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Abstract. In this paper we study a problem with conditions given on inner

characteristics in hyperbolic part of considered domain and on some parts

of the line of parabolic degeneracy. With the help of the method of integral
equations and the principle of extremum we prove the unique solvability of

the investigated problem.

1. Introduction and formulation of a problem

Sweden mathematician Gellerstedt [1] was investigated boundary value problem
for the equation ymuxx + uyy = 0, (m is odd number), in which values of sought
function are given on two pieces of characteristics and on curve x2 + 4/(m +
2)2ym+2 = 1(y > 0) the value of its derivative is given. This problem has ap-
plications in transonic gas dynamics [2]. The work [3] is devoted to the studying
Gellerstedt problem with data on one family of characteristics and with nonlocal
gluing conditions. The unique solvability of the Gellerstedt problem for parabolic-
hyperbolic equation of the second kind was investigated in [4]. Due to applications
in gas dynamics the interest on studying boundary-value problems for degenerate
elliptic and mixed type equations with singular coefficients is growing. Note latest
work [5] on this topic, where the Dirichlet problem for three-dimensional elliptic
equation with singular coefficients was considered. Nonlocal boundary-value prob-
lems for the degenerate elliptic equation and mixed type equations in unbounded
domains were studied in the works [6], [7], [8], [9].

Consider the equation

uxx(signy) + uyy + (β0/y)uy = 0 (1.1)

in the domain D = D+∪D− ∪ I of complex plane z = x + iy, where D+ is a
first quadrant of the plane, D− is a finite domain in the fourth quadrant of the
plane bounded by characteristics OC and BC of Equation (1.1) issuing from points
O(0, 0), B(1, 0), and by the segment OB of the straight line y = 0, I = {(x, y) :
0 < x < 1, y = 0}. In Equation (1.1) β0 is some real number such that 0 < β0 < 1.

Introduce the following denotations: I0 = {(x, y) : 0 < y < ∞, x = 0}, I1 =
{(x, y) : 1 < x <∞, y = 0}, C0 and C1 are, correspondingly, points of intersection
of characteristicsOC and BC with the characteristic issuing from the point E(c, 0),
where c ∈ I is an arbitrary fixed number.
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2 MENGLIBAY KH. RUZIEV

Let p(x) ∈ C1[0, c] be a diffeomorphism from the set of points of the segment
[0, c] to the set of points of the segment [c, 1] such that p′(x) < 0, p(0) = 1, p(c) = c.
As an example of such a function consider the linear function p(x) = 1−kx, where
k = 1−c

c .
Problem G In the domain D find a function u(x, y) with the properties:
1)u(x, y) ∈ C(D̄) where D̄ = D̄− ∪D+ ∪ Ī0 ∪ Ī1;
2) u(x, y) ∈ C2(D+) and satisfies Equation (1.1) in this domain;
3) u(x, y) is a generalized solution from the class R1 [10] in the domain D−;
4) the following relations hold:

lim
R→∞

u(x, y) = 0, R2 = x2 + y2, x ≥ 0, y ≥ 0; (1.2)

5) u(x, y) satisfies the boundary conditions

u(0, y) = ϕ(y), y ≥ 0, (1.3)

u(x, 0) = τ1(x), x ∈ Ī1, (1.4)

u(x, y)|EC0
= ψ(x), (c/2) ≤ x ≤ c, (1.5)

u(p(x), 0) = µu(x, 0) + f(x), 0 ≤ x ≤ c, (1.6)

and the transmission condition

lim
y→+0

yβ0uy = lim
y→−0

(−y)β0uy, x ∈ I \ {c}, (1.7)

moreover, for x = 0, x = 1 and x = c these limits can have singularities of order
less than 1 − 2β, where β = β0

2 , f(x) ∈ C[0, c] ∩ C1,δ1(0, c), f(0) = 0, f(c) = 0,

ψ(x) ∈ C[ c2 , c]∩C
1,δ2( c2 , c), ψ(c) = 0, τ1(x) ∈ C(Ī1), moreover, the function τ1(x)

near the point x = 1 is representable in the form τ1(x) = (1−x)τ̃1(x), τ̃1(x) ∈ C(Ī1)
and for sufficiently large x it satisfies the inequality |τ1(x)| ≤ M

xε , ε,M are positive
constants, τ1(x) satisfies the Hölder condition on any segment [1, N ], N > 1,

ϕ(y) ∈ C(Ī0), y
β0
2 ϕ(y) ∈ L(0,∞), ϕ(y) satisfies the Hölder condition on any

segment [0, N ], N > 0, ϕ(∞) = 0, ϕ(0) = 0.
Note, in the Gellerstedt problem [1], the values of sought function in the hyper-

bolic part of mixed domain D are given on the characteristics EC0 and EC1 :

u|EC0
= ψ1(x), u|EC1

= ψ2(x).

