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ABSTRACT. Recently, Gutman et al., defined three vertex-degree-based topo-
logical invarients and obtained mathematical properties with their applica-
tions to physico-chemical properties of alkanes. In this paper, the expressions
for the Reciprocal Randi¢ index, Reduced Zagreb index and Reduced recip-
rocal Randi¢ index of the generalized transformation graphs G*Y and their
complement graphs are obtained.

1. Introduction

In this paper we consider the simple graphs with non direction, typically known
as undirected graphs. Consider any graph G, having vertex/node set with car-
dinality denoted as |V(G)| = n and the edge set with cardinality denoted as

|E(G)| = m. Moving towards recalling the basic definition degree of any vertex
say a as the number of edges incident to it and is denoted by deg(a) or dg(a) or
0(a).

The first and second Zagreb indices of a graph G are defined as [7]

Mi(G)= Y [de(u)+da@)] and My(G)= > da(u)dg(v).
w€eE(G) weE(G)
The Zagreb indices were used in the structure property model. More results
can be found in [2, 5, 6, 10].
The first and second Zagreb coindices of a graph G are defined as [3]

Mi(G)= > [de(u)+de(v)] and My(G)= > da(u)de(v).
w¢ E(G) w¢ E(G)
Mathematical properties of these coindices can be found in [6].

From the existing literature survey in the area of applications of graph theory
it is evidentially true that the Randié¢ index works out to be one of the best used
topological index or say a molecular descriptors used to understand of structure-
property and structure-activity relationships of different chemical compounds in
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the field of graph theory[4, 12, 13, 15].For mathematical properties of this graph
invariant one can refer [9, 14].

The Randié index [19] R(G) is defined as the sum of the weights (dg (u)da(v)) /2
over all edges uv of G. That is,

1
R(G) = _—
(©) MGZE(@ Vda(u)da(v)

The topological indices we will be studying here were produced by Gutman et
al,[8] in his very recent work, defined as,
The Reciprocal Randié index RR(G) is defined as the sum of the weights (d(u)dg(v))'/?]]
over all edges uv of G. That is,

RR(G)= Y dg(u)dg(v).

weE(G)

The Reduced Zagreb index RM>(G) is defined as

RMy(G)= Y (da(u)—1)(da(v) - 1).

weEE(G)

The Reduced Reciprocal Randié¢ index RRR(G) is defined as,

RR(G)= > /(dg(u)—1)(da(v) - 1).

wweE(G)

2. Generalized transformation graphs G*Y

A new concept of graph transformation came into consideration after Basa-
vanagoud et al,[1] introduced the construction of new graphs defined as Gener-
alized transformation graphs G*Y, keeping the conceptual definition of semitotal-
point graph T»(G) as the base, where the new graph generated will have the vertex
set as V(G) U E(G) where, the vertex-vertex adjacency and vertex-edge incidence
in G*¥ depends on two conditions:

(a) a, 8 € V(Q), a, B are adjacent in G if © = + and «, 8 are not adjacent in
Gifz=-—.

(b) a € V(G) and § € E(G), a, § are incident in G if y = + and «, § are not
incident in G if y = —.

Further, applying the combination of these two binary signs + and — the four
generalized transformation graph, G+, GT—, G~ and G~~ were obtained. An
example of generalized graph transformations and their complements are depicted
in the Figure 1.
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Figure 1: Graph, its generalized transformations and their complements

Observe that, GT is just the semitotal-point graph T%(G) of G. The vertex v
of G®Y corresponding to a vertex v of GG is referred to as a point vertex. The vertex
e of G™Y corresponding to an edge e of G is referred to as a line vertex. Later on,
substantial works on graph invarients of generalized transformation graphs was
carried out, refer [1, 11, 16, 17, 18].

In this paper, the computation for the Reciprocal Randi¢ index, Reduced second
Zagreb index and Reduced reciprocal Randi¢ index of the generalized transforma-
tion graphs G*Y and for their complement graphs are obtained. Note that, The

complement of G will be denoted by G. If G has n vertices and m edges then the
number of vertices of G* is n +m and dg(u) =n — 1 — dg(u).
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3. The Reciprocal Randié¢ index of genralized transformation graphs
G*Y

Theorem 3.1. Let G be a graph with |V(G)| =n and |E(G)| = m. Then

RR(G'M) =2 |RR(G)+ Y da(u)y/de(u)

ueV(G)

Proof. According to the study of edge set partition of E(GTT) we consider that
the graph has two edge subsets E; and FE5, such that

Edge set cardinality
E; {wv | wv € E(GQ)} m
E5 | {ue | the vertex w is incident to the edge e in G} 2m

Then for v € V(G)we have dg++(u) = 2dg(u) and for e € E(G) we have
dg++(€) = 2.(refer [1], Prop. 4.1)

