ON THE COINCIDENCE OF SPACES WITH MARTINGALE MIXED NORM WITH THE SPACE OF BOUNDED RANDOM VARIABLES IN THE CASE OF IRREGULAR STOCHASTIC BASES

IGOR PAVLOV*

ABSTRACT. For spaces $L_{\mathbf{p}}$ of random variables with martingale mixed norm the theorem of the coincidence of $L_{\mathbf{p}}$ with the space L_{∞} is generalized. Namely, in [1] a criteria for such a coincidence was obtained in the case of a stochastic basis with a regular filtration, and in the present paper, a transition was made to irregular ones. It is a much more complicated problem. In particular, a family of irregular filtrations was found, for which a criterion for the coincidence of $L_{\mathbf{p}}$ and L_{∞} was obtained.

1. Introduction

Let (Ω, \mathcal{A}, P) be a probability space, where Ω is an arbitrary set, \mathcal{A} is a σ algebra on Ω , and P is a probability measure on (Ω, \mathcal{A}) . Fix a filtration (i.e. increasing sequence of σ -algebras) $\mathbf{F} = (\mathcal{F}_n)_{n=0}^{\infty}$ such that $\mathcal{F}_0 = \{\Omega, \emptyset\}$ and \mathcal{A} is the σ -algebra generated by this filtration. A triplet (Ω, \mathbf{F}, P) is called stochastic basis (s.b.).

Let f be an integrable random variable (r.v.) on (Ω, \mathcal{A}, P) and $f_n := E^P[f|\mathcal{F}_n]$ (i.e. $\mathbf{f} = (f_n, \mathbf{F}, P)$ is a martingale). Let $\mathbf{p} = (p_1, p_2, \dots, p_n, \dots)$ be an infinite dimensional vector $(1 \le p_k \le \infty, k = 1, 2, \dots)$. Martingale mixed norm for r.v. f is defined as follows:

$$\|f\|_{\mathbf{p}} := \sup_{n} \left\| \dots \right\| \|f_{n}\|_{p_{n},\mathcal{F}_{n-1}} \|_{p_{n-1},\mathcal{F}_{n-2}} \dots \|_{p_{1},\mathcal{F}_{0}},$$
(1.1)

where the expression $g_{p,\mathcal{F}}$ is equal to $\left(E[|g|^p |\mathcal{F}]\right)^{1/p}$ if $p < \infty$ and $\lim_{r \uparrow \infty} \uparrow ||g||_{r,\mathcal{F}}$ if $p = \infty$. In what follows, we will also use the following notations:

 $\mathbf{p}^n = (p_1, p_2, \dots, p_n)$

Date: Date of Submission May 15, 2023; Date of Acceptance July 30, 2023, Communicated by Yuri E. Gliklikh .

²⁰¹⁰ Mathematics Subject Classification. Primary 60G46; Secondary 60G42, 46E30.

Key words and phrases. Martingale, atom, branch index, chain of atoms, regular and irregular filtrations, forked and locally forked filtrations, martingale mixed norm.

^{*} Research was supported by the Regional mathematical center of the Southern Federal University with the support of the Ministry of Science and Higher Education of Russia, agreement N 075-02-2023-924 dated 16.02.2023.

IGOR PAVLOV

and

$$\|g\|_{\mathbf{p}^{n}} = \left\|\dots\right\| \|g\|_{p_{n},\mathcal{F}_{n-1}} \|_{p_{n-1},\mathcal{F}_{n-2}} \dots \|_{p_{1},\mathcal{F}_{0}}$$

If $||f||_{\mathbf{p}} < \infty$, we say that $f \in L_{\mathbf{p}}$. Remark that if $\forall k \ (1 \le k < \infty) \ p_k = p$, then $||f||_{\mathbf{p}} = L_p := L_p \ (\Omega, \mathcal{A}, P).$

