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BLOW UP OF SOLUTIONS FOR A COUPLED VISCOELASTIC
KIRCHHOFF SYSTEM WITH DISTRIBUTED DELAY TERMS

HAZAL YUKSEKKAYA, ERHAN PISKIN, AND NADIA MEZOUAR

ABSTRACT. Our goal in this paper is to study a coupled nonlinear viscoelastic
Kirchhoff system with distributed delay terms and source terms. For a non
negative initial energy , we investigated that the solutions blows up under
suitable conditions.

1. Introduction

The study of the asymptotic behavior of wave equation is an old and large
areas because it importance in the applications, for this reasons wave equation
has been taking different formes and names according to the described phenom-
ena and also the material using in the experiment. In this paper we will study
one of themes named Kirchhoff equation in one dimension space, it describe the
transversal small amplitude vibration of elastic strings. Also in some equation we
add the viscoelastic term which impose a natural damping due to the special prop-
erty of the observe vibration’s material without forget its affect into dissipation
of the energy. To give a problem describe a phenomena enough perfect, we must
take a consideration de delay which appear in practical phenomena like physical,
biological , economic and some of themes. Furthermore, delay term influenced
on the stability and instability of the studied system and many papers has been
discussed the both situations for example [4].

In a bounded domain € in R™ with a smooth boundary, we consider the follow-
ing viscoelastic Kirchhoff system with distributed delay in the internal frictional
damping terms :

uge — M (||VUH2) Au + f(f hi (t —s) Au(s)ds + puy
+f-:;2 ‘:U’Q(Q)'ut(xvt_g)dngl (U,U), (1’,t)€QXR+,
vee — M (HVU||2) Av + fot he (t — 8) Av (s) ds + psv;
+f;;2 ‘,U,4 (Q)"Ut (Ivt_g)dQ:fQ (U,’U), (I,t) GQXR-H (11)
u(x,t) =0, v(z,t) =0, x € 09,
up (z,—t) = fo (x,t), v (x,—t) = ko (x,t), (z,t) € QX (0,72),
w(z,0) =up (), u(x,0) =u (x), z €,
v (z,0) =vo (z), v (x,0) =01 (x), x € Q,

where pq, pus > 0, represented the weights of non delayed damping terms. The
Ty, To are the margin of the delay’s distribution with 0 < 71 < 79, u2, ug4 are
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L*° functions and the memory kernel functions h, ho are differentiable functions.
M (s) = mg + as” is a C! nonnegative function on R* with mg, o and v > 0 are
nonnegative constants, to simplify our calculations we take M (s) = 1+ s” in the
problem (1.1). Finally, the source terms f; and fo are given as :

f1(u,v) =aq |u+ v|2(p+1) (u+v) + by |ul” u |v|p+27
fo (u,v) =ay |u+ v|2(p+1) (u+v)+ by v’ v \u|p+2,

where a1,b; > 0 and p a real number to be specified later.

In the absence of delay term, several papers has been investigated our problem
in the case one equation and M(s) = 1 (see [5], [8], [9], [21], and references
therein). In the other side a lot of papers has been studied Kirchhoff equation
without viscoelastic term (see [1],[3]).

In [6], Mezouar and Boulaaras showed the global existence and decay properties
of solutions for the following viscoelastic Kirchhoff equation:

t
lug|" wge — M (||Vu||2) Au — Ay +/ h(t—s)Au(s)ds
0

+au+ prgr (ue (2,1)) + poge (ur (z,t — 7 (¢)))
= 0.

When the observe vibrations’s string is composed two different material the model
given is constructed by two equations for this some authors has developed the
works to systems as in [7] when the authors established the global existence and
exponential decay of solutions for generalized coupled Kirchhoff system with a
delay term varies in time .

In [14], Pigkin considered the following system of viscoelastic wave equations :

{ utt—Au—i—fggl (t—7)Au(7)dr + up = f1 (u,v)

vtt—Av—I—fOtgg (t—7)Av (1) dT + v = fo (u,v). (1.2)

He obtained the global nonexistence of solutions for the problem (1.2).

The coupled nonlinear Klein-Gordon system has been studied firstly with weak
damping terms by Pigkin in [13] when he proved the blow up of solutions. After
that, Pigkin, in [15], established the decay estimates of the solution by using
Nakao’s inequality and he gave a finite time’s blow up of solution for a negative
initial energy.

