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Abstract. Recently, Gutman et al., defined three vertex-degree-based topo-
logical invarients and obtained mathematical properties with their applica-

tions to physico-chemical properties of alkanes. In this paper, the expressions

for the Reciprocal Randić index, Reduced Zagreb index and Reduced recip-
rocal Randić index of the generalized transformation graphs Gxy and their

complement graphs are obtained.

1. Introduction

In this paper we consider the simple graphs with non direction, typically known
as undirected graphs. Consider any graph G, having vertex/node set with car-
dinality denoted as |V (G)| = n and the edge set with cardinality denoted as
|E(G)| = m. Moving towards recalling the basic definition degree of any vertex
say a as the number of edges incident to it and is denoted by deg(a) or dG(a) or
δ(a).

The first and second Zagreb indices of a graph G are defined as [7]

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)] and M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

The Zagreb indices were used in the structure property model. More results
can be found in [2, 5, 6, 10].

The first and second Zagreb coindices of a graph G are defined as [3]

M1(G) =
∑

uv/∈E(G)

[dG(u) + dG(v)] and M2(G) =
∑

uv/∈E(G)

dG(u)dG(v).

Mathematical properties of these coindices can be found in [6].
From the existing literature survey in the area of applications of graph theory

it is evidentially true that the Randić index works out to be one of the best used
topological index or say a molecular descriptors used to understand of structure-
property and structure-activity relationships of different chemical compounds in
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the field of graph theory[4, 12, 13, 15].For mathematical properties of this graph
invariant one can refer [9, 14].
The Randić index [19] R(G) is defined as the sum of the weights (dG(u)dG(v))

−1/2

over all edges uv of G. That is,

R(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

.

The topological indices we will be studying here were produced by Gutman et
al,[8] in his very recent work, defined as,
The Reciprocal Randić indexRR(G) is defined as the sum of the weights (dG(u)dG(v))

1/2

over all edges uv of G. That is,

RR(G) =
∑

uv∈E(G)

√
dG(u)dG(v).

The Reduced Zagreb index RM2(G) is defined as

RM2(G) =
∑

uv∈E(G)

(dG(u)− 1) (dG(v)− 1).

The Reduced Reciprocal Randić index RRR(G) is defined as,

RR(G) =
∑

uv∈E(G)

√
(dG(u)− 1) (dG(v)− 1).

2. Generalized transformation graphs Gxy

A new concept of graph transformation came into consideration after Basa-
vanagoud et al,[1] introduced the construction of new graphs defined as Gener-
alized transformation graphs Gxy, keeping the conceptual definition of semitotal-
point graph T2(G) as the base, where the new graph generated will have the vertex
set as V (G)∪E(G) where, the vertex-vertex adjacency and vertex-edge incidence
in Gxy depends on two conditions:

(a) α, β ∈ V (G), α, β are adjacent in G if x = + and α, β are not adjacent in
G if x = −.

(b) α ∈ V (G) and β ∈ E(G), α, β are incident in G if y = + and α, β are not
incident in G if y = −.

Further, applying the combination of these two binary signs + and − the four
generalized transformation graph, G++, G+−, G−+ and G−− were obtained. An
example of generalized graph transformations and their complements are depicted
in the Figure 1.
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Figure 1: Graph, its generalized transformations and their complements

Observe that, G++ is just the semitotal-point graph T2(G) of G. The vertex v
of Gxy corresponding to a vertex v of G is referred to as a point vertex. The vertex
e of Gxy corresponding to an edge e of G is referred to as a line vertex. Later on,
substantial works on graph invarients of generalized transformation graphs was
carried out, refer [1, 11, 16, 17, 18].
In this paper, the computation for the Reciprocal Randić index, Reduced second
Zagreb index and Reduced reciprocal Randić index of the generalized transforma-
tion graphs Gxy and for their complement graphs are obtained. Note that, The
complement of G will be denoted by G. If G has n vertices and m edges then the
number of vertices of Gxy is n+m and dG(u) = n− 1− dG(u).
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3. The Reciprocal Randić index of genralized transformation graphs
Gxy

Theorem 3.1. Let G be a graph with |V (G)| = n and |E(G)| = m. Then

RR(G++) = 2

RR(G) +
∑

u∈V (G)

dG(u)
√
dG(u)

 .