Throughout this paper, we will assume that $\forall n \ (1 \leq n < \infty) \sigma$ -algebra \mathcal{F}_n is finite and generated by the partition \mathcal{D}_n of Ω into atoms of strictly positive probability. Remark that $\mathcal{D}_0 = \{\Omega\}$. We assume that $\forall n \geq 0$ the transition from time *n* to time n + 1 cannot be trivial, i.e. $|\mathcal{D}_n| \geq n + 1$, where $|\mathcal{D}_n|$ denotes the number of elements of the set \mathcal{D}_n . This means that in the transition from *n* to n + 1 at least one atom from \mathcal{D}_n is split up. When moving from the point in time *n* to the point n + 1 an atom $A_n \in \mathcal{D}_n$ is split into exactly *m* atoms of \mathcal{D}_{n+1} , we call *m* branch index of A_n .

Let $A_n \in \mathcal{D}_n$ and $A_{n-1} \in \mathcal{D}_{n-1}$ be such that $A_n \subset A_{n-1}$ (it is clear that $A_0 = \Omega$). Denote $A'_n := A_{n-1} \setminus A_n$ and $\mathcal{D}'_n := \mathcal{D}_n \setminus \{A_n \in \mathcal{D}_n | A'_n = \emptyset\}$. Let us introduce the following two sequences, which will play an important role in what follows:

$$c_n := \min_{A_n \in \mathcal{D}'_n} \frac{P(A_n)}{P(A_{n-1})} = \min_{A_n \in \mathcal{D}_n} \frac{P(A_n)}{P(A_{n-1})}, n = 1, 2, \dots,$$
(1.2)

and

$$c'_{n} := \min_{A_{n} \in \mathcal{D}'_{n}} \frac{P(A'_{n})}{P(A_{n-1})}, n = 1, 2, \dots$$
(1.3)

Formulas (1.2) and (1.3) are understood in the following sense. Numbers c_n and c'_n are calculated for a fixed n, and the same index n is fixed on the right-hand side of these formulas as the index at \mathcal{D}' and \mathcal{D} . In this case, the minima are taken under the condition that A_n runs through the entire set of atoms \mathcal{D}'_n .

Proposition 1.1. For any $n \ge 1$ the inequalities

$$0 < c_n \le c'_n < 1 \tag{1.4}$$

and

$$c_n \le 1 - c'_n \tag{1.5}$$

are fulfilled.

If each atom from
$$\bigcup_{n=0}^{\infty} \mathcal{D}_n$$
 has an branch index not exceeding 2, then $\forall n \geq 1$
 $c_n = c'_n$

Proof. We prove only formula (1.5). Let the expression (1.3) on an event $\tilde{A}'_n \in \mathcal{D}_n$ achieve the equality $c'_n = \frac{P(\tilde{A}'_n)}{P(\tilde{A}_{n-1})}$. Then

$$c'_{n} = \frac{P(\tilde{A}'_{n})}{P(\tilde{A}_{n-1})} = \frac{P(\tilde{A}_{n-1}) - P(\tilde{A}_{n})}{P(\tilde{A}_{n-1})} = 1 - \frac{P(\tilde{A}_{n})}{P(\tilde{A}_{n-1})} \le 1 - c_{n}$$

(c.f. (1.2)). From here we get (1.5)

Definition 1.2. We say that a s.b. (Ω, \mathbf{F}, P) is forked if $\forall n \geq 1$ $\mathcal{D}_n = \mathcal{D}'_n$, and locally forked if there exists a chain of embedded atoms $A_0 \supset A_1 \cdots \supset A_n \supset \ldots$ such that $\forall n \geq 1$ $A_n \in \mathcal{D}'_n$.

It is clear that if a s.b. (Ω, \mathbf{F}, P) is forked, then it is locally forked. The following definition is borrowed from [2].

Definition 1.3. We say that a s.b. (Ω, \mathbf{F}, P) is regular if there exists an independent on n constant c, 0 < c < 1, such that $\forall n \geq 1$, for each atom $A_n \in \mathcal{D}_n$, and for the atom $A_{n-1} \in \mathcal{D}_{n-1}$ containing A_n the following inequality is fulfilled:

$$P(A_n) \ge c \cdot P(A_{n-1}).$$

Otherwise, s.b. is called irregular.