Recently, Rahmoune et al. [20] considered, in © x R, also the same system with
strong damping and distributed delay terms given as follow

wpr + miu? — Au — wi Auy + fgg (t —s)Au(s)ds + prug
+ [ |2 (o) ue (2, = 0) do = fi (u,v),
Vit + Mov? — Av — waAvy + fot h(t —s)Av(s)ds+ usv
+ [ e (0] v (2, — 0) do = fa (u,v),

where mq, mso, wy, ws > 0. They investigated the exponential growth of solutions
for the problem (1.3) under suitable conditions. In [16], we considered the growth
of solutions for the problem (1.1). Recently, some other authors studied related
hyperbolic type equations (see [2, 17, 18, 19, 22, 23, 24, 25, 26, 27]).

(1.3)
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Motivated by previous works and in the presence of both Kirchhoff term
M (||Vu||2) and viscoelastic terms with distributed delay terms in our system, we

prove that solutions of the system (1.1) blows up in finite time by the similar way
of [12].

This paper is structured as follows: In section 2, we set some assumptions and
results given as lemmas need its later. The section 3 specified to prove the blow
up result for the system (1.1).

2. Preliminaries

Throughout this work we adoptee ||.||, as a notation of L,— norms. We start
by setting theses assumptions:

(A1) For ¢ = 1,2, h; are positive differentiable decreasing functions over Ry
with total mass

/ h; (8) ds=1-1; < 1. (2.1)
0
(A2) There exist constants & > 0 such that

hi(t) < —&h;i (), t > 0. (2.2)

(A3) p2, p1q : [11,72] = R and for all § > %,

{ (6+3) [ |2 (o)l do < pa,

O+ 1) [7 lua ()l do < ps. (2:3)

The next lemma show that there exists a function F in relationship with f; and
f2 as follow

Lemma 2.1. [12]
1

F(u,v) = m [uf1 (u,v) + vfa (u,v)]

1 2(p+2) p+2
= ——aj|lut+v + 2b1 |uv
sz [+l sl
> 0,
where OF 9F
%:fl(uvv)a %:fg(u,v),
In all calculs we will take a; = by = 1 for convenience.

2(p+2) + ||UH2(p+2))

The norm of the function F is equivalent to (||u|| as it appears

in the following lemma.
Lemma 2.2. [11] There exist co, ¢c1 > 0 such that

Y 2(r+2) 2(p+2)) <F <_“a ( 2(p+2) 2(p+2)>
3y (P P < F () < gt (Juf 0 o).
(2.4)

In order to compute the convolution term in our problem, we will need to the
next lemma.
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Lemma 2.3. [11] For ¢, € C*(R,, R) we have
1 5 1, 1d g )
{A¢wwmdx:—5¢umwun|+§wwaw—5a{wowxw—([;aﬁdanwu}

where

wowwzﬂwwwwm—wwws

3. Blow up results

We begin this section, as in [10], by define on € x (0,1) x (71, 72) x (0,00) the
new following functions:
y(xapagat) = Ut (I‘,t* gp)a
Z(‘Tapagat) = Ut (1‘7t7 Qp)v
therefore,
0Yt (.’17, P, 0, t) + yp (.'If,p, 0, t) = 0;
y(x707 Q7t) = U (Jf,t) )
and

0zt (w,p,0,t) + Zp (z,p,0,t) =0,
z (2,0, 0,t) = v¢ (2,t) .

Thus, problem (1.1) is equivalent to
wy — M (||vu||2) Au+ [ hy (t = 5) Au(s) ds + paue

+f;;2|/'L2(Q)|y($71797t)dQ:fl(uav)u IGQ,tZQ
v — M (||Vv||2) Av + fot ho (t — s) Av (s) ds + uzvy (3.1)
+ 7 |pa (o) 2 (2,1, 0,t) do = f (u,v), zeQ, t>0,

0Yt (xv P, 0, t) + Yp (LU, P 0, t) = 07
0%t ($7P> 0, t) + Zp (.’E, P, 0, t) = 07
with the initial and boundary conditions
u(z,t) =0, v(z,t) =0, x € 0N,

y(xvpv 970) = fO (.I, QP)7 Z(x7p7 970) = kO (‘Ta QP)7
u(x,0) =ug (z), ut(x,0) =up (x),
v(z,0) =vo (x), vt (2,0) = vy (),

The functional space defined as
H = H} (Q) x L?(Q) x H} () x L* () x L* (2 x (0,1) x (11, 72))
x L2 (2 x (0,1) x (11,72)).
Theorem 3.1. [20] Under (2.1), (2.2), (2.3) hold and
{ —l<p<i2 n>3,

n—2’

p>-—1, n=12 (3.2)

