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Abstract: Area Under the receiver operating characteristic Curve (AUC) is used to 

improve categorization for long period (LP) and volcano tectonic (VT) seismic events, this 

paper suggests a novel volcanic seismic signal descriptor. In place of traditional seismic 

signal processing techniques like frequency or scale analysis, it uses image processing 

techniques to depict a volcanic seismic incident from a unique and unusual angle. The 

suggested descriptor enables exploration of the seismic signal space to identify event 

patterns, followed by texture-based extraction of shape and intensity features into 

numeric vector output to feed a collection chosen various taxonomies with machine 

learning classifiers. Here, descriptor was tested using a database of 637 Seismic activity 

from the Cotopaxi volcanoes, including VT, LP, and further types of Seismic actions 

(e.g., ice quakes or rock fall). AUC values of 0.95 and 0.96 were obtained using a feed 

forward back propagation for the classifier of artificial neural network on two 

investigational datasets which encloses feature vector representation of signals neither 

and nor event switching, correspondingly. An accurate value of 96 percentile would be 

acquired with the purpose of the occurrence patterns by using the database of signals. 

These collected findings shows that the suggested descriptor was capable to produce 

enough Seismic Signal Representations for various feature spaces and here output offers 

uncertain outcomes in the categorization of Seismic Events of Volcano. 

Keywords— Spectrogram based Features, Seismic Event Classification, Machine 

Learning Classifiers (MLCs), Seismic Pattern Generation. 

I. INTRODUCTION 

To identify behavioral changes offer initial notices for the events which are impending 

volcanic activity, comprehensive monitoring of volcanoes are essential. To completely 

comprehend a volcano's behavior, volcanic gases, seismicity, rocks, ground motions, satellite 

photos and water chemistry shall be examined [1]. While extensive monitoring networks with 

a variety of equipment are necessary to give information on potential volcanic unrest, 

seismicity offers valuable insight into the inside movement of volcanoes. Many Machine 

Learning Classifiers (MLCs) had been employed in literature to solve the pattern recognition 

issue connected to the detection of various volcanic activity-related seismic signals. In order to 
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decrease the dimensions from the given data and improve distinction of a class, various 

approaches of machine learning which are typical to use some of the alternative depiction of 

the information through respect to the novel space. This representation have been obtained by 

mining important features from the novel signal. Volcanic-seismic signals have historically 

been automatically classified using parameters relating to certain properties from the 

frequency, temporal, and/or scale and cepstral domains [2]–[4]. Within the scale domains, 

certain bands that are utilized for frequency had been employed as features which were linked 

probably for the entropy  or energy of the signals [6], [7], whereas statistical topographies, for 

example, explains behavior of the facts from distribution [2], [5], [6]. Although there are 

various possible representations of the data that may be utilized, their utility would depend on 

the situation at hand and the algorithm to be employed, making it as a persistent challenge to 

determine the best demonstration of seismic events for enhancing sorting performance. 

By using image processing techniques rather than traditional seismic signal processing 

methods like scale analysis or frequency, is a suggested descriptor aims to portray volcanic 

seismic occurrences from a unique and diverse perspective. To calculate the collection of 

features like 17 from the texture, shape, intensity statistics etc., which were referred to be the 

output of descriptor, the pattern for seismic event is segmented firstly to a spectrogram picture 

which was of gray-level. 

 
Figure I: Workflow for proposed descriptor. 

The suggested descriptor, the chosen MLCs, and the various experimental setup used 

for the descriptor assessment are all described in depth in Section II. AUC totals acquired 

by the selected MLCs using the Wilcoxon statistical test [6], [7] for assessing the 

significance of the differences between the classification models, were used to determine 

the accuracy outcomes in seismic event pattern determination and also descriptor output 

authentication. Additionally, a preliminary comparison between the chosen MLCs and 

previously created methods that are documented in the literature is offered. In Section IV, 

findings and future work are summarized. 

II.  MATERIALS AND METHODS 

A.  Seismic Signal Database 

The 637 seismic events in the database utilised for this paper consist of 560 samples from 

the LP class and 77 samples from the VT class. The Cotopaxi volcano in Ecuador, located at 
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(00.677 S, 78.436 W), was the source of all the data collected in the years 2012, 2013 

January, 2014 January, 2018 January, between January 2019 and March 2019. Geophysical 

Institute of National Polytechnic School (IGEPN) tracks and analyzes the Ecuadorian seismic 

and volcanic activity, which contributed this database. The three-axial CMG-40T Guralp 

seismometer, whose sensitivity is 1600 V/ms1, and the 24-bit Geotech Smart 24-D digitizer, 

which samples at 50 Hz, were utilized in the broadband seismic acquisition system. 