In the case of a locally forked regular stochastic basis, the criteria for the coincidence of $L_{\mathbf{p}}$ and L_{∞} obtained in [1] (see also [3]) is presented in this paper by Corollary 3.1. The main result of this paper is Corollary 3.3, which follows from Theorems 2.1 and 2.2.

2. Theorems on the coincidence of L_p and L_{∞}

Theorem 2.1. If

$$\prod_{k=1}^{\infty} c_k^{\frac{1}{p_k}} > 0, \tag{2.1}$$

then $L_{\mathbf{p}} = L_{\infty}$.

Proof. Prove first that $\forall n = 1, 2, \dots$ and for any event $A \in \mathcal{F}_n$

$$||I_A||_{\mathbf{p}} \ge \prod_{k=1}^n c_k^{1/p_k}, \ 1 \le \mathbf{p} \le \infty.$$
 (2.2)

Consider an atom $A_n \in \mathcal{D}_n$ such that $A_n \subset A$ and the atom $A_{n-1} \in \mathcal{D}_{n-1}$ such that $A_n \subset A_{n-1}$. We have: $||I_A||_{\mathbf{p}} \geq ||I_{A_n}||_{\mathbf{p}} = ||I_{A_n}||_{\mathbf{p}^n}$. Now we get for $p_n < \infty$:

$$\|I_{A_n}\|_{p_n,\mathcal{F}_{n-1}} = \left(E[I_{A_n} \mid \mathcal{F}_{n-1}]\right)^{1/p_n} = \left(\frac{P(A_n)}{P(A_{n-1})} \cdot I_{A_{n-1}}\right)^{1/p_n} \ge c_n^{1/p_n} \cdot I_{A_{n-1}}.$$

It is clear, that the obtained inequality is valid for $p_n = \infty$ too. Therefore, (2.2) follows from the formula (1.1).

Now let the condition of theorem 2.1 be satisfy, $f \in L_{\mathbf{p}}$, but $f \notin L_{\infty}$. Denote by A_n such atom in \mathcal{D}_n , for which $||f_n||_{\infty} = |a_n|$, where a_n is the value of f_n on A_n . Therefore, $\sup_n |a_n| = \infty$. We get:

$$\|f\|_{\mathbf{p}} = \sup_{n} \|f_{n}\|_{\mathbf{p}} \ge \sup_{n} |a_{n}| \cdot \|I_{A_{n}}\|_{\mathbf{p}} \ge \sup_{n} \left(|a_{n}| \cdot \prod_{k=1}^{n} c_{k}^{1/p_{k}}\right) = \infty.$$

Intradiction shows that $L_{\mathbf{p}} = L_{\infty}.$

The contradiction shows that $L_{\mathbf{p}} = L_{\infty}$.

Theorem 2.2. Let s.b. (Ω, \mathbf{F}, P) is locally forked. Then from $L_{\mathbf{p}} = L_{\infty}$ it follows

$$\prod_{k=1}^{\infty} (1 - c'_k)^{\frac{1}{p_k}} > 0.$$
(2.3)

IGOR PAVLOV

Proof. Consider the chain $A_0 \supset A_1 \cdots \supset A_n \supset \ldots$ from Definition 1.2. Prove first that

$$\|I_{A_n}\|_{\mathbf{p}} \le \prod_{k=1}^n (1 - c'_k)^{1/p_k}, \ 1 \le \mathbf{p} \le \infty.$$
(2.4)

We obtain if $p_n < \infty$:

$$\|I_{A_n}\|_{p_n,\mathcal{F}_{n-1}} = \left(\frac{P(A_n)}{P(A_{n-1})} \cdot I_{A_{n-1}}\right)^{1/r_n} = \left(\frac{P(A_{n-1}) - P(A'_n)}{P(A_{n-1})} \cdot I_{A_{n-1}}\right)^{1/r_n} \le (1 - c'_n)^{1/r_n} \cdot I_{A_{n-1}}.$$

The obtained inequality is valid for $p_n = \infty$ too. Inequality (2.4) follows from the formula (1.1).

