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Abstract. The main purpose of this paper is to study a one dimensional

octonion Fourier transform. We prove some of its properties, including the
Plancherel’s and Parseval’s theorems and the inversion formula. Applying

these properties we show an important inversion formula for a three dimen-

sional octonion Fourier Transform.

1. Introduction

The classical signal theory deals with real or complex-valued time series (or
images). However, in some practical applications, signals are represented by more
abstract structures, e.g. hypercomplex algebras such as quaternions and octonions
[6, 7, 9, 13] . Working with quaternion and Clifford algebras has allowed to gener-
alize concepts of symmetry, phase, analytic signal, holomorphic function and also
the Fourier Transform. The latter is known for its multiple applications to higher
dimensions [5].

In 2011 Hahn and Snopek [8] introduced the Octonion Fourier Transform of a
3−dimensional real signal. They described how analytic signals can alternatively
be defined using inverse Fourier transforms of their spectra. This transform was
presented as a case of the most general hypercomplex Fourier Transform with
imaginary units satisfying the multiplication rules of the Cayley-Dickson algebra
[12]. Then, in 2017, B laszczyk and Snopek [3], described the main properties
of this transform, such as symmetry properties, and the octonion analogues of
Parseval and Plancherel Theorems. They explain how the last one is true for
the transform of a real-valued function, but is not true, in general, for octonion-
valued functions due to the non-associativity presented in the octonion algebra. In
2020 B laszczyk [2] proved that the Octonion Fourier Transform is well-defined for
octonion-valued functions and almost all well-known properties of classical (com-
plex) Fourier transform (e.g. argument scaling, modulation and shift theorems)
have their direct equivalents in the octonion setup.

Following these precedents and the fact that the kernel in the transform can
be considered in different ways (in view of the non−commutativity and non-
associativity of octonions), in this paper we defined a 1−dimensional Octonion
Fourier Transform for octonion-valued functions. This transform uses a pure
unit octonion in the exponent of the transform kernel. It allowed us to prove
some properties similar to that given in the complex context, such as a Parseval
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and Plancherel theorems for octonion-valued functions. We show some examples
and give its principal algebraic properties with an application to a given three-
dimensional octonion Fourier transform.

The paper is organized as follows. In section 2 we recall the octonion algebra,
its basic properties and an estimate which will be used in the last part of section
3. In section 3 we focus on to obtain and prove some important properties of
the one-dimensional Octonion Fourier Transform, e.g., convolution, differentiation,
inversion formula, Parseval and Plancherel’s Theorems. Then, in section 4 we
give an application to a 3-dimensional Octonion Fourier Transform, proving its
inversion formula. Finally, in section 5 we give some concluding remarks.

2. Preliminaries and Notation

2.1. Octonions. Most of the properties given in this subsection can be found in
reference [1]. Octonions is a Cayley-Dickson algebra [10]. An elementary way to
construct the octonions is to give their multiplication table. The octonions O are
an 8-dimensional algebra with basis:

e0 = 1, e1, e2, e3, e4, e5, e6, e7.

An arbitrary element o ∈ O can be represented as

o = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7

where o0, · · · , o7 ∈ R. The multiplication between two basis elements is given in
the Table 1, which describes the result of multiplying the element in the i−th row
by the element in the j−th column:

• 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

Table 1. Octonion Multiplication Table

In this table we can see some algebraic properties of the octonions:

i) e1, . . . , e7 are square roots of −1.
ii) ei and ej anticommute when i 6= j and i, j = 1, . . . , 7:

eiej = −ejei.

iii) e0 = 1 is the unit element of the algebra.
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1D−OCTONION FOURIER TRANSFORM 3

iv) the index cycling identity holds:

eiej = ek =⇒ ei+1ej+1 = ek+1,

where we think the indices as living in Z7, and
v) the index doubling identity holds:

eiej = ek =⇒ e2ie2j = e2k.

Using the table, it is an easy task to see that this algebra is not associative. In
fact, we have

(e1e2)e5 = e3e5 = −e6, but e1(e2e5) = e1e7 = e6.

We also see that the elements {1, e1, e2, e3} generate the quaternion algebra, i.e.,
H can be seen as a subalgebra of O.

