(t)) +

2r1g(Λ− λI)eψ2(t)
]
.

Solving this equation under initial condition (4.23) and using the notation

κ = 2g(Λ− λI)e,

we obtain

Φ2(w, t) = exp

{
(jw)2

2

[
r1λ

∫ t

0

ψ(x)dx+ 2r1r2λ

∫ t

0

(a0(x) + a1(x)) dx+

r1κ

∫ t

0

ψ2(x)dx

]}
. (4.25)

Substituting expression (4.25) into (4.22), we obtain the form of the asymptotic
solution of the problem (4.20), (4.21):

F2(w, t) = lim
ε→0

F2(w, t, ε) =

= R exp

{
(jw)2

2

[
r1λ

∫ t

0

ψ(x)dx+ 2r1r2λ

∫ t

0

(a0(x) + a1(x)) dx+ (4.26)

r1κ

∫ t

0

ψ2(x)dx

]}
.
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Let us return to function H(u, t). Using results (4.15), (4.26) and perform-
ing substitutions that are inverse to (4.3), (4.16), (4.19), we obtain the following
expression for this function:

H(u, t) = R exp

{
juNλr1

∫ t

0

ψ(x)dx+

(jw)2

2

[
r1λ

∫ t

0

ψ(x)dx+ 2r1r2λ

∫ t

0

(a0(x) + a1(x)) dx+ r1κ

∫ t

0

ψ2(x)dx

]}
.

Let us multiply both sides of this equality by e, substitute t = T , then we derive
the following expression for the characteristic function h(u, T ) of the number of
repeated arrivals under the asymptotic condition of high intensity of the incoming
flow:

h(u, T ) = exp

{
juNλr1

∫ T

0

ψ(x)dx+

(jw)2

2

[
r1λ

∫ T

0

ψ(x)dx+ 2r1r2λ

∫ T

0

(a0(x) + a1(x)) dx+ r1κ

∫ T

0

ψ2(x)dx

]}
.

(4.27)
Substituting here expressions (4.12)–(4.14), we obtain (4.2).

The theorem is proved. �

So, we establish that the probability distribution of the number of repeated calls
in the system with high-rate MMPP arrivals can be approximated by Gaussian
distribution with the following parameters:

Mean = Nλr1

∫ T

0

ψ(x)dx, (4.28)

Variance = r1λ

∫ T

0

ψ(x)dx+ 2r1r2λ

∫ T

0

(a0(x) + a1(x)) dx+ r1κ

∫ T

0

ψ2(x)dx.

(4.29)

5. Numerical Analysis

Let us analyze an accuracy and establish an applicability area of the obtained
Gaussian approximation (4.27)–(4.29). To do this we perform simulation experi-
ments for various values of parameter N and compare their results with obtained
approximation. For accuracy estimation we use Kolmogorov distance

d = max
i=0,1,...

|F (i)−G(i)|,

where F (i) is an empiric distribution function of the number of repeated arrivals
(arrivals at the second stage of the considered tandem) obtained on the base of
results of simulation experiment and G(i) is discretized Gaussian distribution func-
tion with parameters (4.28) and (4.29).

We performed a big number of the experiments and we obtained very similar
results for all of them. Let us introduce one of the results here. Consider queueing
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Table 1. Kolmogorov distances d between Gaussian approxima-
tion and empiric distribution based on the simulation results for
the case T = 1 for various values of parameter N .

N 10 25 50 100 250 500 1000
N · T 10 25 50 100 250 500 1000
d 0.1499 0.0958 0.0674 0.0490 0.0318 0.0240 0.0201

tandem with feedback at the second stage. The arrival process is MMPP with high
intensity given by the following matrices of generator and conditional intensities:

Q = N ·

−1 0.5 0.5
1 −1.2 0.2

0.5 0.8 −1.3

 , Λ = N ·

0.25 0 0
0 1 0
0 0 2.5

 .

We choose various values for intensity parameter N to find boundaries of the
applicability area of the approximation (4.27). Service times at both stages of the
tandem are gamma distributed with shape and rate parameters α1 = β1 = 0.5 for
the first stage and α2 = β2 = 1.5 for the second stage. Probabilities r1 and r2 (see
Sec. 2) are chosen as follows: r1 = 0.75, r2 = 0.5.

Observation time T we choose equal to 1 at the first step of the analysis. In
Table 1, you may find values of Kolmogorov distances between empiric distribution
and Gaussian approximation for various values of parameter N . As we see, the
approximation becomes more accurate while N is increasing, i.e., while increasing
the intensity of MMPP arrivals. If we choose d ≤ 0.05 to the approximation may
be named as enough accurate, then we may conclude that an applicability area
of the approximation is N ≥ 100 for the case T = 1 (this area is highlighted by
boldface font in the table). In addition, visual representation of probability mass
functions for empiric distribution of the number of repeated arrivals in comparison
with discretized Gaussian approximation for various values of parameter N are
presented in Fig. 2.

It is obvious, that an accuracy of Gaussian approximation (4.27) significantly
depends not only on parameter N but on length of chosen interval of observation
T . Due to this, we consider other values of T . Notice that actually Gaussian
approximation becomes more accurate when its mean is increasing. So, we will
consider dependence of the accuracy on N · T . In Tables 2 and 3, such results are
presented for T = 10 and T = 100. In Fig. 3, you may find visual representation
of Kolmogorov distance behavior while N · T is increasing. As we see, in all cases
(T = 1, 10, 100) the Gaussian approximation becomes more accurate while N · T
is increasing and it becomes enough accurate (d ≤ 0.05) when N · T ≥ 100. This
value determines an applicability area of the approximation. For great values of
length of the observation period (for T = 100 and greater), the low boundary of
the applicability area becomes less (e.g., for T = 100 we have d = 0.0468 < 0.5
while N · T = 50).
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Figure 2. Comparisons of the Guassian approximation (dashed
line) and empiric distribution (solid line) for various values of the
parameter N .

Table 2. Kolmogorov distances d between Gaussian approxima-
tion and empiric distribution based on the simulation results for
the case T = 10 for various values of parameter N .

N 1 2.5 5 10 25 50 100
N · T 10 25 50 100 250 500 1000
d 0.1172 0.0742 0.0533 0.0385 0.0272 0.0220 0.0198

Table 3. Kolmogorov distances d between Gaussian approxima-
tion and empiric distribution based on the simulation results for
the case T = 100 for various values of parameter N .

N 0.1 0.25 0.5 1 2.5 5 10
N · T 10 25 50 100 250 500 1000
d 0.1046 0.0654 0.0468 0.0344 0.0246 0.0201 0.0196
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Figure 3. Changes in Kolmogorov distance d while N · T is in-
creasing for the cases T = 1 (solid line), T = 10 (dotted line), and
T = 100 (dashed line). Logarithmic scale is used for horizontal
axis.

6. Conclusions

In the paper, we consider queueing tandem with MMPP arrivals, non-exponential
service times and feedback at the second stage. The goal of the study is to find
probability distribution of the number of arrivals at the second stage (repeated
arrivals). Using Markov summation method, we establish equations to be solved
for the problem solution. The equations are solved under asymptotic condition
of high intensity of MMPP arrivals. As a result, we obtain Gaussian distribution
which can be used as an approximation for the probability distribution of the
number of repeated arrivals. Using simulation experiments, we establish accuracy
and applicability area of the obtained approximation for various values of inten-
sity parameter N and observation time T . It is shown that the approximation has
enough small error for N · T ≥ 100.
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