RR(G™) = > dge+(w)dge(v)

weE(G)

= Z Vidge+ (u)dg+ (v) + Z Vdg++ (u)dg+(€)
uve E, ue€Fa

= Y V@dew) 2de) + > V/(2da(w) (2)
uwweE(G) ue€ Ea

= 2|RR(G)+ Y da(u)|.

ue€ Eq

Since the quantity y/dg(u) repeats dg(u) times in the set Eg, the above expression
reduces to

RR(G™) =2 |RR(G)+ > dg(u)y/da(u)
ueV(G)

Theorem 3.2. Let G be a graph with |V(G)| =n and |E(G)| =m. Then
RR(GT™) =m? +m(n —2)y/m(n — 2).

Proof. According to the study of edge set partition of E(G*~) we consider that
the graph has two edge subsets E; and Fs, such that

Edge set cardinality
E; {uv | w € E(G)} m

E5 | {ue | the vertex w is not incident to the edge e in G} | 2m(n — 2)
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Then for u € V(G)we have dg+- (u) = m and for e € E(G) we have dg+-(e) =
n — 2.(refer [1], Prop. 4.1)

RR(G™) = Y dg+-(u)dg+-(v)

weE(G)

= > Vg (w)de+-(v) + Y VVdg+-(u)dg+-(e)
uv€Ey ue€ Fa

= Y Vi + Y V-2
uwweE(G) ue€ Ea

= m*+m(n—2)v/m(n —2)
]

Remark 3.3. From the above theorem we observe that all graphs G having same
order and size thenc the Reciprocal Randi¢ index of genralized transformation
graphs RR(G' ™) is same.

Theorem 3.4. Let G be a graph with |V(G)| =n and |E(G)| =m. Then

RR(G) = [W] (n—1)+2m\/2(n = 1)

Proof. According to the study of edge set partition of EF(G~") we consider that
the graph has two edge subsets E; and Fs, such that

Edge set cardinality
o {uv [ uwv ¢ E(G)} (3) —m
Es5 | {ue | the vertex u is incident to the edge e in G} 2m

For u € V(G) we have dg-+(u) = n — 1 and for e € E(G) we have dg-+(e) =
2.(refer [1], Prop. 4.1)

RR(G™) = Z Vdg—+(u)dg-+(v)

weE(G)

= > Vdg—+Wdg—+)+ Y Vdg-+(u)dg—+(e)
uwve By ue€Fy

= Z (n—1)(n-1)+ Z Vi(n—1)(
wg E(G) ue€ B

— [(Z>_m](n—1)+2mm
_ (W) (n— 1) +2my/2(n — 1).
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Remark 3.5. From the above theorem, we observe that all graphs G having same
order and size then the Reciprocal Randi¢ index of genralized transformation
graphs RR(G~T) is same.

Theorem 3.6. Let G be a graph with |V(G)| =n and |E(G)| =m. Then

RR(G™™) = Z Vin+m—1-2dg(u) (n+m—1—2da(v))
uwwg E(G)
+ Y (m—dg)V/(n+m—1-2dg(w))(n-2).
ueV(G)

Proof. According to the study of edge set partition of E(G~~) we consider that
the graph has two edge subsets E; and Fs, such that

Edge set cardinality

E, {uv | wv ¢ E(G)} () —m

Es5 | {ue | the vertex u is not incident to the edge e in G} | m(n — 2)

For u € V(G)we have dg--(u) =n+m — 1 — 2dg(u) and for e € E(G) we have
dg--(e) =n — 2.(refer [1], Prop. 4.1)

RR(G™T) = Y Vdg—(wdg—(v)
weE(G)
= Y Vdg—-(wdg—@®)+ Y Vdg--(u)dg--(e)
uveEq ue€ Fo
= > Vit+m—1-2dc@w) (n+m—1-2dg(v))
w¢E(G)
+ Z Vin+m—1-2dg(u)) (n—2)
ue€ Fo
- Z Vin+m—1-2dg(u)) (n+m—1—2dg(v))
w¢E(G)
+ Y (m—dew)V/(n+m—1-2dg(u)) (n—2).
ueV(G)

4. The Reciprocal Randié¢ index of complement of genaralized
transformation G*Y

Theorem 4.1. Let G be a graph with |V(G)| =n and |E(G)| =m. Then

RR(GTF) = > Vin+m—1-2dg(w) (n+m—1-2da(v))
wEB(G)
+ 2 <m_dG(“))\/(n+m—1—2dg(u))(n+m—3)+m(m_l)(QTH_m_S)
ueV(QG)
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Proof. Similar to the previous section of generalized transformation graph we can
obtain the edge set partition of G+ into subsets E1, Fs and E3, such that
Edge set cardinality

By {uv [uv ¢ E(G)} (3) —m
E5 | {ue | the vertex w is not incident to the edge e in G} | m(n — 2)

Es {ef e, fEEG)} (%)

Now, For u € V(G)we have dgz(u) =n +m — 1 - 2dg(u) and for e € E(G) we
have dzz=(e) = n +m — 3(refer [17], Prop. 1.2 ).