As we saw in Table 1, the octonions are not associative. However, it’s well
known that O is an alternative algebra. A theorem by Emil Artin [11] establish
that an algebra A is alternative iff for all a, b ∈ A we have

(aa)b = a(ab), (ab)a = a(ba), (ba)a = b(aa). (2.1)

An important property of an alternative algebra is that the subalgebra gener-
ated by any two elements is associative [1].

We will call the part o0e0 =: Sc o, the scalar part of o and o = o − o0e0 =:
V ec o, the vector part of o. Vector parts are isomorphic to the seven dimensional
Euclidean vector space R7. The whole algebra of octonions is naturally identified
with the vector space R8.

If o = o then o is called a pure octonion. The subset of all pure octonions is
denoted by V ec O, while the subset of all scalars will be denoted by Sc O. The
octonion o = o0 − o is called the conjugate to o. The mapping o 7−→ o is called
conjugation.

The norm or absolute value of a octonion o is defined as

|o| :=
√
oo. (2.2)

If |o| = 1 the octonion o is said to be a unit octonion. The imaginary octonions
of norm one form a 6−sphere in the 7−dimensional space of imaginary octonions
[4].

S6
O :=

{
o = e1r1 + · · ·+ e7r7| r21 + · · ·+ r27 = 1

}
. (2.3)

The dot product in octonions can be obtained from the norm by a process known
as polarization. Polarizing (2.2) we obtain an inner product on R8, namely [4]

o1 � o2 =
1

2

(
|o1 + o2|2 − |o1|2 − |o2|2

)
= o1o2 + o2o1 = o1o2 + o2o1.

We need to define now the exponential function of an octonion variable.
The exponential of an octonion is defined through the infinite series [3]: For any
o ∈ O,

eo :=

∞∑
k=0

ok

k!
.

90

93
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It can be shown that if we denote o = V ec o, then

eo = eSc o
(

cos |o|+ o

|o|
sin |o|

)
,

where | · | is the octonion norm.
Due to the fact that octonions are non-commutative, the relation

eo1+o2 = eo1 · eo2

is not always true. However, this property holds when o1 · o2 = o2 · o1.

Lemma 2.1. In view of the alternativity property of octonions, we see that, given
any two octonions o1, o2, the subalgebra generated by {1, o1, o2} is associative.
This means, in particular, that, given o, µ ∈ O, where µ is a pure unit octonion,
and a, b, c, d, α, β ∈ R, we have

[o · (a+ bµ)] · (c+ dµ) = o · [(a+ bµ) · (c+ dµ)]

and
[(a+ bµ) · o] · (c+ dµ) = (a+ bµ) · [o · (c+ dµ)],

which implies

(o · eαµ) · eβµ = o · (eαµ · eβµ) and (eαµ · o) · eβµ = eαµ · (o · eβµ). (2.4)

2.2. An important estimate. By definition, the norm of an octonion o = o0 +
7∑
i=1

oiei is given by

|o|2 =

7∑
i=0

|oi|2 .

This implies that
|oi| ≤ |o| .

On the other hand, given an integrable function f : R→ O, since∫
R
f(x)dx =

(
7∑
i=0

∫
R
fi(x)dx

)
ei,

we see that ∣∣∣∣∫
R
f(x)dx

∣∣∣∣2 =

7∑
i=0

∣∣∣∣∫
R
fi(x)dx

∣∣∣∣2

≤
7∑
i=0

(∫
R
|fi(x)| dx

)2

≤
7∑
i=0

(∫
R
|f(x)|dx

)2

= 8

(∫
R
|f(x)|dx

)2

.
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1D−OCTONION FOURIER TRANSFORM 5

That is, ∣∣∣∣∫
R
f(x)dx

∣∣∣∣ ≤ 2
√

2

∫
R
|f(x)|dx.

A similar argument yields∣∣∣∣∫ a

−∞
f(x)dx

∣∣∣∣ ≤ 2
√

2

∫ a

−∞
|f(x)|dx, with a ≤ 0 (2.5)

and ∣∣∣∣∫ ∞
b

f(x)dx

∣∣∣∣ ≤ 2
√

2

∫ ∞
b

|f(x)|dx, with b ≥ 0. (2.6)

The same estimate is true for integrals of the form

∫ 0

a

and

∫ b

0

.

3. One dimensional Octonion Fourier Transform

Definition 3.1. Let f ∈ L1(R;O). We define the One-dimensional (right)
Octonion Fourier Transform of f (1D−OFT for short), by

FOFT {f(x)}(t) = f̂(t) =

∫
R
f(x)e−µtxdx, (3.1)

where µ ∈ O is a pure unit octonion.