In the present work we study new boundary-value problem where characteristics
EC1 is free from the conditions and needed condition of Gellerstedt is replaced by
inner boundary condition with local shifting on the parabolic line of degeneracy.

2. Main results

Theorem 2.1. Let ϕ(y) ≡ 0, ψ(x) ≡ 0, f(x) ≡ 0, τ1(x) ≡ 0, 0 < µ < 1. Then
Problem G can have only the trivial solution.
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Proof. It is known that the solution of the modified Cauchy problem u(x, 0) =
τ(x), x ∈ Ī, lim

y→−0
(−y)β0uy = ν(x), x ∈ I, has the form

u(x, y) = γ1

∫ 1

0

τ (x− y(2t− 1)) tβ−1(1− t)β−1dt

−γ2(−y)1−β0

∫ 1

0

ν (x− y(2t− 1)) t−β(1− t)−βdt,
(2.1)

where γ1 = Γ(2β)
Γ2(β) , γ2 = Γ(1−2β)

Γ2(1−β) , Γ(z) is gamma function [10]. By virtue of the

formula (2.1), from the boundary condition (1.5), after simple calculations, we
obtain

ν(X) = γD1−2β
X,c τ(X) + Ψ(X), X ∈ (0, c), (2.2)

Ψ(X) = − (c−X)βD1−β
X,c ψ(X+c

2 )

γ2( 1
2 )

1−2β
Γ(1−β)

, γ = 2Γ(1−β)Γ(2β)
Γ(β)Γ(1−2β)

(
1
2

)2β
, X = 2x − c, Dl

X,c is a

fractional differentiation operator in the sense of Riemann-Liouville [10]. The
equality (2.2) is the first functional relation between the unknown functions τ(x)
and ν(x), brought to the interval (0, c) of the axis y = 0 from the hyperbolic
part D− mixed domain D. Now let us prove that if ϕ(y) ≡ 0, ψ(x) ≡ 0, f(x) ≡
0, τ1(x) ≡ 0, 0 < µ < 1, then the solution of the problem G in the domain
D+∪I0 ∪ Ī∪I1 by virtue of (1.2), is identically equal to zero. Let (x0, y0) be a
point of positive maximum of the function u(x, y) in the domain D̄+

R .

Let D+
R be a finite domain cut out of the domain D+ by the arc ARBR of the

circle x2 + y2 = R2, 0 ≤ x ≤ R, 0 ≤ y ≤ R, where AR and BR are points with
coordinates (0, R) and (R, 0) correspondingly. In view of formula (1.2) for any
ε > 0 there exists R0 = R0(ε), such that for R > R0(ε) the inequality

|u(x, y)| < ε, (x, y) ∈ ARBR. (2.3)

By virtue of the notation u(x, 0) = τ(x), x ∈ Ī, the condition (1.6) rewritten in
the form

τ(p(x)) = µτ(x) + f(x), x ∈ [0, c]. (2.4)

Hence, for x = c (where f(x) ≡ 0) we have τ(p(c)) = µτ(c). Then by virtue of the
equality p(c) = c it follows that τ(c)(1− µ) = 0, i.e. τ(c) = 0.

According to the Hopf principle [11], the function u(x, y) does not attain its
positive maximum and negative minimum at the inner points of the domain D̄+

R .
Let (x0, 0) (where x0 ∈ (0, c)) be the point of positive maximum (negativ mini-
mum) of the function u(x, 0) = τ(x). Then at this point in the case of a positive
maximum (negativ minimum) [7]

ν(x0) < 0 (ν(x0) > 0). (2.5)

It is well known that at the point of the positive maximum (negative minimum)
of the function τ(x) the fractional differentiation operators satisfy the inequality
D1−2β
x,c τ(x)|x=x0