Suppose now that $L_{\mathbf{p}} = L_{\infty}$. Then there exists a strictly positive number d such that for any r.v. $f \in L_{\infty}$ the inequality $||f||_{\infty} \leq d||f||_{\mathbf{p}}$ is true. Applying this inequality for r.v. $f = I_{A_n}$ and taking into account the inequality (2.4), we obtain the inequality:

$$1 = \|I_{A_n}\|_{\infty} \le d\|I_{A_n}\|_{\mathbf{p}} \le d \cdot \prod_{k=1}^n (1 - c'_n)^{1/p_k}.$$

It follows from it the inequality we need.

3. Corollaries and examples

Corollary 3.1. Let s.b. (Ω, \mathbf{F}, P) is locally forked and regular. Equality $L_{\mathbf{p}} = L_{\infty}$ holds if and only if $\sum_{k=1}^{\infty} 1/r_k < \infty$.

Proof. Denote $c = \inf_{n \ge 1} c_n > 0$ and $c' = \inf_{n \ge 1} c'_n$. It is obvious that the regularity of s.b. (Ω, \mathbf{F}, P) is equivalent to the inequality c > 0.

Let $\sum_{k=1}^{\infty} 1/r_k < \infty$. Since $\prod_{k=1}^{\infty} c_k^{1/p_k} \ge \prod_{k=1}^{\infty} c^{1/p_k} > 0$, it follows from Theorem 2.1 that $L_{\mathbf{p}} = L_{\infty}$.

Let $L_{\mathbf{p}} = L_{\infty}$. We obtain from the inequality $1 - c \ge 1 - c'_n$ and Theorem 2.2 that $\prod_{k=1}^{\infty} (1-c)^{1/p_k} \ge \prod_{k=1}^{\infty} (1-c'_k)^{1/p_k} > 0$. This implies the inequality $\sum_{k=1}^{\infty} 1/r_k < \infty$.

Corollary 3.2. Let s.b. (Ω, \mathbf{F}, P) is locally forked. If $\forall n \geq 1$ $c_n = 1 - c'_n$, then $L_{\mathbf{p}} = L_{\infty}$ if and only if the inequality (2.1) holds.

Proof. The proof follows from Theorems 2.1 and 2.2.

Corollary 3.3. Let (Ω, \mathbf{F}, P) is locally forked. If $\lim_{n \to \infty} c_n = 0$ and also $\forall n \ge 1$ and for two positive constants c and $d \ 0 < c \le \frac{1-c'_n}{c_n} \le d$, then $L_{\mathbf{p}} = L_{\infty}$ if and only if the inequality (2.1) holds.

Proof. From the relations $\lim_{n \to \infty} c_n = 0$ and $0 < c \le \frac{1-c'_n}{c_n} \le d$ it easily follows that $\ln(1-c'_n) \sim \ln c_n$ as $n \to \infty$. Hence inequalities (2.1) and (2.3) are equivalent. This implies the required assertion.

Corollary 3.4. Let a locally forked s.b. (Ω, \mathbf{F}, P) is such that each atom from $\bigcup_{n=0}^{\infty} \mathcal{D}_n$ has a branch index not exceeding 2. If $\lim_{n \to \infty} c_n = 0$, then

$$L_{\mathbf{p}} = L_{\infty} \Rightarrow \sum_{k=1}^{\infty} \frac{c_k}{p_k} < \infty \quad and \quad \sum_{k=1}^{\infty} \frac{|\ln c_k|}{p_k} < \infty \Rightarrow L_{\mathbf{p}} = L_{\infty}$$