Example 3.2. For a positive real number a, consider f(x) = e−ax
2

. Then,

FOFT
{
e−ax

2
}

(t) =

∫
R
e−ax

2

e−µtxdx

=

∫
R

exp

[
−a
(
x+

µt

2a

)2

− t2

4a

]
dx

= e−
t2

4a

∫
R
e−ay

2

dy

=

√
π

a
e−

t2

4a .

Particularly, when a = 1
2 , we have

FOFT
{
e−

x2

2

}
(t) =

√
2πe−

t2

2 .

Example 3.3. Let f(x) = e−a|x|, for a > 0. Then,

FOFT
{
e−a|x|

}
(t) =

∫
R
e−a|x|e−µtxdx

=

∫ 0

−∞
e(a−µt)xdx+

∫ ∞
0

e−(a+µt)xdx

=
1

a− µt
+

1

a+ µt

9295



6 CLAUDIA JIMENEZ HEREDIA1,2, E. ARIZA, AND C. VANEGAS

That is,

FOFT
{
e−a|x|

}
(t) =

2a

a2 + t2
.

3.1. Algebraic Properties. In this subsection we prove some algebraic proper-
ties of the 1D−OFT.

Proposition 3.4. (R−linearity)
The 1D−OFT is R−linear. That is, given a, b ∈ R and f, g ∈ L1(R;O),

FOFT {(af + bg)(x)} (t) = af̂(t) + bĝ(t). (3.2)

Proof.

FOFT {(af + bg)(x)} (t) =

∫
R

(af(x) + bg(x))e−µtxdx

= a

∫
R
f(x)e−µtxdx+ b

∫
R
g(x)e−µtxdx

= af̂(t) + bĝ(t).

�

Remark 3.5. Note that, in view of non-associativity, (left) O−linearity is false in
general.

Now, we see the following result.

Proposition 3.6. (Dilation or Scaling Property)
Let a be a positive real number and f ∈ L1(R;O). Then,

1

a
FOFT

{
f
(x
a

)}
(t) = f̂(at) (3.3)

or, analogously,

aFOFT {f(ax)}(t) = f̂

(
t

a

)
. (3.4)

Proof.

f̂(at) =

∫
R
f(x)e−µ(at)xdx =

1

a

∫
R
f
(y
a

)
e−µtydy =

1

a
FOFT

{
f
(x
a

)}
(t).

�

Proposition 3.7. (Shift Property)
Let x0 ∈ R and f ∈ L1(R;O). Then,

FOFT {f (x− x0)} (t) = f̂(t)e−µtx0 . (3.5)

9396



1D−OCTONION FOURIER TRANSFORM 7

Proof. In view of (2.4) and the fact that eα+β = eαeβ if αβ = βα, where α, β ∈
V ec O, we have that

FOFT {f (x− x0)} (t) =

∫
R
f (x− x0) e−µtxdx

=

∫
R
f(y)e−µt(y+x0)dy

=

∫
R
f(y)(e−µtye−µtx0)dy

=

∫
R

(f(y)e−µty)dy · e−µtx0

= f̂(t)e−µtx0 .

�

Proposition 3.8. (Modulation Property)
Let t0 ∈ R and f ∈ L1(R;O). Then,

FOFT
{
f(x)eµt0x

}
(t) = f̂ (t− t0) . (3.6)

Proof. Using (2.4), we have that

FOFT
{
f(x)eµt0x

}
(t) =

∫
R
(f(x)eµt0x)e−µtxdx

=

∫
R
f(x)(eµt0xe−µtx)dx

=

∫
R
f(x)e−µ(t−t0)xdx

= f̂ (t− t0) .

�

3.2. Differentiation. In this subsection we will prove some properties of the
1D−OFT related with the derivative.

Proposition 3.9. Let f, f ′ ∈ L1(R;O), with f(x)→ 0 as |x| → ∞, then

FOFT {f ′(x)} (t) = f̂(t)µt. (3.7)
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Proof.