τ(x) > 0 (D1−2β
x,c τ(x)|x=x0

τ(x) < 0). Then by virtue of (where
Ψ(x) ≡ 0), we have

ν(x0) = γD1−2β
x,c τ(x)|x=x0

> 0(ν(x0) = γD1−2β
x,c τ(x)|x=x0

< 0). (2.6)

111



4 MENGLIBAY KH. RUZIEV

Inequalities (2.5) and (2.6) contradict the conjugation condition (1.7), whence
we deduce that x0 6∈ (0, c). By virtue of 0 < µ < 1 from (2.4) (where f(x) ≡
0) it follows that they are also absent in the interval (c, 1) of the axis y = 0.
Consequently, there are no points of positive maximum (negative minimum) of
the function u(x, y) on the interval AB. Let R > R0. From the Hopf principle
and the previous reasoning, if (x0, y0) ∈ ARBR, then by virtue of (2.3) we have
|u(x0, y0)| < ε. Therefore, |u(x, y)| < ε for any (x, y) ∈ D̄+

R .
Since ε > 0 is arbitrary, with R → +∞ we conclude that u(x, y) ≡ 0 in the

domain D+∪I0 ∪ Ī∪I1. Hence,

lim
y→+0

u(x, y) = 0, x ∈ Ī; lim
y→+0

yβ0uy = 0, x ∈ I. (2.7)

Taking into account (2.7), due to the continuity of the solution in the domain
D̄+
R and the conjugation condition (1.7),restoring the sought function u(x, y) in

the domain D− as a solution of the modified Cauchy problem with homogeneous
data, we obtain u(x, y) ≡ 0 in the domain D̄−. �

Theorem 2.2. Let the conditions µk
1
2−3αsin(απ) < 1, where α = (1 − 2β)/4,

β0 >
1
3 , p(x) = 1− kx. Then the solution of the problem G exists.

Proof. The solution of the Dirichlet problem in the domain D+ satisfying the
conditions (1.2)-(1.4) and the condition u(x, 0) = τ(x), x ∈ Ī, can be represented
in the form

u(x, y) = k2y
1−β0

∫ 1

0

τ(t)
((

(t− x)2 + y2
)β−1 −

(
(t+ x)2 + y2

)β−1
)
dt

+k2y
1−β0

∫ ∞
1

τ1(t)
((

(t− x)2 + y2
)β−1 −

(
(t+ x)2 + y2

)β−1
)
dt

+y
1−β0

2

∫ ∞
0

t
1+β0

2 ϕ(t)dt

∫ ∞
0

se−sxJ 1−2β
2

(st)J 1−2β
2

(sy)ds,

(2.8)

where k2 = 22β

π
Γ2(1−β)(1−β0)

Γ(2−2β) , β = β0

2 , Jν(z) is the Bessel function of the first kind.

From the formula (2.8), after some calculations, we obtain

ν(x) = −k2

∫ 1

0
τ ′(t)

[
(x− t)|x− t|2β−2 + (t+ x)2β−1

]
dt+ Φ0(x),

x ∈ (0, 1),
(2.9)

where

Φ0(x) = lim
y→+0

yβ0
∂

∂y
(F1(x, y) + F2(x, y)) = k2(1− β0)

∫ ∞
0

τ1(t)

×
[
(t− x)2β−2 − (t+ x)2β−2

]
dt

+
2

(2)
1−2β

2 Γ( 1
2 − β)

∫ ∞
0

ϕ(t)t
1+β0

2 dt

∫ ∞
0

s
3−2β

2 e−sxJ 1−2β
2

(s)ds.

Equality (2.9) is a functional relation between unknown functions τ(x) and ν(x),
brought to I from the elliptic part D+ of the mixed domain D. Note that the
relation (2.9) is valid for the entire interval I. Further, dividing the integration
interval (0, 1) into intervals (0, c) and (c, 1), and then in the integrals with the
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limit (c, 1) making the change of variable integration t = p(s) = 1− ks and taking
into account the equality (2.4), the relation (2.9) is reduced to the form

ν(x) = −k2

(∫ x

0

τ ′(t)(x− t)2β−1dt−
∫ c

x

τ ′(t)(t− x)2β−1dt

)
−k2

(∫ c

0

τ ′(t)(t+ x)2β−1dt+ µ

∫ c

0

τ ′(s)
[
(p(s)− x)2β−1 − (p(s) + x)2β−1

]
ds

)
+Φ1(x), x ∈ (0, c),

(2.10)
where

Φ1(x) = −k2

∫ c

0

f ′(s)
[
(p(s)− x)2β−1 − (p(s) + x)2β−1

]
ds+ Φ0(x).