According to its waveform, spectrogram, and location, each seismogram from this database 

represents a single distinct seismic event was manually recognized and categorized by 

IGEPN experts. 

B.  Volcanic Seismic Signal Descriptor 

A specified ROI inside spectrogram picture is used to compute the intensive statistics, 

shape, and texture of the suggested descriptor, which describes numeric output vector from 

input signal. The suggested descriptor's process is depicted in Fig. 1, and each step's 

description is given below. 

1) Spectrogram Generation: Short Time Fourier Transform (STFT) uses original signal 

to create the gray-level spectrogram pictures. In order to prevent information from 

being lost at the window's edge and to optimize the energy in the main body of the 

signal, this technique employed a Kaiser window with a 1.5-s sampling window size 

and 75% of overlapping data. 

2) Thresholding and Binarization: In this phase, the gray-level spectrogram pictures are 

filtered using a threshold value of 0 dB that was obtained through experimentation 

(Figure. I step 2.2). This keeps seismic events which were related frequency 

components while removing the low-amplitude ones. The use of a power threshold 

assists in signal cleaning since the data gathering device (seismometers) is extremely 

sensitive, making it usual to have ith pixel inside the contour and the sample x intensity 

is mainly the mean noise at various frequencies. By using Otsu's approach each 

grayscale picture was transformed into a binary image, which determines the ideal 

threshold for conversion by reducing the intra class variation between two hypothetical 

pixel classes (see Fig. 1 step 2.2). 

3) The contour and bounding box of the AOI can be determined by using the seismic event 

in step three, "Determination of the Event Pattern." By using Jacob's halting criterion 

which served as the foundation for the contour computation [5] can be modified Moore-

neighbor tracing algorithm. The other side, eight-connected components (object or 

blobs) approach was used to determine the bounding box (see Figure. I step 2.3, red 

line). By planting a seed (the initial pixel) and thoroughly scanning the eight associated 

pixels around in direction of a clockwise, it is determined to contour the objects in an 

image. This process checks to see if there have been any changes in the current pixel's 

intensity in relation to the seed. 

4) Feature calculation: The segmented event patterns, a collection of features of 17 
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including shape, texture descriptors and intensity statistics were derived. These 

characteristics were combined to create a numerical vector, which is the suggested 

descriptor output. The chosen characteristics were evaluated based on previously 

published methods, which discovered that they may offer pertinent information in 

picture classification issues [5]–[7] (see Figure. 1 step 2.4 the green-line contour). 

C.   Classifiers based on machine learning 

In the literature, a number of MLCs have been described for the categorization of 

seismic events. The most popular form of classifier appears to be most variations of the 

Support Vector Machine (SVM) technique, such as multiclass SVM [7] and SVM with 

linear kernel. Hidden Markov models, Decision trees [7], Artificial neural networks (ANNs) 

[6-7], evolutionary algorithms and, more recently, the Gaussian mixture model are other less 

often used techniques that have also shown satisfactory results. Therefore, five MLCs with 

various classifications (based on their functionality) would be taken into account, this paper 

for evaluating the suggested descriptor output fairly. The following description of the 

chosen MLCs. 1. The Naive Bayes (NB) classifier is originated on probability models with 

sturdy liberal expectations. The presupposed that c is a variable of class which depends on n 

input characteristics, including x1, x2... xn. When characteristics are provided, the Bayer’s 

theorem with constant denominator is uses forecast to the class variable c. (it does not 

depend on c).  

2. Descriptor Output Quality: Here, test was designed for verifying to collect pertinent 

data and suggested descriptor output on the calibre of calculated features. In this way, the 

descriptor output was combined with five distinct MLCs are FFBP ANN, SVM, kNN, RF 

classifiers and NB. Following is a description of the test's exercise and test barriers, 

evaluation metrics and MLCs setup. 

1) Training and Test Partitions: Before the classification stage, we specifically used 

the tenfold cross-validation approach to create disjoint training and test divisions. 

Individual MLCs will be educated on several training sets in this manner, gaining 

knowledge from various input space representations. The categorization of individual 

samples as a consequence of testing on these various sets varies. 