FOFT {f ′(x)} (t) =

∫
R
f ′(x)e−µtxdx

=

∫ 0

−∞
f ′(x)e−µtxdx+

∫ ∞
0

f ′(x)e−µtxdx

= lim
b→−∞

(
f(x)e−µtx

)∣∣0
b

+

∫ 0

−∞
f(x)(e−µtxµt)dx

+ lim
b→∞

(
f(x)e−µtx

)∣∣b
0

+

∫ ∞
0

f(x)(e−µtxµt)dx

=

∫
R
f(x)(e−µtxµt)dx

=

∫
R

(f(x)e−µtx)µtdx

=

(∫
R
f(x)e−µtxdx

)
µt.

�

Induction proves that

Corollary 3.10. If f, f (k) ∈ L1(R;O), for k = 1, . . . , n, and f (k)(x) → 0, as
|x| → ∞, for k = 1, . . . , n− 1, then

FOFT
{
f (n)(x)

}
(t) = f̂(t)(µt)n.

Proposition 3.11. Let xf(x) ∈ L1(R;O), then

FOFT {xf(x)}(t) =
d

dt
f̂(t) · µ. (3.8)

Proof. From the definition of the 1D−OFT, one see that FOFT {f(x)} (t) is dif-
ferentiable, so

d

dt
f̂(t) =

∫
R

d

dt

(
f(x)e−µtx

)
dx

= −
∫
R
f(x)(e−µtx · µx)dx

= −
∫
R

(xf(x) · e−µtx) · µdx

= −
(∫

R
xf(x)e−µtxdx

)
· µ,

which implies (3.8).
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1D−OCTONION FOURIER TRANSFORM 9

�

From the last proposition we also have that

Corollary 3.12. If xnf(x) ∈ L1(R;O),

FOFT {xnf(x)}(t) =
dn

dtn
f̂(t)µn.

3.3. Convolution. It’s well known that one useful tool related with the Fourier
transform is the convolution. Here we introduce the concept of convolution in this
context and give some of its properties.

Definition 3.13. Let f and g be two integrable, octonion-valued functions. The
convolution of f and g, denoted by (f ∗ g)(x), is defined by

(f ∗ g)(x) =

∫
R
f (x− ξ) g(ξ)dξ. (3.9)

Remark 3.14. In view of the non-commutativity of octonions, in general

(f ∗ g)(x) 6= (g ∗ f)(x).

However, when f and g commutes, we also have commutativity for the convolution.
This is true, in particular, if either f or g are real−valued functions.

Proposition 3.15. If a, b ∈ R, the convolution defined above have the following
properties.

af ∗ h = f ∗ ah = a(f ∗ h),

(af + bg) ∗ h = a(f ∗ h) + b(g ∗ h),

f ∗ (ag + bh) = a(f ∗ g) + b(f ∗ h),

and, provided f, g, h are octonion-valued functions such that they generate an as-
sociative subalgebra of O,

f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Proof. It’s direct from the definition.
�

Proposition 3.16. (Derivative of a convolution)
Consider f a differentiable function and g an integrable function, both octonion-

valued functions, and suppose that f ∗ g and f ′ ∗ g are well-defined. Then

(f ∗ g)′ = f ′ ∗ g. (3.10)

Proof.

(f ∗ g)′(x) =
d

dx

∫
R
f(x− ξ)g(ξ)dξ =

∫
R
f ′(x− ξ)g(ξ)dξ = (f ′ ∗ g) (x).

�

Remark 3.17. Since, in general, (f ∗ g)(x) 6= (g ∗ f)(x), we have that

(f ′ ∗ g)(x) 6= (f ∗ g′)(x).
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3.4. Inversion Formula. In this section we will prove the inversion formula for
the 1D−OFT. In order to do that, we first prove the following theorem.

Theorem 3.18. Let g ∈ L2(R;R) and

∫
R
g(y)dy = 1. Let

α :=

∫ 0

−∞
g(y)dy and β :=

∫ ∞
0

g(y)dy,

so that α + β = 1 and α = β = 1
2 if g is even. Let f : R → O be a piecewise

continuous function on R and suppose either that f is bounded or that g vanishes
outside a finite interval so that f ∗ g is well-defined for all x. If gε(x) = 1

εg
(
x
ε

)
,

then

lim
ε→0

(f ∗ gε) (x) = αf(x+) + βf
(
x−
)

(3.11)

for all x, where f(x+) = lim
ε→0

f(x+ ε) and f(x−) = lim
ε→0

f(x− ε).