By virtue of (1.7), excluding the function ν(x) from (2.2) and (2.10), we obtain

γD1−2β
x,c τ(x) + Ψ(x) = −k2

(∫ x

0

τ ′(t)(x− t)2β−1dt−
∫ c

x

τ ′(t)(t− x)2β−1dt

)
−k2

(∫ c

0

τ ′(t)(t+ x)2β−1dt+ µ

∫ c

0

τ ′(s)
[
(p(s)− x)2β−1 − (p(s) + x)2β−1

]
ds

)
+Φ1(x), x ∈ (0, c).

(2.11)
Equality (2.11) can be rewritten in the form

− γ

k2
D1−2β
x,c τ(x) + Φ2(x) =

∫ x

0

τ ′(t)(x− t)2β−1dt−
∫ c

x

τ ′(t)(t− x)2β−1dt

+

∫ c

0

τ ′(t)(t+ x)2β−1dt+ µ

∫ c

0

τ ′(s)
[
(p(s)− x)2β−1 − (p(s) + x)2β−1

]
ds,

x ∈ (0, c),
(2.12)

where Φ2(x) = −k2 (Ψ(x)− Φ1(x)) . Applying the operator Γ(1 − 2β)D2β−1
x,c to

both sides of the equality (2.12) and taking into account that D2β−1
x,c D1−2β

x,c τ(x) =
τ(x), we have

− γ

k2
Γ(1− 2β)τ(x) + Γ(1− 2β)D2β−1

x,c Φ2(x) = Γ(1− 2β)D2β−1
x,c

×
(∫ x

0

τ ′(t)(x− t)2β−1dt−
∫ c

x

τ ′(t)(t− x)2β−1dt

)
+ Γ(1− 2β)D2β−1

x,c

×
(∫ c

0

τ ′(t)(t+ x)2β−1dt+ µ

∫ c

0

τ ′(s)
[
(p(s)− x)2β−1 − (p(s) + x)2β−1

]
ds

)
, x ∈ (0, c).

(2.13)
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It is easy to see that

Γ(1− 2β)D2β−1
x,c

∫ x

0

τ ′(t)(x− t)2β−1dt = −Γ(2β)Γ(1− 2β)cos(2πβ)τ(x)

+

∫ c

0

(
c− x
c− t

)1−2β
τ(t)dt

t− x
,

(2.14)

Γ(1− 2β)D2β−1
x,c

∫ c

x

τ ′(t)(t− x)2β−1dt = −Γ(2β)Γ(1− 2β)τ(x), (2.15)

Γ(1− 2β)D2β−1
x,c

∫ c

0

τ ′(t)(t+ x)2β−1dt =

∫ c

0

(
c− x
c+ t

)1−2β
τ(t)dt

t+ x
, (2.16)

Γ(1− 2β)µD2β−1
x,c

∫ c

0

τ ′(s)(p(s)− x)2β−1ds

= µ

∫ c

0

(
c− x
p(s)− c

)1−2β
τ(s)p′(s)ds

p(s)− x
,

(2.17)

µΓ(1− 2β)µD2β−1
x,c

∫ c
0
τ ′(s)(p(s) + x)2β−1ds

= µ

∫ c

0

(
c− x
p(s) + c

)1−2β
τ(s)p′(s)ds

p(s) + x
.

(2.18)

Due to (2.14)-(2.18), equality (2.13) can be written in the form

Γ(1− 2β)D2β−1
x,c Φ2(x)− µ

∫ c

0

(
c− x
p(s)− c

)1−2β
τ(s)p′(s)ds

p(s)− x

+µ

∫ c

0

(
c− x
p(s) + c

)1−2β
τ(s)p′(s)ds

p(s) + x
+

c∫
0

((
c− x
c− t

)1−2β

−
(
c− x
c+ t

)1−2β
)

×τ(t)dt

t+ x

=
π(1 + sin(πβ))

cos(πβ)
τ(x) +

∫ c

0

(
c− x
c− t

)1−2β (
1

t− x
+

1

t+ x

)
τ(t)dt.