Proof. According to the study of edge set partition of E(G++) we consider that
the graph has two edge subsets E1 and E2, such that

Edge set cardinality

E1 {uv | uv ∈ E(G)} m

E2 {ue | the vertex u is incident to the edge e in G} 2m

Then for u ∈ V (G)we have dG++(u) = 2dG(u) and for e ∈ E(G) we have
dG++(e) = 2.(refer [1], Prop. 4.1 )

RR(G++) =
∑

uv∈E(G)

√
dG++(u)dG++(v)

=
∑

uv∈E1

√
dG++(u)dG++(v) +

∑
ue∈E2

√
dG++(u)dG++(e)

=
∑

uv∈E(G)

√
(2dG(u)) (2dG(v)) +

∑
ue∈E2

√
(2dG(u)) (2)

= 2

[
RR(G) +

∑
ue∈E2

√
dG(u)

]
.

Since the quantity
√
dG(u) repeats dG(u) times in the set E2, the above expression

reduces to

RR(G++) = 2

RR(G) +
∑

u∈V (G)

dG(u)
√

dG(u)


□

Theorem 3.2. Let G be a graph with |V (G)| = n and |E(G)| = m. Then

RR(G+−) = m2 +m(n− 2)
√

m(n− 2).

Proof. According to the study of edge set partition of E(G+−) we consider that
the graph has two edge subsets E1 and E2, such that

Edge set cardinality

E1 {uv | uv ∈ E(G)} m

E2 {ue | the vertex u is not incident to the edge e in G} 2m(n− 2)

110



THE RR, RRR AND RM2 INDICES OF GENERALIZED TRANSFORMATION GRAPHS

Then for u ∈ V (G)we have dG+−(u) = m and for e ∈ E(G) we have dG+−(e) =
n− 2.(refer [1], Prop. 4.1 )

RR(G+−) =
∑

uv∈E(G)

√
dG+−(u)dG+−(v)

=
∑

uv∈E1

√
dG+−(u)dG+−(v) +

∑
ue∈E2

√
dG+−(u)dG+−(e)

=
∑

uv∈E(G)

√
(m)(m) +

∑
ue∈E2

√
(m)(n− 2)

= m2 +m(n− 2)
√
m(n− 2)

□

Remark 3.3. From the above theorem we observe that all graphs G having same
order and size thenc the Reciprocal Randić index of genralized transformation
graphs RR(G+−) is same.

Theorem 3.4. Let G be a graph with |V (G)| = n and |E(G)| = m. Then

RR(G−+) =

[
n(n− 1)− 2m

2

]
(n− 1) + 2m

√
2(n− 1)

Proof. According to the study of edge set partition of E(G−+) we consider that
the graph has two edge subsets E1 and E2, such that

Edge set cardinality

E1 {uv | uv /∈ E(G)}
(
n
2

)
−m

E2 {ue | the vertex u is incident to the edge e in G} 2m

For u ∈ V (G) we have dG−+(u) = n − 1 and for e ∈ E(G) we have dG−+(e) =
2.(refer [1], Prop. 4.1 )

RR(G−+) =
∑

uv∈E(G)

√
dG−+(u)dG−+(v)

=
∑

uv∈E1

√
dG−+(u)dG−+(v) +

∑
ue∈E2

√
dG−+(u)dG−+(e)

=
∑

uv/∈E(G)

√
(n− 1)(n− 1) +

∑
ue∈E2

√
(n− 1)(2)

=

[(
n

2

)
−m

]
(n− 1) + 2m

√
2(n− 1)

=

(
n(n− 1)− 2m

2

)
(n− 1) + 2m

√
2(n− 1).

□
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Remark 3.5. From the above theorem, we observe that all graphs G having same
order and size then the Reciprocal Randić index of genralized transformation
graphs RR(G−+) is same.

Theorem 3.6. Let G be a graph with |V (G)| = n and |E(G)| = m. Then

RR(G−−) =
∑

uv/∈E(G)

√
(n+m− 1− 2dG(u)) (n+m− 1− 2dG(v))

+
∑

u∈V (G)

(m− dG(u))
√
(n+m− 1− 2dG(u)) (n− 2).

Proof. According to the study of edge set partition of E(G−−) we consider that
the graph has two edge subsets E1 and E2, such that

Edge set cardinality

E1 {uv | uv /∈ E(G)}
(
n
2

)
−m

E2 {ue | the vertex u is not incident to the edge e in G} m(n− 2)

For u ∈ V (G)we have dG−−(u) = n +m − 1 − 2dG(u) and for e ∈ E(G) we have
dG−−(e) = n− 2.(refer [1], Prop. 4.1 )

RR(G−−) =
∑

uv∈E(G)

√
dG−−(u)dG−−(v)

=
∑

uv∈E1

√
dG−−(u)dG−−(v) +

∑
ue∈E2

√
dG−−(u)dG−−(e)

=
∑

uv/∈E(G)

√
(n+m− 1− 2dG(u)) (n+m− 1− 2dG(v))

+
∑

ue∈E2

√
(n+m− 1− 2dG(u)) (n− 2)

=
∑

uv/∈E(G)

√
(n+m− 1− 2dG(u)) (n+m− 1− 2dG(v))

+
∑

u∈V (G)

(m− dG(u))
√
(n+m− 1− 2dG(u)) (n− 2).