Even more, if f is continuous at x, we have

lim
ε→0

(f ∗ gε) (x) = f(x). (3.12)

Proof. Let’s consider the difference

(f ∗ gε)(x)−
(
αf
(
x+
)

+ βf
(
x−
))

=

∫ 0

−∞
[f(x− y)− f(x+)]gε(y)dy

(3.13)

+

∫ ∞
0

[
f(x− y)− f

(
x−
)]
gε(y)dy.

So, in order to prove (3.11), we need to check that the previous expression goes
to zero as ε→ 0.

Consider the second integral in (3.13). Let δ > 0. We can choose c small enough

so that |f(x−y)−f(x−)| < δ if 0 < y < c. Breaking up the integral as

∫ c

0

+

∫ ∞
c

,

we have, first, that∣∣∣∣∫ c

0

[f(x− y)− f(x−)]gε(y)dy

∣∣∣∣ ≤ 2
√

2

∫ c

0

∣∣f(x− y)− f
(
x−
)∣∣ |gε(y)| dy

≤ 2
√

2δ

∫ c

0

|gε(y)| dy

= 2
√

2δ

∫ c

0

∣∣∣∣1εg (yε)
∣∣∣∣ dy

= 2
√

2δ

∫ c/ε

0

|g(y)|dy

≤ 2
√

2δ

∫ ∞
0

|g(y)|dy.
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1D−OCTONION FOURIER TRANSFORM 11

For a suitable chosen δ, we can make small enough the last expression.

On the other hand, in order to estimate the integral from c to ∞ we consider
the two following cases:

Case 1: f is bounded, say |f | ≤M , for some positive M .

In this case,∣∣∣∣∫ ∞
c

[
f(x− y)− f

(
x−
)]
gε(y)dy

∣∣∣∣ ≤ 2
√

2

∫ ∞
c

|f(x− y)− f(x−)| |gε(y)| dy

≤ 4
√

2M

∫ ∞
c

|gε(y)| dy

≤ 4
√

2M

∫ ∞
c/ε

|g(y)|dy.

which goes to zero as ε→ 0.

Case 2: g vanishes outside a finite interval, say g(x) = 0 for |x| > R.

In this case, gε(x) = 0 for |x| > Rε and, in particular, gε(x) = 0 for x > c if
c > Rε, i.e., if ε < c

R .

So, we have that ∫ ∞
c

[f(x− y)− f(x−)]gε(y)→ 0

as ε→ 0.

A similar argument is valid when one considers the first integral in (3.13).
Summarizing, we have that

lim
ε→0

(f ∗ gε) (x) = αf
(
x+
)

+ βf
(
x−
)
.

When f is continuous at x, it’s clear from the above result that

lim
ε→0

(f ∗ gε) (x) = f(x).

�

Remark 3.19. Note that, when g is even, α = β = 1
2 , and formula (3.11) becomes

equal to

lim
ε→0

(f ∗ gε) (x) =
1

2

(
f(x+) + f

(
x−
))
.

Theorem 3.20. (Fourier Inversion Formula for the 1D−OFT)
Let f be an integrable and piecewise continuous on R, with values in O, defined

at its points of discontinuity as to satisfy f(x) =
1

2
[f(x−)+f(x+)] for all x. Then

f(x) = lim
ε→0

1

2π

∫
R
f̂(t)e−ε

2t2/2eµtxdt, x ∈ R. (3.14)
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12 CLAUDIA JIMENEZ HEREDIA1,2, E. ARIZA, AND C. VANEGAS

Moreover, if f̂ ∈ L1(R;O), then f is continuous and

f(x) =
1

2π

∫
R
f̂(t)eµtxdt, x ∈ R. (3.15)

Proof. Let ε > 0 and consider the function e−ε
2t2/2, which decreases rapidly as

t→ ±∞. Let f ∈ L1(R;O) and consider the integral

1

2π

∫
R
f̂(t)e−ε

2 t2

2 eµtxdt =
1

2π

∫
R

∫
R

(
f(y)e−µty

)
e−ε

2 t2

2 eµtxdydt.

By (2.4) and the fact that this double integral is absolutely convergent, we can
write

1

2π

∫
R
f̂(t)e−ε

2 t2

2 eµtxdt =
1

2π

∫
R
f(y)

(∫
R
e−ε

2 t2

2 eµt(x−y)dt

)
dy.

On the other hand, if a = ε2/2, we have that∫
R
e−ε

2 t2

2 eµt(x−y)dt =

∫
R
e−at

2

e−µt(y−x)dt = FOFT {e−at
2

}(y− x) =

√
π

a
e−

(y−x)2

4a .

