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Abstract. For spaces Lp of random variables with martingale mixed norm
the theorem of the coincidence of Lp with the space L∞ is generalized.

Namely, in [1] a criteria for such a coincidence was obtained in the case of

a stochastic basis with a regular filtration, and in the present paper, a tran-
sition was made to irregular ones. It is a much more complicated problem.

In particular, a family of irregular filtrations was found, for which a criterion

for the coincidence of Lp and L∞ was obtained.

1. Introduction

Let (Ω,A, P ) be a probability space, where Ω is an arbitrary set, A is a σ-
algebra on Ω, and P is a probability measure on (Ω,A). Fix a filtration (i.e.
increasing sequence of σ-algebras) F = (Fn)

∞
n=0 such that F0 = {Ω, ∅} and A is

the σ-algebra generated by this filtration. A triplet (Ω,F, P ) is called stochastic
basis (s.b.).

Let f be an integrable random variable (r.v.) on (Ω,A, P ) and fn := EP [f |Fn]
(i.e. f = (fn,F, P ) is a martingale). Let p = (p1, p2, . . . , pn, . . .) be an infinite
dimensional vector (1 ≤ pk ≤ ∞, k = 1, 2, . . . ). Martingale mixed norm for r.v. f
is defined as follows:

‖f‖p := sup
n

∥∥∥∥∥. . .
∥∥∥∥ ∥∥fn∥∥pn,Fn−1

∥∥∥∥
pn−1,Fn−2

. . .

∥∥∥∥∥
p1,F0

, (1.1)

where the expression gp,F is equel to

(
E[|g|p

∣∣∣∣F ]

)1/p

if p < ∞ and lim
r↑∞
↑ ‖g‖r,F

if p =∞. In what follows, we will also use the following notations:

pn = (p1, p2, . . . , pn)
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and

‖g‖pn =

∥∥∥∥∥. . .
∥∥∥∥ ∥∥g∥∥pn,Fn−1

∥∥∥∥
pn−1,Fn−2

. . .

∥∥∥∥∥
p1,F0

.

If ‖f‖p <∞, we say that f ∈ Lp. Remark that if ∀k (1 ≤ k <∞) pk = p, then

‖f‖p = Lp := Lp (Ω,A, P ).

Throughout this paper, we will assume that ∀n (1 ≤ n < ∞) σ-algebra Fn

is finite and generated by the partition Dn of Ω into atoms of strictly positive
probability. Remark that D0 = {Ω}. We assume that ∀n ≥ 0 the transition from
time n to time n + 1 cannot be trivial, i.e. |Dn| ≥ n + 1, where |Dn| denotes the
number of elements of the set Dn. This means that in the transition from n to
n+ 1 at least one atom from Dn is split up. When moving from the point in time
n to the point n+ 1 an atom An ∈ Dn is split into exactly m atoms of Dn+1, we
call m branch index of An.

Let An ∈ Dn and An−1 ∈ Dn−1 be such that An ⊂ An−1 (it is clear that
A0 = Ω). Denote A′n := An−1 \ An and D′n := Dn \ {An ∈ Dn|A′n = ∅}. Let us
introduce the following two sequences, which will play an important role in what
follows:

cn := min
An∈D′n

P (An)

P (An−1)
= min

An∈Dn

P (An)

P (An−1)
, n = 1, 2, . . . , (1.2)

and

c′n := min
An∈D′n

P (A′n)

P (An−1)
, n = 1, 2, . . . . (1.3)

Formulas (1.2) and (1.3) are understood in the following sense. Numbers cn and
c′n are calculated for a fixed n, and the same index n is fixed on the right-hand
side of these formulas as the index at D′ and D. In this case, the minima are taken
under the condition that An runs through the entire set of atoms D′n.