Proof. From Proposition 1.1 we obtain equality $c'_n = c_n \forall n \ge 1$. Applying Theorems 2.2 and 2.1 we have:

$$L_{\mathbf{p}} = L_{\infty} \Rightarrow \prod_{k=1}^{\infty} (1 - c'_k)^{\frac{1}{p_k}} > 0 \Leftrightarrow \prod_{k=1}^{\infty} (1 - c_k)^{\frac{1}{p_k}} > 0 \Leftrightarrow \sum_{k=1}^{\infty} \frac{c_k}{p_k} < \infty$$
$$\sum_{k=1}^{\infty} \frac{|\ln c_k|}{p_k} < \infty \Leftrightarrow \prod_{k=1}^{\infty} c_k^{\frac{1}{p_k}} > 0 \Rightarrow L_{\mathbf{p}} = L_{\infty}.$$

Corollary 3.4 shows that, generally speaking, Theorems 2.1 and 2.2 provide a fairly large gap between necessary and sufficient conditions for the coincidence of spaces $L_{\mathbf{p}}$ and L_{∞} .

Example 3.5. Let $(m_n)_{n=1}^{\infty}$, where $m_n \geq 2 \ \forall n \leq 1$, be a sequence of natural numbers. Suppose that $\forall n \geq 1$ each atom from \mathcal{D}_{n-1} has a branch index m_n and if $A_n \in \mathcal{D}_n$ and $A_{n-1} \in \mathcal{D}_{n-1}$ are such that $A_n \subset A_{n-1}$, then $P(A_n) = \frac{P(A_{n-1})}{m_n}$. In this case $c_n = \frac{1}{m_n}$, $c'_n = \frac{m_n-1}{m_n}$ and hence $c_n = 1 - c'_n$. From Corollary 3.2 it easily follows that $L_{\mathbf{p}} = L_{\infty}$ if and only if $\sum_{k=1}^{\infty} \frac{\ln(m_k)}{p_k} < \infty$. Remark that if $\sup_{k < 1} m_k = \infty$ we have here irregular s.b.

Example 3.6. In the scheme considered in Example 3.5, change a little the data. For all $n \geq 1$ choose arbitrarily an atom $A_{n-1} \in \mathcal{D}_{n-1}$ and two atoms \tilde{A}_n and \hat{A}_n from \mathcal{D}_n such that $\tilde{A}_n \subset A_{n-1}$ and $\hat{A}_n \subset A_{n-1}$. Let us put $P(\tilde{A}_n) = \frac{P(A_{n-1})}{2m_n}$, $P(\hat{A}_n) = \frac{3P(A_{n-1})}{2m_n}$ and the probabilities of all other atoms are determined as in Example 3.5. We have $c_n = \frac{1}{2m_n}$ and $1 - c'_n = \frac{3}{2m_n}$. The conditions of Corollary 3.3 are satisfied and hence $L_{\mathbf{p}} = L_{\infty}$ if and only if $\sum_{k=1}^{\infty} \frac{\ln(2m_k)}{p_k} < \infty$.

4. Conclusion

This article is made within the framework of the topic related to the general question posed by Professor E.M. Semenov: in what cases do martingale spaces $L_{\mathbf{p}}$ with mixed norm coincide with the classical spaces L_r , $1 \leq r \leq \infty$? At present, only partial answers to this question are known in cases r = 1 and $r = \infty$ (c.f. this article and works [1], [3]). To solve this problem in a more general form, it seems that completely new ideas and methods are needed.

IGOR PAVLOV

References

- 1. Pavlov, I.V.: On properties of spaces with martingale mixed norm with summability exponents close to one, *Journal of Mathematical Sciences*, May 2023, https://doi.org/10.1007/s10958-023-06327-y.
- 2. Long, R. Martingale Spaces and Inequalities, Hong Kong, Peking Univ. Press, 1993.
- Pavlov, I.V.: Some properties of martingale spaces H_p, BMO, VMO and with mixed norm, Review of Applied and Industrial mathematics, TVP, Moscow, l, no. 2 (1999) 368–386.

Igor V. Pavlov: Chief Researcher of Regional Mathematical Center of Southern Federal University, 105/42, Bolshaya Sadovaya Str., Rostov-on Don, Russia

Email address: pavloviv2005@mail.ru