So, ∫
R
e−ε

2t2/2eµt(x−y)dt =

√
2π

ε
e−

(x−y)2

2ε2 ,

and

1

2π

∫
R
f̂(t)e−ε

2 t2

2 eµtxdt =
1

ε
√

2π

∫
R
f(y)e−

(x−y)2

2ε2 dy = (f ∗ φε) (x),

where φ(x) =
1√
2π
e−

x2

2 and φε(x) =
1

ε
φ
(x
ε

)
=

1

ε
√

2π
e−

x2

2ε2 .

Since f is piecewise continuous, Theorem 3.18 and Remark 3.19 implies that

lim
ε→0

(f ∗ φε) (x) =
1

2
[f(x−) + f(x+)]

for all x. This proves (3.14). Finally, since |eµtx| = 1 and
∣∣∣e− ε2t2

2

∣∣∣ ≤ 1 for small

enough ε, ∣∣∣f̂(t)e−ε
2 t2

2 eµtx
∣∣∣ = |f̂(t)|

∣∣∣e−ε2 t2

2

∣∣∣ ∣∣eµtx∣∣ ≤ |f̂(t)|.

If f̂ ∈ L1(R;O), the dominated convergence theorem implies that

1

2π

∫
R
f̂(t)eµtxdt =

1

2π

∫
R

lim
ε→0

(
f̂(t)e−

ε2t2

2 eµtx
)
dt

= lim
ε→0

1

2π

∫
R
f̂(t)e−

ε2t2

2 eµtxdt

= lim
ε→0

(f ∗ φε) (x)

=
1

2

[
f(x−) + f

(
x+
)]
.
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Since ∫
R
f̂(t)eµtxdt = FOFT {f̂(t)}(−x)

and the Fourier transform of an integrable function is continuous, we have that f
is continuous and, thus,

f(x) =
1

2

[
f(x−) + f

(
x+
)]
,

which proves (3.15).
�

3.5. Plancherel and Parseval’s Theorems. Now, we want to establish the
Plancherel and Parseval’s theorems in this context. We begin with the definition
of inner product and norm in L2(R;O).

Definition 3.21. Let f, g ∈ L2(R;O), we define

〈f, g〉L2(R;O) :=

∫
R
f(x)g(x)dx (3.16)

and

‖f‖L2(R;O) = 〈f, f〉1/2L2(R;O) =

(∫
R
|f(x)|2 dx

)1/2

. (3.17)

Using the previous definition of inner product, we have the following theorem.

Theorem 3.22. (Plancherel’s Theorem)
Let f, g ∈ L2(R;O) such that 1, f, g and µ generates an associative sub-algebra

of O. Then,

〈f, g〉L2(R;O) =
1

2π
〈f̂ , ĝ〉L2(R;O). (3.18)

Proof.

〈f, g〉L2(R;O) =

∫
R
f(x)g(x)dx

=
1

2π

∫
R

(∫
R
f̂(t)eµtxdt

)
g(x)dx

=
1

2π

∫
R
f̂(t)

(∫
R
eµtxg(x)dx

)
dt

=
1

2π

∫
R
f̂(t)

(∫
R
g(x)e−µtxdx

)
dt

=
1

2π

∫
R
f̂(t)

(∫
R
g(x)e−µtxdx

)
dt

=
1

2π

∫
R
f̂(t)ĝ(t)dt.

�

100103



14 CLAUDIA JIMENEZ HEREDIA1,2, E. ARIZA, AND C. VANEGAS

As a corollary, we have the

Corollary 3.23. (Parseval’s Theorem)
In the previous formula, if f = g, then

‖f‖L2(R;O) =
1√
2π
‖f̂‖L2(R;O).

Remark 3.24. Note that 1, f and µ always generate an associative sub-algebra of
O. So, Parseval’s theorem is always true for all f ∈ L2 (R;O).

4. Application to the 3−dimensional Octonion Fourier Transform

Although we can apply the 1D−OFT to other topics, the main motivation to
define it was the use of this transform to obtain an inversion formula for the
3−dimensional octonion Fourier transform defined below.