(2.19)
Equality (2.19) can be rewritten in the form

τ(x) + λ

∫ c

0

(
c− x
c− t

)1−2β (
1

t− x
+

1

t+ x

)
τ(t)dt

= −λµ
∫ c

0

(
c− x
p(s)− c

)1−2β
τ(s)p′(s)ds

p(s)− x

+λµ

∫ c

0

(
c− x
p(s) + c

)1−2β
τ(s)p′(s)ds

p(s) + x

+λ

c∫
0

((
c− x
c− t

)1−2β

−
(
c− x
c+ t

)1−2β
)
τ(t)dt

t+ x
+ Φ3(x), x ∈ [0, c],

(2.20)
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where λ = cos(πβ)
π(1+sin(πβ)) , Φ3(x) = λΓ(1 − 2β)D2β−1

x,c Φ2(x). Equality (2.20) can be

written in the form

τ(x) + λ

∫ c

0

(
c− x
c− t

)1−2β (
1

t− x
+

1

t+ x

)
τ(t)dt

= −λµ
∫ c

0

(
c− x
p(s)− c

)1−2β
τ(s)p′(s)ds

p(s)− x
+R[τ ] + Φ3(x), x ∈ [0, c],

(2.21)

where

R[τ ] = λµ

∫ c

0

(
c− x
p(s) + c

)1−2β
τ(s)p′(s)ds

p(s) + x

+λ

c∫
0

((
c− x
c− t

)1−2β

−
(
c− x
c+ t

)1−2β
)
τ(t)dt

t+ x

is a regular operator. The first integral operator in the right-hand side of (2.21)
is not regular, because the integrand with x = c and s = c has an isolated first-
order singularity, so this term in (2.21) is separated. For a time being we assume
the right-hand side of (2.21) to be a known function and rewrite the equation as
follows

τ(x) + λ

∫ c

0

(
c− x
c− t

)1−2β (
1

t− x
+

1

t+ x

)
τ(t)dt = g0(x), x ∈ [0, c], (2.22)

where

g0(x) = −λµ
∫ c

0

(
c− x
p(s)− c

)1−2β
τ(s)p′(s)ds

p(s)− x
+R[τ ] + Φ3(x). (2.23)

Putting (c − x)2β−1τ(x) = ρ(x), (c − x)2β−1g0(x) = g1(x), we write Equation
(2.22) in the form

ρ(x) + λ

∫ c

0

(
1

t− x
+

1

t+ x

)
ρ(t)dt = g1(x), x ∈ [0, c]. (2.24)

In Equation (2.24) changing variables t2 = s, x2 = ξ, ρ(x) = ρ(
√
ξ) = ρ1(ξ),

g1(x) = g1(
√
ξ) = g2(ξ), we obtain the following singular integral equation

ρ1(ξ) + λ

∫ c2

0

ρ1(s)ds

s− ξ
= g2(ξ), ξ ∈ [0, c2]. (2.25)

We will seek solution of Equation (2.25) in the class of functions satisfying Hölder
condition on (0, c2) and bounded at ξ = 0, such that at ξ = c2 they can tend to
infinity of order less than 1− 2β. The only solution of the Equation (2.25) in the
class h(0) is expressed by the formula

ρ1(ξ) =
1 + sin(βπ)

2
g2(ξ)− cos(βπ)

2π

(
ξ

c2 − ξ

) 1
4 (1−2β)

×
c2∫

0

g2(t)dt(
t

c2−t

) 1
4 (1−2β)

(t− ξ)
.

(2.26)
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Returning to the previous variables and functions from (2.26), we have

τ(x) = cos2(πα)g0(x)− sin(2πα)

2π

×
∫ c

0

(x
t

)2α
(
c+ t

c+ x

)α(
c− x
c− t

)3α(
1

t− x
+

1

t+ x

)
g0(t)dt,

(2.27)

where α = (1− 2β)/4. Substituting (2.23) to (2.27), we obtain

τ(x) = −λµcos2(λπ)

∫ c

0

(
c− x
p(s)− c

)4α
p′(s)τ(s)ds

p(s)− x

+λµ
sin(2πα)

2π

∫ c

0

τ(s)p′(s)ds

∫ c

0

(x
t

)2α
(
c+ t

c+ x

)α(
c− x
c− t

)3α

×
(

1

t− x
+

1

t+ x

)(
c− t

p(s)− c

)4α
dt

p(s)− t
+R1[τ ] + Φ4(x),

(2.28)

where

R1[τ ] = cos2(πα)R[τ ]− sin(2πα)