2) Configuration of MLCs: The SVM classifier employed a kernel function calibrated 

to be linear, radial basis, polynomial, and sigmoid functions, and the regularization 

parameter C (cost) was optimized in the range from 10-4 to 104 (growing by a factor of 

10). When using the kNN classifier to determine the size of the neighborhood, an ideal 

value of k has to be estimated. The number of hidden layers in the FFBP neural network 

was calculated as n (attributes number of classes)/2. One layer of output connected to the 

binary classification (LP or VT). The sigmoid (hyperbolic tangent) function was used as 

the transfer function for all layers, and the number of iterations (epochs) was optimized in 

the range of 100 to 10,000 epochs with an interval increment of 500 units. The number of 

tree-based predictors included in the RF classifier was tuned to be between 100 and 1000. 
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(With an increment of ten units). With X being the total number of characteristics 

available in the current data set, each tree employed the log2(X) 1 to choose attributes at 

random. (version 3.6). 

III.   RESULTS  

A. The Performance of Proposed Descriptor's 

The perimeter (F7), on the other hand, has less variance between the two types of 

occurrences for the group of characteristics based on form (∆F7 0.08). The cases that were 

taken into account led to this value. Even while it is feasible to see that the VT events have 

greater morphological values than the LP events, the breadth, which is dependent on the 

length of the event, does not behave in the same way. Therefore, despite the fact that both 

qualities typically have low values, there is not necessarily a link between them. 

The contrast (F14) and Second angular momentum (F13) and emerged with the 

characteristics with reduced variance between two types of events within the collection of 

texture-based features (F13 0.02 and F14 0.07). These results were anticipated since there 

aren't many prominent gray-tone transitions in gray-level images, and the F13 assesses how 

homogenous an image's intensity is. Similar to the F14 feature, gray-level pictures have no 

bearing on the degree of local strength fluctuation exhibited in image. 
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Figure. 2: To show results of the Performance of 
Proposed Descriptor's 

 

 

 

B. Descriptor Output's Quality 

On two experimental data sets, we used five different MLCs to assess the descriptor output. 

The first (D1) was created using 598 instances of numerical vectors (descriptor outputs) that 

were derived from input signals but did not contain overlapping seismic events. Second (D2), 

which has 637 instances, constructed using all of the numerical vectors from the D1 data set as 

well as additional numerical vectors that were taken from signals of input that had overlapping 

events of seismic signals (i.e., 39 additional occurrences including 32 LP and 7 VT events). The 

following is a description of the MLCs' outcomes. 

1) NB Classifier Performance 

2) SVM Classifier Performance 
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   Figure 6: Top graph ROC curve and bottom graph part of the ROC curve with an AUC ≥ 0.85. 

 
Figure 7: Top graph ROC curve and bottom graph part of the ROC curve with an AUC ≥ 0.85 

 
Figure. 8. Top graph ROC curve and bottom graph part of the ROC curve with an AUC ≥ 0.85 

 
Figure. 9: Top graph ROC curve and bottom graph part of the ROC curve with an AUC ≥ 0.85 

 
Figure 10: Top graph ROC curve and bottom graph z part of the ROC curve with an AUC ≥ 

0.85. 

3) Performance of kNN Classifier: These outcomes were attained by applying the number 
of K 3 neighbors same model. To resolve overlapping of signal issue in the data set D2 it 

was shown statistically insignificant.  
4) Performance of the RF Classifier: On both sets of data, this classifier performed similarly 

in terms of classification at p 0.05 As a result, the performance of this classifier is not 
considerably impacted by the descriptor's response to signal overlapping. Due to the 
positive findings, it is feasible to determine that the suggested descriptor provides 

adequate results when employed in conjunction with this classifier. 
I V.  CONCLUSION AND NEXT WORK 
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In order to increase AUC scores for the categorization of LP and VT seismic events, we suggest 
a novel volcanic seismic signal descriptor in this study. New descriptor represents the volcano 

seismic event signals from a novel and innovative perspective that uses image processing 
techniques rather than traditional seismic signal processing techniques like frequency or scale 

analysis. There are two steps to the descriptor validation process. All of the MLCs had successful 
outcomes, as determined by the AUC measure. The overlapping seismic events in the D2 data set 
were particularly sensitive to this classifier's performance. It also shows that the proposed 

descriptor is invariant across various MLCs. Plans exist to incorporate two substantial upgrades 
to the suggested description as future work.  
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