□

4. The Reciprocal Randić index of complement of genaralized
transformation Gxy

Theorem 4.1. Let G be a graph with |V (G)| = n and |E(G)| = m. Then

RR
(
G++

)
=

∑
uv/∈E(G)

√
(n+m− 1− 2dG(u)) (n+m− 1− 2dG(v))

+
∑

u∈V (G)

(m− dG(u))
√
(n+m− 1− 2dG(u)) (n+m− 3) +

m(m− 1) (n+m− 3)

2
.
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Proof. Similar to the previous section of generalized transformation graph we can
obtain the edge set partition of G++ into subsets E1, E2 and E3, such that

Edge set cardinality

E1 {uv | uv /∈ E(G)}
(
n
2

)
−m

E2 {ue | the vertex u is not incident to the edge e in G} m(n− 2)

E3 {ef | e, f ∈ E(G)}
(
m
2

)
Now, For u ∈ V (G)we have d

G++(u) = n+m− 1− 2dG(u) and for e ∈ E(G) we
have d

G++(e) = n+m− 3(refer [17], Prop. 1.2 ).

RR
(
G++

)
=

∑
uv∈E(G++)

√
d
G++(u)dG++(v)

=
∑

uv∈E1

√
d
G++(u)dG++(v) +

∑
ue∈E2

√
d
G++(u)dG++(e) +

∑
ef∈E3

√
d
G++(e)dG++(f)

=
∑

uv/∈E(G)

√
(n+m− 1− 2dG(u)) (n+m− 1− 2dG(v))

+
∑

ue∈E2

√
(n+m− 1− 2dG(u)) (n+m− 3) +

∑
ef∈E3

√
(n+m− 3) (n+m− 3)

=
∑

uv/∈E(G)

√
(n+m− 1− 2dG(u)) (n+m− 1− 2dG(v))

+
∑

ue∈E2

√
(n+m− 1− 2dG(u)) (n+m− 3) +

∑
ef∈E3

(n+m− 3)

=
∑

uv/∈E(G)

√
(n+m− 1− 2dG(u)) (n+m− 1− 2dG(v))

+
∑

u∈V (G)

(m− dG(u))
√
(n+m− 1− 2dG(u)) (n+m− 3) +

(
m

2

)
(n+m− 3)

=
∑

uv/∈E(G)

√
(n+m− 1− 2dG(u)) (n+m− 1− 2dG(v))

+
∑

u∈V (G)

(m− dG(u))
√
(n+m− 1− 2dG(u)) (n+m− 3) +

m(m− 1) (n+m− 3)

2
.

□

Theorem 4.2. Let G be a graph with |V (G)| = n and |E(G)| = m. Then

RR
(
G+−

)
=

[n(n− 1)− 2m] (n− 1)

2
+ 2m

√
(n− 1) (m+ 1) +

m
(
m2 − 1

)
2

Proof. Here the edge set E(G+−) can be partitioned into E1, E2 and E3 subsets,
where
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Edge set cardinality

E1 {uv | uv /∈ E(G)}
(
n
2

)
−m

E2 {ue | the vertex u is incident to the edge e in G} 2m

E3 {ef | e, f ∈ E(G)}
(
m
2

)
For u ∈ V (G)we have d

G+−(u) = n − 1 and for e ∈ E(G) we have d
G+−(e) =

m+ 1(refer [17], Prop. 1.2 ).

RR
(
G+−

)
=

∑
uv∈E(G+−)

√
d
G+−(u)dG+−(v)

=
∑

uv∈E1

√
d
G+−(u)dG+−(v) +

∑
ue∈E2

√
d
G+−(u)dG+−(e) +

∑
ef∈E3

√
d
G+−(e)dG+−(f)

=
∑

uv/∈E(G)

√
(n− 1) (n− 1) +

∑
ue∈E2

√
(n− 1) (m+ 1) +

∑
ef∈E3

√
(m+ 1) (m+ 1)

=
∑

uv/∈E(G)

(n− 1) +
∑

ue∈E2

√
(n− 1) (m+ 1) +

∑
ef∈E3

(m+ 1)

=

[(
n

2

)
−m

]
(n− 1) + 2m

√
(n− 1) (m+ 1) +

(
m

2

)
(m+ 1)

=
[n(n− 1)− 2m] (n− 1)

2
+ 2m

√
(n− 1) (m+ 1) +m

(
m2 − 1

)
.