2π

∫ c

0

(x
t

)2α
(
c+ t

c+ x

)α(
c− x
c− t

)3α

×
(

1

t− x
+

1

t+ x

)
R[τ ]dt

is a regular operator,

Φ4(x) = cos2(πα)Φ3(x)− sin(2πα)

2π

∫ c

0

(x
t

)2α
(
c+ t

c+ x

)α(
c− x
c− t

)3α

×
(

1

t− x
+

1

t+ x

)
Φ3(t)dt

is a known function. We write Equation (2.28) in the form

τ(x) = −λµcos2(λπ)

∫ c

0

(
c− x
p(s)− c

)4α
p′(s)τ(s)ds

p(s)− x

+λµ
sin(2πα)

2π

∫ c

0

τ(s)p′(s)ds

∫ c

0

(x
t

)2α
(
c− x
c− t

)3α

×
(

c− t
p(s)− c

)4α(
1

t− x
+

1

t+ x

)
dt

p(s)− t
+R2[τ ] + Φ4(x), x ∈ (0, c),

(2.29)

where

R2[τ ] = R1[τ ] + λµ
sin(2πα)

2π

∫ c

0

τ(s)p′(s)ds

×
∫ c

0

(x
t

)2α
(
c− x
c− t

)3α(
c− t

p(s)− c

)4α [(
c+ t

c+ x

)α
− 1

]
×
(

1

t− x
+

1

t+ x

)
dt

p(s)− t
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is a regular operator. Since p(x) = 1− kx, from Equation (2.29) we have

τ(x) = λµk1−4αcos2(λπ)

∫ c

0

(
c− x
c− s

)4α
τ(s)ds

1− ks− x

−λµk1−4α sin(2πα)

2π

∫ c

0

τ(s)
ds

(c− s)4α

∫ c

0

(x
t

)2α
(
c− x
c− t

)3α

×(c− t)4α

(
1

t− x
+

1

t+ x

)
dt

1− ks− t
+R2[τ ] + Φ4(x), x ∈ (0, c).

(2.30)

It is easy to verify that the value of the inner integral in (2.30) has the form

A(x, s) =

∫ c

0

(x
t

)2α

(c− x)3α(c− t)α
(

1

t− x
+

1

t+ x

)
dt

1− ks− t

=
(c− x)3αx2α

1− ks− x

(
(c− x)α

x2α
πctg(πα)

− cα

x2α

Γ(1− 2α)Γ(α)

Γ(1− α)
F (1− 2α,−α, 1− α;

c− x
c

)

)
+

(c− x)3αx2α

1− ks− x

×
(
c1−α

1− ks
Γ(1− 2α)Γ(α)

Γ(1− α)
F (1− 2α, 1, 1− α;

k(c− s)
1− ks

)

−Γ(α)Γ(1− α)
kα(c− s)α

(1− ks)2α

)
+B0(x, s),

(2.31)

where

B0(x, s) =
(c− x)3αx2α

1− ks+ x

×
(

c1−α

x2α(c+ x)1−2α

Γ(1− 2α)Γ(1 + α)

Γ(2− α)
F (1− α, 1− α, 2− α;

c

c+ x
)

)
+

(c− x)3αx2α

1− ks+ x

(
c1−α

1− ks
Γ(1− 2α)Γ(α)

Γ(1− α)
F (1− 2α, 1, 1− α;

k(c− s)
1− ks

)

−Γ(α)Γ(1− α)
kα(c− s)α

(1− ks)2α

)
,

here B0(x, s) is a continuously differentiable function in the square [0, c] × [0, c].
Substituting (2.31) to (2.30), we get

τ(x) = λµk1−3αcos(πα)

∫ c

0

(
c− x
c− s

)3α(
x

1− ks

)2α
τ(s)ds

1− ks− x
+R3[τ ] + Φ4(x), x ∈ (0, c),

(2.32)

where

R3[τ ] = R2[τ ] + λµk1−4α sin(2πα)

2π

Γ(1− 2α)Γ(α)

Γ(1− α)

∫ c

0

τ(s)(c− x)3αcα

(c− s)4α(1− ks− x)