RR (F) = Z \/dg++ G++ (v)

weEB(G+T)
= Y g (0) + Y (g widgr(@)+ Y. Jdgrr(@)dg(f)
uveFEy ue€ Ey ef€FEs
= Y Vtm-1-2dcw)(n+m—1-2d(v))
uwwg E(G)
+ Z Vn+m—1-2dg(u) (n+m—3)+ Z Vn+m—=3)(n+m-—3)
ue€ Eo ef€EFbs
= > Vot+m—1-2dg()(n+m—1-2ds(v))
uwvg E(G)
+ > Vtm—1-2dgw)(n+m—3)+ Y (n+m-—3)
ue€ FEa efeFbs
= > Vot+m—1-2dg()(n+m—1-2ds(v))
w¢ E(G)
+ Z (m—dg(u))\/(n+m—1—2dc(u))(n+m—3)+(T;L)(n—&-m—?))
ueV(Q)
= > Vot+m—1-2dg()(n+m—1-2ds(v))
uwvg E(G)
+ ¥ (m—dg(u))\/(n+m—1—2dg(u))(n+m—3)+m(m_l)(zn+m_3).
ueV(Q)

Theorem 4.2. Let G be a graph with |V(G)| =n and |E(G)| =m. Then

m(m2 — 1)
2

R(F) _ [n(n—1) —2m](n—1)

5 +2my/(n—=1)(m+1)+

Proof. Here the edge set E(G+~) can be partitioned into E7, F5 and E3 subsets,
where
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Edge set cardinality
By {uv | uwv ¢ E(G)} (z) —m
E5 | {ue | the vertex u is incident to the edge e in G} 2m
E; {efTe. fEEG)) (%)

For u € V(G)we have dgz—(u) = n — 1 and for e € E(G) we have dgz—(e) =
m + 1(refer [17], Prop. 1.2).

R(EE) = T

weE(GT)

= > Vag=wdag=0) + > \Jdg=(wdg=(e) + Y. \/dgr=(e)dg=(

uveE ue€ FEo efeEs

= > Vo-Der-D+ Y Ve-Dm+)+ > Vim+1)(m+1)

w¢ E(G) ue€ Ea efeEs
= > -+ > Ve-Dm+D+ > (m+1)
wg E(G) ue€Ea efeEs
= {(Z)m}(nl)+2m (nl)(m+1)+<72n>(m+1)
[n(n—1)—2m](n—1)

— 5 +2m (n—l)(m+1)+m(m2—1).

O

Remark 4.3. From the above theorem we observe that all graphs G having same
order and size then the Reciprocal Randié¢ index of complement of genralized

transformation graphs RR (G+ *) is same.
Theorem 4.4. Let G be a graph with |V(G)| =n and |E(G)| = m. Then

m(m—1)(n+m—3)
5 :

RR(F) =m?+m(n—2)/m(n+m—3)+

Proof. The edge set E(G—1) can be partitioned into F1, Es and E3 subsets, where
Edge set cardinality

E {wv | wv € E(G)} m

E5 | {ue | the vertex w is not incident to the edge e in G} | m(n — 2)
E; {efTe. fEEG)} (%)

For u € V(G)we have dg—(u) = m and for e € E(G) we have dg—(e) =
n—+m — 3.(refer [17], Pro 1.2).
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RR (F) = Y Jde=wde=(v)

weE(G—7)

- ¥ \/dgj(u)dc;j(v) + Y \/dcj(u)de(e) + Y \/de(e)de( f)
uveE ue€ Eq efEls

= Y Vmm)+ D Vm)n+m=3)+ > Vn+m=3)(n+m-3)
uwveE(G) ue€Es ef€EEs

= Z m + Z m(n+m—3)+ Z (n+m—3)
uwveE(G) ue€ B efekEs

= m?+mn—2) m(n+m—3)+(rg>(n+m—3)

= m?*+m(n—2) m(n—|—m—3)+m(m71)(2n+m73).

Remark 4.5. Above theorem shows that all graphs G having same order and size
then the Reciprocal Randi¢ index of complement of genralized transformation

graphs RR (F) is same.