The problem (3.1) has a unique solution in C ([O,T] ,f[) for some T >0 and for
any initial data, (ug,u,vo,v1, fo, ko) € H,

We define the energy functional as follows:
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Lemma 3.2. Assume that (2.1), (2.2), (2.8) and (3.2) hold, then the energy
associate to the solution (u,v,y,z) of (3.1) given as follow

1

1 1
B = glully+3 el + g5 IVull™™ + 2(—) |50
l l 1 1
o IVully + S IVoll; + 5 (hoVu) + 5 (haoVo) + 5M (y.2)
= IF (u,)l

is nonincreasing and

T2

2 2 2
E(t) < _03{||ut||2+””t|2+/ |12 () lly (, 1, 0,1) 5 do

1

T2
/ |u4<g>|||z<x,1,g,t>|§dg} (3:3)
T1
where
= [ [ {011y 01 + i @ 2,012
and
1 2(p+2 2
17 (o)l = gy [l el 3 + 2 el 15)]

Proof. We multiplying the first two equations in (3.1) successively by u;, v; , after
integrating over 2 and recalling lemma 2.3, we get

24 L2 +
Al o 1 1 1
de \ 2"tz g TR 2( 1) 2( 1)

% (1_/; hl(s)ds> \|vU||§+5 (1—/0 ha(s) ds) IVoll3

1 1
t5 (h1oVu) + 3 (h20Vv) — ||F (u, v)|1)

T2

= 3= [ [ @1y (o1, 0.0 dodo
T1

—H3 |Ut||2 /Ut/ |a (0)| 2 (2,1, 0,t) dodx

, 1
S (H0Vu) — 2 (1) 9l

V|30 + [Vl 30+Y

[\D\H[\D\

+3 (H00) — 2o (1) V2, (3.4
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by recalling the initial and boundary conditions in (3.1), we obtain
2
o [ el @1y o 0. dod

- -/ / [ 21z @l vwydedps
Q 0 T1

1/ [™ )

= 2 (o) do | llut]l5

1 (™
5 [ Ina (@l ly (o 1ot de (35)

1

DO |

and similarly we obtain
= [ ela @1z o 0.1 dedp

= —5/// 2 |pa (0)| zzpdodpda
QJo 1

1/ (™ )

= 5 ([ mi@lde) i

1 [
5 [ @l 100l de, (3:6)
then by combining (3.4)-(3.6) and recalling (2.1), we find

d

GE@ < mluli- [ / o (0) ey (.1, 0.0) dode +  (HioV)

dt
g 19l ([t >|de) el

1 [
5 [ @l (o1 o) de

T1
ol = [ [l (@) vz (1, 0.0) deds + 5 (15070)
Q T1

1 1 2
~5ta 17013+ 5 ([ s (@)1 de) ol

1 (™ 9
5 [ @l @100l de. (.1
Thus (3.3) is established from Young’s inequality and substituting (2.1), (2.2) and
(2.3) in (3.7). 0

Theorem 3.3. Assume that (2.1)-(2.3), (3.2) hold and furthermore E (0) < 0,
then the solution of problem (3.1) blows up in finite time.

Proof. From lemma 3.2, we get

E(t) < E(0) <0, (3.8)
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then the functional defined as

H(t) = —E(t) (3.9)
have the following properties
(1)
T2
70 = (ol [ @l a0l
2 = 2
ol [0z g0l de)
T1
Hence,
T2 T2
H'(t) > ¢ maX{/ 2 ()] lly (2,1, 0,) ||§d9,/ |k () 1|2 (x, 1, 0, ) [|3de} > 0
T1 T1
(3.10)
thus from (3.8) H is a positive.
(2) H is bounded by
2 2(p+2) 2(p+2)
H(0) < H ) < P < 5o B + 0B e
The last inequality is getting from lemme 2.2.
For a nonnegative constant
2p+2
< —0x<1 3.12
4(p+2) (3:12)
we set
—a €
K () = H'" (1) + ¢ / (wt +vo) do+ = (ol + s ol3)  (3.13)
Q
where ¢ is a non negative constant will be given later.
A derivation of (3.13) gives
K@t = 1—-aH*“@t)H (t)+ 5/ (w4 vog) do
Q

b (lall + oul) += [ (o + vor) da
Q

To compute the second term in the previous equation, we multiply the first two
equations on (3.1) respectively by u, v so