□

Remark 4.3. From the above theorem we observe that all graphs G having same
order and size then the Reciprocal Randić index of complement of genralized

transformation graphs RR
(
G+−

)
is same.

Theorem 4.4. Let G be a graph with |V (G)| = n and |E(G)| = m. Then

RR
(
G−+

)
= m2 +m(n− 2)

√
m(n+m− 3) +

m(m− 1) (n+m− 3)

2
.

Proof. The edge set E(G−+) can be partitioned into E1, E2 and E3 subsets, where
Edge set cardinality

E1 {uv | uv ∈ E(G)} m

E2 {ue | the vertex u is not incident to the edge e in G} m(n− 2)

E3 {ef | e, f ∈ E(G)}
(
m
2

)
For u ∈ V (G)we have d

G−+(u) = m and for e ∈ E(G) we have d
G−+(e) =

n+m− 3.(refer [17], Prop. 1.2 ).
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RR
(
G−+

)
=

∑
uv∈E(G−+)

√
d
G−+(u)dG−+(v)

=
∑

uv∈E1

√
d
G−+(u)dG−+(v) +

∑
ue∈E2

√
d
G−+(u)dG−+(e) +

∑
ef∈E3

√
d
G−+(e)dG−+(f)

=
∑

uv∈E(G)

√
(m)(m) +

∑
ue∈E2

√
(m)(n+m− 3) +

∑
ef∈E3

√
(n+m− 3)(n+m− 3)

=
∑

uv∈E(G)

m+
∑

ue∈E2

√
m(n+m− 3) +

∑
ef∈E3

(n+m− 3)

= m2 +m(n− 2)
√
m(n+m− 3) +

(
m

2

)
(n+m− 3)

= m2 +m(n− 2)
√
m(n+m− 3) +

m(m− 1) (n+m− 3)

2
.

□

Remark 4.5. Above theorem shows that all graphs G having same order and size
then the Reciprocal Randić index of complement of genralized transformation

graphs RR
(
G−+

)
is same.

Theorem 4.6. Let G be a graph with |V (G)| = n and |E(G)| = m. Then

RR
(
G−−

)
= 2RR(G) +

∑
u∈V (G)

dG(u)
√
2dG(u) (m+ 1) +

m(m2 − 1)

2
.

Proof. The edge set E(G−−) can be partitioned into E1, E2 and E3 subsets, where
Edge set cardinality

E1 {uv | uv ∈ E(G)} m

E2 {ue | the vertex u is incident to the edge e in G} 2m

E3 {ef | e, f ∈ E(G)}
(
m
2

)
For u ∈ V (G)we haved

G−−(u) = 2dG(u) and for e ∈ E(G) we have d
G−−(e) =

m+ 1.(refer [17], Prop. 1.2 ).

115



10ASHWINI YALNAIK, SUPRIYA BUTTE, RAJU JUMMANNAVER, BALACHANDRA HADIMANI*,

RR
(
G−−

)
=

∑
uv∈E(G−−)

√
d
G−−(u)dG−−(v)

=
∑

uv∈E1

√
d
G−−(u)dG−−(v) +

∑
ue∈E2

√
d
G−−(u)dG−−(e) +

∑
ef∈E3

√
d
G−−(e)dG−−(f)

=
∑

uv∈E(G)

√
(2dG(u)) (2dG(v)) +

∑
ue∈E2

√
(2dG(u)) (m+ 1) +

∑
ef∈E3

√
(m+ 1) (m+ 1)

= 2
∑

uv∈E(G)

√
(dG(u)) (dG(v)) +

∑
ue∈E2

√
2dG(u) (m+ 1) +

∑
ef∈E3

(m+ 1)

= 2RR(G) +
∑

u∈V (G)

dG(u)
√
2dG(u) (m+ 1) +

(
m

2

)
(m+ 1)

= 2RR(G) +
∑

u∈V (G)

dG(u)
√

2dG(u) (m+ 1) +
m(m2 − 1)

2
.