×
(
cαF

(
1− 2α,−α, 1− α;

c− x
c

)
− x2α c1−α

1− ks

× F

(
1− 2α, 1, 1− α;

k(c− x)

1− ks

)
ds

)
− λµk1−4α sin(2πα)

2π

∫ c

0

B0(x, s)τ(s)ds

(c− s)4α
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is a regular operator. Equality (2.32) can be written in the form

τ(x) = λµk1−3αcos(πα)
c∫
0

(
c−x
c−s

)3α
τ(s)ds

1−ks−x +R4[τ ] + Φ4(x),

x ∈ (0, c),

(2.33)

where

R4[τ ] = R3[τ ] + λµk1−3αcos(πα)

∫ c

0

(
c− x
c− s

)3α
τ(s)

1− ks− x

[(
x

1− ks

)2α

− 1

]
ds

is a regular operator. The Equation (2.33) can be rewritten as

τ(x) = λµk1−3αcos(πα)
c∫
0

(
c−x
c−s

)3α
τ(s)ds

(c−s)[k+ c−x
c−s ]

+R4[τ ] + Φ4(x),

x ∈ (0, c).

(2.34)

After changing the variables x = c − ce−ξ, s = c − ce−t and introducing the
notation
ρ(ξ) = τ(c− ce−ξ)e(3α− 1

2 )ξ Equation (2.34) takes the form

ρ(ξ) = λµk1−3αcos(πα)

∫ ∞
0

τ(t)dt

ke
ξ−t
2 + e−

ξ−t
2

+R5[τ ] + Φ5(ξ), ξ ∈ (0,∞), (2.35)

where R5[τ ] = R4[τ ]e(3α− 1
2 )ξ is a regular operator, Φ5(ξ) = Φ4(c− ce−ξ)e(3α− 1

2 )ξ.
Note that by virtue of the condition β0 >

1
3 , the inequality 6α − 1 < 0. Let us

introduce the notation

N(ξ) =
λµk1−3αcos(απ)

ke
ξ
2 + e−

ξ
2

.

Then the equation (2.35) can be written as

ρ(ξ) =

∫ ∞
0

N(ξ − t)ρ(t)dt+R5[τ ] + Φ5(ξ), ξ ∈ (0,∞). (2.36)

Equation (2.36) is an integral Wiener-Hopf equation [12], the Fourier transfor-
mation turns it into the Riemann boundary -value problem which is solvable in
quadratures. Functions N(ξ), Φ5(ξ) have exponential decreasing order at infinity,
moreover N(ξ) ∈ C(0,∞), Φ5(ξ) ∈ Hα1

(0,∞). Therefore, N(ξ), Φ5(ξ) ∈ L2∩Hα1
.

The Fredholm theorems for integral equations of convolution type are valid only in
a particular case, when their index equals zero. The index of the Equation (2.36)
is the index of the expression 1−N∧(ξ) with the opposite sign, where

N∧(ξ) =

∫ ∞
−∞

eiξtN(t)dt = λµk1−3αcos(απ)

∫ ∞
−∞

eiξtdt

ke
t
2 + e−

t
2

. (2.37)

With the help of the residue theory, calculating the Fourier integral [6], we obtain∫ ∞
−∞

eiξtdt

ke
t
2 + e−

t
2

=
πe−iξlnk√
kch(πξ)

. (2.38)

Substituting (2.38) to (2.37), by virtue of λ = cos(βπ)
π(1+sin(βπ)) , α = (1 − 2β)/4, we

have

N∧(ξ) = µk
1
2−3αsin(απ)

e−iξlnk

ch(πξ)
.
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So far as µk
1
2−3αsin(πα) < 1 and since

Re(N∧(ξ)) = Re

(
µk

1
2−3αsin(απ)

e−iξlnk

ch(πξ)

)
=

= µk
1
2−3αsin(πα)

cos(ξlnk)

ch(πξ)
< µk

1
2−3αsin(πα) < 1,

we have Re(1−N∧(ξ)) > 0. Therefore, the Equation index (2.36) χ = −Jnd(1−
N∧(ξ) = 0, i.e., the variation of the argument 1 − N∧(ξ)) on the real axis ex-
pressed via complete revolutions is zero [12]. Consequently, the Equation (2.36)
is uniquely reduced to a Fredholm integral equation of the second kind, whose
unique solvability follows from the uniqueness of the solution to problem G. �
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