Theorem 4.6. Let G be a graph with |V(G)| =n and |E(G)| =m. Then

m(m? — 1)

RR(F):MR(GH > do(u)y/2da(u) (m+ 1) + "

ueV(G)

Proof. The edge set E(G~~) can be partitioned into F1, Es and E3 subsets, where

Edge set cardinality
E; {uv | wv € E(G)} m
E5 | {ue | the vertex u is incident to the edge e in G} 2m
E; {efTe. fEEG)] (%)
For u € V(G)we havedg—(u) = 2dg(u) and for e € E(G) we have dg=—(e) =

m + 1.(refer [17], Prop. 1.2 ).
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RR(G) = ) \/d —(u)dg—(v)

weE(G——

= Z \/d — G** (v) + Z \/dGT(U)dGT Z \/dG** G** fH
uveE ue€ Eo efeEs

= Y V(@dew) de()+ Y V@dgw) (m+1)+ > /(m+1)(m+1)
weEE(G) ue€ Ea ef€FEs

=2 Y Vde) + > V2dgw) (m+1)+ > (m+1)
uwveE(G) ue€ Es ef€Es

= 2RR(G)+ Z dg(u)v/2dg(u) (m+1) + (ﬂ;) (m+1)

ueV(G)

= 2RR(G)+ Y  dg(u) 2dG(u)(m+1)+W.

ueV(QG)

Corollary 4.7. If Gy and Gs are two different graphs having same number of
vertices and edges, then

RR(GY™) = RR(G3")
RR(GT") = RR(G;™)
RR(G{™) = RR G;*)

5. Reduced Zagreb index of genralized transformation graphs G*Y
with their complements G*Y

Incorporating the computational methods, those followed in the above section
3 and 4, we derive the below theorem.
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Theorem 5.1. Let G be a graph with |V(G)| =n and |E(G)| = m. Then

RM(G*)
RM(G*™)

RM(G™)

RM>(G™7)

RM, (W)

m(m — 1) +m(m —1)(n — 2)(n — 3)
1

i[n(nfl)me] (n—2)?42m(n —2)

% [n(n — 1) — 2m] (n® + m* 4+ 2nm — 4(n +m — 1)) + 2M(G)(—n — m + 2)
+4M5(G) + (n — 3) [n(nm + m? — 2m) + 2m(—2m — n —m + 2) + 2M;(G)]
% [n(n — 1) —2m] (n® +m? + 2nm — 4(n +m — 1)) + 2M,(G)(—n — m + 2)
+4M5(G) + (n+m —4) [m(n — 2)(n +m — 2) — 4m> 4+ 2M,(G)]

+% [m(m —1)(n+m —4)?].

2 I — 1) 2] (n—2)” 4+ 2m%(n — 2) + Lm(m — 1)

m(m —1)% +m(n —2)(m —1)(n+m —4) + %m(m —1)(n+m —4)*

4My(G) — 2M1(G)(1 —m) +m(1 — 2m) + %m?’(m —1)

Corollary 5.2. If G and G4 are two different graphs having same order and size,

then

RMy(G{™) = RM(G3")
RMs(GTT) = RMy(G;H)
RM; (Gr) — RM, (G;*)
RM, (Gﬁ) — RM, (G;+)

6. Reduced Receprocal Randié¢ index of genralized transformation

graphs G*Y with their complements G=Y

Incorporating the computational methods, those followed in the above section
8 and 4, we can see that,

RMQ(G) = MQ(G) — Ml(G) +m
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Theorem 6.1. Let G be a graph with |V (G)| =n and |E(G)| =m. Then

RRR(G™) = > /(2dg(u) - 1) (2da(v + > de(u)Vda(u) -1

weEE(G) ueV(G)

RRR(GT™) = m(m—1)+m(n—2)\/(m—1)(n—3)
RRR(G™T) = % [n(n —1) —2m] (n — 2) 4+ 2mvn — 2
RRR(G™™) = Z Vn+m—2—2dg(u))(n+m—2—2dg(v))
w¢E(G)
+ ) (m—dg(u)V/(n=3)(n+m—2—2da(u))
ueV(G)
RRR (G¥%) =
RRR (GT) = % [n(n—1) —2m] (n — 2) 4+ 2m~/m(n —2) + %mQ(m —1).
RRR (ﬁ) = m(m—1)+mn -2 (m—-1)(n+m—4) + %m(m— 1)(n+m—4)
RRR (T) = Y V@de(w) - 1) (2da(v + 3 do(u de(u )—1)—|—%m2(m—
wEE(G) ueV(G)

Corollary 6.2. If G1 and Go are two different structures having same number of
vertices and edges, then

RRR(G}™) RRR(G}™)
RRR(GT*) = RRR(G;")
RRR(G ) - RRR(G )
RRR(G1 ) - RRR(G +).

Conclusion
After studying the above results obtained, one can easily justify that for any set of
graphs having same order and size have equal RR(G™1), equal RR(G" ™), equal

RR (F) and equal RR (F) value.
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