Definition 4.1. Let f ∈ L1
(
R3;O

)
. The 3−dimensional Octonion Fourier

Transform of f (or 3D−OFT for short) is the function FOFT {f} : R3 → O
defined by

FOFT {f(x)}(ω) = f̂(ω) =

∫
R3

f(x)e−µω·xd3x, (4.1)

where x = x1e1 +x2e2 +x3e3, ω = ω1e1 +ω2e2 +ω3e3, µ is as before and e−µω·x

is called the octonion Fourier kernel.

Theorem 4.2. (Inversion formula for the 3D−OFT)
Suppose that f ∈ L2

(
R3;O

)
and FOFT {f} ∈ L1

(
R3;O

)
. Then the 3D−OFT

is invertible with inverse

F−1OFT [FOFT {f}] (x) = f(x) =
1

(2π)3

∫
R3

FOFT {f(x)}(ω)eµω·xd3ω. (4.2)

Proof. Let

x̃1 = (x1, ω2, ω3), x̃2 = (ω1, x2, ω3), x̃3 = (ω1, ω2, x3)

and
ω̃1 = (ω1, x2, x3), ω̃2 = (x1, ω2, x3), ω̃3 = (x1, x2, ω3).

Denote the 1D−OFT with respect to xk, for k = 1, 2, 3, by Fxk
{f(x)}, that is,

Fxk
{f(x)}(ω̃k) =

∫
R
f(x)e−µωkxkdxk.

Denote also, for i, j, k ∈ {1, 2, 3} , and i 6= j, i 6= k, j 6= k,

Fxi,xj{f(x)}(x̃k) = Fxi

{
Fxj{f(x)}(ω̃j)

}
(ωi),

and
Fxi,xj ,xk

{f(x)}(ω) = Fxi,xj
{Fxk

{f(x)}(ω̃k)} (x̃k).

Then, it can be seen that

Fxi,xj
{f(x)}(x̃k) = Fxj ,xi

{f(x)}(x̃k),

Fxi,xj ,xk
{f(x)}(ω) = Fxi

{
Fxj ,xk

{f(x)}(x̃i)
}

(ωi)

and

Fxi,xj ,xk
{f(x)}(ω) = Fxj ,xi,xk

{f(x)}(ω) = Fxi,xk,xj
{f(x)}(ω), etc.
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Moreover, we have that

FOFT {f(x)}(ω) =

∫
R3

f(x)e−µω·xd3x

=

∫
R3

f(x)
(
e−µω1x1e−µω2x2e−µω3x3

)
d3x

=

∫
R2

(∫
R
f(x)e−µω1x1dx1

)(
e−µω2x2e−µω3x3

)
dx2dx3

=

∫
R2

Fx1
{f(x)}(ω̃1)

(
e−µω2x2e−µω3x3

)
dx2dx3

=

∫
R

(∫
R
Fx1{f(x)}(ω̃1)e−µω2x2dx2

)
e−µω3x3dx3

=

∫
R
Fx2,x1

{f(x)}(x̃3)e−µω3x3dx3

= Fx3,x2,x1{f(x)}(ω).

Now, inversion formula for the 1D−OFT implies that

f(x) =
1

2π

∫
R
Fx1
{f(x)}(ω̃1)eµω1x1dω1

=
1

(2π)2

∫
R

(∫
R
Fx2,x1

{f(x)}(x̃3)eµω2x2dω2

)
eµω1x1dω1

=
1

(2π)3

∫
R

(∫
R
Fx3,x2,x1

{f(x)}(ω)eµω3x3dω3

)
(eµω2x2eµω1x1) dω2dω1

=
1

(2π)3

∫
R3

Fx3,x2,x1
{f(x)}(ω) (eµω3x3eµω2x2eµω1x1) dω3dω2dω1

=
1

(2π)3

∫
R3

FOFT {f(x)}(ω)eµω·xd3ω,

as we claimed.
�

5. Concluding Remarks

We have introduced a one dimensional octonion Fourier Transform, proving
some of its properties. We use this theory to prove an inversion formula for a
three−dimensional octonion Fourier Transform (3D−OFT). In future works we
will see that this last inversion formula, together with other properties of the
3D−OFT are important to study a octonion wavelet transform and, in particular,
we will be able to give an admissibility condition for octonion wavelets. The theory
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here developed can be extended and we will present this in some future papers. It
must be noted that it is also possible to consider other multidimensional (4D, 5D,
etc) Octonion Fourier Transforms and use the 1D−OFT and the same arguments
given here in order to obtain an inversion formula and other properties for these
multidimensional OFT.
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