K'(t) = (=a) B @O H (1) += (Jull + oel3) = = (IVal} + | V0]3)
—g/ ||Vu||§7|Vu|2dx—5/ IVl [Vo|? da
Q Q
t t
+€/Vu/ hl(tfs)Vu(s)dsders/Vv/ ho (t — s) Vv (s) dsdx
Q 0 Q 0
[ [ @l odor—< [ [ (0] vz (@ 1,0.0) dodo
13
[+l 13 + 2 el 135 (3.14)

+ 2(p+2) (p+2)
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Now, we use Young’s inequality to estimate the following terms in K’ (t)

5// |z (0)| uy (x,1, 0, t) dodx
QJr
s{al ( Nz <g>dg) 2

T2

1
10, /.,

IN

and
5// |4 ()| vz (2,1, 0,t) dodx
Q T1
< 6{52 (/ |M4(Q)|dQ) ol
1 2 2
v [ s (@11 103 de
2 T1
Moreover,
¢
5/ hi(t—s) ds/VuVu(s)dxds
0 Q
= 5/ hi (t — s) ds/Vu (Vu(s) — Vu(t)) dzds
0
¢
+6( hy (s ) | Vull3
0
. ¢
> 3 (/ hi (s ) HVUH2 (h10Vu),
0
similarly
¢
5/ he (t—s ds/VvVv( ) dxds
0
= 5/ 2 (t—s)ds | Vv (Vo (s)— Vo (t))dxds
0 Q
¢
+5( ha (s ) Vo2
0
2

(/ot ha (s ) [Voll; - (hQOVU) ,

DN ™
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From (3.14), we obtain

K'(0) > (1=a) B H (1) +e (llul + lorl3) — & (IVul3H + 90)5040)

. ((1 _ ;/Ot I (s) ds> Va2 + (1 - %/0 ha (s) ds) IIWI§)
=t iz (@) de) [l ~ <62 | s (@)1 de) o1

T

=5 (move) = = |z (@) ly (2,1, 0,0 do

&
= (haoW) ——// 1 ]2 (1, 0,0) 3 do

2 2 2
e [llu+ w3213 + 2 uv) 13)] - (3.15)

Therefore, we take 01= 0o = H;czg) and combining (3.10) in (3.15), we find

K'(t) = (1—a)HH (t) += (Jwll} + ol3) - (||Vu||§”+” + Vol

. (1_/ h (s ) Vu|2+5<1—/ ha (s )IWI@

LD ([ o o)l — § (o)
et ([ s @) 015 § (a0

2c3K y

2 2 2
e [llu+olEt3) + 2w 213)] (3.16)

We multiply (3.9) by €2 (p + 2) (1 — a) with 0 < a < 1, we obtain

2 2 2 2
e [llu+ oI350 + 2lluwl22 13

2 2 2 2
~ ea [||u +of30 + 2 ||uv||2§§12§] +e2(p+2)(1—a)H (1)

1
+e(p+2)(1-a) [(nutni +llz) + gy (19270 ||vv||g<v+l>)]

te(p+2)(1—a) [zl IVul2 + 1o || Vo2 + (h10Vu) + (haoVv) + M (y, z)} .
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By substituting in (3.16), we have
K'(t) > [(1—a)—en H-H' (1) + [0 +2) (1 —a) + 1] (Juel + foe]?)

[(p+2)(1—a) } 2(y+1) 2(v+1)
M T \V4 Y \V4 v
o ey (IVal3* + | wo)30+0)

e l(p+2)(1—a)ls — (1 _ ;/th1 (s)ds)] V2

relwr20-an- (1o [ mas)] w2

|
75};;(;) </:2|u2()|dg>||u||25 (t< e |d9>llv2

1

telp+2)(1—a)M(y,2) +¢ {(p +2)(1—a)- 2] ((h10Vu) + (heoVv))

2 2 2
tea [lu+ o3 + 2o B3] + 22 (0 +2) (1— ) H (). (3.17)

From (3.11) and (3.12), we can find two positive constants c4, ¢5 such that

2(1 2 +2 2« 2 2
H (@) llull® < ea (e 57 + lolle sy full3) (3.18)
and
o 2 2a 2)+2 2« 2 2
HE (@) 1ol < es (lollsea ™ + lullsesa? oll3) - (3.19)