□

Corollary 4.7. If G1 and G2 are two different graphs having same number of
vertices and edges, then

RR(G+−
1 ) = RR(G+−

2 )

RR(G−+
1 ) = RR(G−+

2 )

RR
(
G+−

1

)
= RR

(
G+−

2

)
RR

(
G−+

1

)
= RR

(
G−+

2

)
.

5. Reduced Zagreb index of genralized transformation graphs Gxy

with their complements Gxy

Incorporating the computational methods, those followed in the above section
3 and 4, we derive the below theorem.
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Theorem 5.1. Let G be a graph with |V (G)| = n and |E(G)| = m. Then

RM2(G
++) = 4M2(G)−m

RM2(G
+−) = m(m− 1)2 +m(m− 1)(n− 2)(n− 3)

RM2(G
−+) =

1

2
[n(n− 1)− 2m] (n− 2)2 + 2m (n− 2)

RM2(G
−−) =

1

2
[n(n− 1)− 2m]

(
n2 +m2 + 2nm− 4(n+m− 1)

)
+ 2M1(G)(−n−m+ 2)

+4M2(G) + (n− 3)
[
n(nm+m2 − 2m) + 2m(−2m− n−m+ 2) + 2M1(G)

]
RM2

(
G++

)
=

1

2
[n(n− 1)− 2m]

(
n2 +m2 + 2nm− 4(n+m− 1)

)
+ 2M1(G)(−n−m+ 2)

+4M2(G) + (n+m− 4)
[
m(n− 2)(n+m− 2)− 4m2 + 2M1(G)

]
+
1

2

[
m(m− 1)(n+m− 4)2

]
.

RM2

(
G+−

)
=

1

2
[n(n− 1)− 2m] (n− 2)2 + 2m2(n− 2) +

1

2
m3(m− 1).

RM2

(
G−+

)
= m(m− 1)2 +m(n− 2)(m− 1)(n+m− 4) +

1

2
m(m− 1)(n+m− 4)2

RM2

(
G−−

)
= 4M2(G)− 2M1(G)(1−m) +m(1− 2m) +

1

2
m3(m− 1)

.

Corollary 5.2. If G1 and G2 are two different graphs having same order and size,
then

RM2(G
+−
1 ) = RM2(G

+−
2 )

RM2(G
−+
1 ) = RM2(G

−+
2 )

RM2

(
G+−

1

)
= RM2

(
G+−

2

)
RM2

(
G−+

1

)
= RM2

(
G−+

2

)
.

6. Reduced Receprocal Randić index of genralized transformation
graphs Gxy with their complements Gxy

Incorporating the computational methods, those followed in the above section
3 and 4, we can see that,

RM2(G) = M2(G)−M1(G) +m
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Theorem 6.1. Let G be a graph with |V (G)| = n and |E(G)| = m. Then

RRR(G++) =
∑

uv∈E(G)

√
(2dG(u)− 1) (2dG(v)− 1) +

∑
u∈V (G)

dG(u)
√

dG(u)− 1

RRR(G+−) = m(m− 1) +m(n− 2)
√

(m− 1)(n− 3)

RRR(G−+) =
1

2
[n(n− 1)− 2m] (n− 2) + 2m

√
n− 2

RRR(G−−) =
∑

uv/∈E(G)

√
(n+m− 2− 2dG(u))(n+m− 2− 2dG(v))

+
∑

u∈V (G)

(m− dG(u))
√
(n− 3)(n+m− 2− 2dG(u))

RRR
(
G++

)
= .

RRR
(
G+−

)
=

1

2
[n(n− 1)− 2m] (n− 2) + 2m

√
m(n− 2) +

1

2
m2(m− 1).

RRR
(
G−+

)
= m(m− 1) +m(n− 2)

√
(m− 1)(n+m− 4) +

1

2
m(m− 1)(n+m− 4)

RRR
(
G−−

)
=

∑
uv∈E(G)

√
(2dG(u)− 1) (2dG(v)− 1) +

∑
u∈V (G)

dG(u)
√

m (dG(u)− 1) +
1

2
m2(m− 1)

.

Corollary 6.2. If G1 and G2 are two different structures having same number of
vertices and edges, then

RRR(G+−
1 ) = RRR(G+−

2 )

RRR(G−+
1 ) = RRR(G−+

2 )

RRR
(
G+−

1

)
= RRR

(
G+−

2

)
RRR

(
G−+

1

)
= RRR

(
G−+

2

)
.

Conclusion
After studying the above results obtained, one can easily justify that for any set of
graphs having same order and size have equal RR(G−+), equal RR(G+−), equal

RR
(
G−+

)
and equal RR

(
G+−

)
value.
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