By applying the algebraic inequality,

1
B’<(B+1)< <1+b> (B+b),¥B>0,0<60<1, b>0,

with B = ||.[3%75), b = H (0) and 6 = 20 (p +2) + 2 which is less than 1 from
(3.12), we get
2a(p+2)+ 2) 2)
lulle s < a (i3 + # ) <d (a3t + H©),  (3:20)
and
2c 2)+2 2 2 2
Pz ™ < a (o3t + H ) <d (RIBE) +H®).  (3.21)

Also, since the function F'(z) = 27 is convex for all positive v we arrive at

2(p+2)
2a(p+2 2
s sy s < (Hollagres + ully)
2(p+2 2 2
< G (||”||2E§+2;+H [ w ))
2 2 2(p+2
< e (IIBEEE) + I3t (3.22)
similarly
2a(p+2 2(p+2 2(p+2
lalize s olly < es (et + oll5E13) (3.23)
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by substituting (3.20)-(3.21) and (3.22)-(3.23) in (3.18)-(3.19) respectively, we get

a 2(p+2 2(p+2

H (1) llull} < o (I0l5E13) + lull5ET3) + o (1 (3.24)
a 2(p+2 2(p+2

H* (@) o3 < evo (3053 + 0I5ET3) + vl (¢ (3.25)

Combining (3.24),(3.25) into (3.17) and by using (2.4) with the fact that hq, ho
are a positive functions, we find

K'(t) = [(1=a)— e B H (t) +2[(p+2) (1= a) + 1] (Jluel3 + o)
(P+2)(1—-a) 204D | |12+
+e [EEDEZD ] (17l 4 vul3o)
ellp+2) (1 —a)ly = 1] Vull3
+e[(p+2) (1 a)ls — 1] | Voll;
e(p+2)(1—a)M(y,2)

+e {(p +2)(1—a)— ﬂ ((h1oVu) 4 (h20Vv))

AL+ A 2(p+2) 2(p+2)
+e (a0 = 25522 13 + 101313
AL+ A
+e <2 (p+2)(1—a) - 12ch12> H{(t) (3:26)

where \; = ng |2 (0)| do, Ao = Clof | (0)| do-
In this case, we take a > 0 small enough such that

(p+2)(1—a) (min{,yil,ll,lg}> 10,

after we choose k so large such that

A
acy — L+ >0
2c3k
and \ \
Jr
2(p+2)(1—a)— 1203,«”2 > 0.

When k and a be fixed, we take € small enough, such that
(1—a)—ex>0.
Then we conclude that , for 5 > 0, the estimate (3.26) becomes
1 2(y+1
Kty > A{H @)+ e+ ol + 190l + [ 902+ [Vul 20D + o0+

2 2 2
+ (MoVu) + (h20V0) + M (y,2) + lull313) + w3215} (3.27)
From (2.4), for 81 > 0, we obtain
K'(t) = B {H @)+l + o3+ 9l + 1Voll} + V30 + 7o)+

2 2 2)
+ (0u) + (h20V0) + M (y,2) + [[lu+ ol 1) + 2 v 213 1
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thus
K(t)>K(0)>0on R,.
Applying Holder and Young inequalities, we have

1/(1—a)
1— s/(1—a) 11—« s/(1—a
> 0 [Iullsf 5 + huelly 2 + el + el 4]

/Q(uut + vvt) dx
where (1/u) 4+ (1/s) =1. We put s = 2 (1 — «), hence
p/(1—a)=2/(1-2a) <2(p+2).

By using again (3) with § = 2 (1 — 2a/), we have

Sy < d (lull32 33 + H (@)

2(p+2) p+2)
and
2/(1-2 2(p+2
lollsor™ < d (Il5ets) + H ), ve=o.
Hence,
1/{=e) 2(p+2) 2(p+2) 2 2
| (o) da > 1z [lull3 1) + WISEE3) + uell3 + uel3 + B ()]
As a result,
c ) ) 1/(1—a)
K1/ (1-a) t) = <H1—a (t)—i—a/ (uut+vvt)dx+§ (ul lull3 + s ||v||2)>
Q
H(1=a) /(1= 2/(1—
< ofm@+| [ Ganrvds O o)
2 2 2 2 2(p+2) +
< c[H )+ el + ool + lell3 + ol + b33 + o130 E]s)

By recalling (3.27), (3.28) leads
K’ (t) > AKY 1= (1), (3.29)

with A > 0, this quantity depends on 5 and c. A simple integration of (3.29) gives

1
K—o/(=0) (0) — A(a/ (1 —a))t’

Thus, K () in a situation of blow up when the time approach to

Ka/(l—a) (t) >

l1—«

T XK= (0)

*

The proof is completed. O
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