Proposition 1.1. For any n ≥ 1 the inequalities

0 < cn ≤ c′n < 1 (1.4)

and

cn ≤ 1− c′n (1.5)

are fulfilled.
If each atom from

⋃∞
n=0Dn has an branch index not exceeding 2, then ∀n ≥ 1

cn = c′n

Proof. We prove only formula (1.5). Let the expression (1.3) on an event Ã′n ∈ Dn

achieve the equality c′n =
P (Ã′n)

P (Ãn−1)
. Then

c′n =
P (Ã′n)

P (Ãn−1)
=
P (Ãn−1)− P (Ãn)

P (Ãn−1)
= 1− P (Ãn)

P (Ãn−1)
≤ 1− cn

(c.f. (1.2)). From here we get (1.5) �

Definition 1.2. We say that a s.b. (Ω,F, P ) is forked if ∀n ≥ 1 Dn = D′n, and
locally forked if there exists a chain of embedded atoms A0 ⊃ A1 · · · ⊃ An ⊃ . . .
such that ∀n ≥ 1 An ∈ D′n.
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It is clear that if a s.b. (Ω,F, P ) is forked, then it is locally forked.
The following definition is borrowed from [2].

Definition 1.3. We say that a s.b. (Ω,F, P ) is regular if there exists an indepen-
dent on n constant c, 0 < c < 1, such that ∀n ≥ 1, for each atom An ∈ Dn, and
for the atom An−1 ∈ Dn−1 containing An the following inequality is fulfilled:

P (An) ≥ c · P (An−1).

Otherwise, s.b. is called irregular.

In the case of a locally forked regular stochastic basis, the criteria for the coin-
cidence of Lp and L∞ obtained in [1] (see also [3]) is presented in this paper by
Corollary 3.1. The main result of this paper is Corollary 3.3, which follows from
Theorems 2.1 and 2.2.

2. Theorems on the coincidence of Lp and L∞

Theorem 2.1. If
∞∏
k=1

c
1
pk

k > 0, (2.1)

then Lp = L∞.

Proof. Prove first that ∀n = 1, 2, . . . and for any event A ∈ Fn

‖IA‖p ≥
n∏

k=1

c
1/pk

k , 1 ≤ p ≤ ∞. (2.2)

Consider an atom An ∈ Dn such that An ⊂ A and the atom An−1 ∈ Dn−1 such
that An ⊂ An−1. We have: ‖IA‖p ≥ ‖IAn

‖p = ‖IAn
‖pn . Now we get for pn <∞:

‖IAn‖pn,Fn−1
= (E[IAn | Fn−1])

1/pn =

(
P (An)

P (An−1)
· IAn−1

)1/pn

≥ c1/pn
n · IAn−1 .

It is clear, that the obtained inequality is valid for pn = ∞ too. Therefore, (2.2)
follows from the formula (1.1).

Now let the condition of theorem 2.1 be satisfy, f ∈ Lp, but f /∈ L∞. Denote
by An such atom in Dn, for which ‖fn‖∞ = |an|, where an is the value of fn on
An. Therefore, sup

n
|an| =∞. We get:

‖f‖p = sup
n
‖fn‖p ≥ sup

n
|an| · ‖IAn‖p ≥ sup

n

(
|an| ·

n∏
k=1

c
1/pk

k

)
=∞.

The contradiction shows that Lp = L∞. �

Theorem 2.2. Let s.b. (Ω,F, P ) is locally forked. Then from Lp = L∞ it follows

∞∏
k=1

(1− c′k)
1
pk > 0. (2.3)
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Proof. Consider the chain A0 ⊃ A1 · · · ⊃ An ⊃ . . . from Definition 1.2. Prove first
that

‖IAn
‖p ≤

n∏
k=1

(1− c′k)1/pk , 1 ≤ p ≤ ∞. (2.4)

We obtain if pn <∞:

‖IAn
‖pn,Fn−1

=

(
P (An)

P (An−1)
· IAn−1

)1/rn

=

(
P (An−1)− P (A′n)

P (An−1)
· IAn−1

)1/rn

≤ (1− c′n)1/rn · IAn−1 .

The obtained inequality is valid for pn =∞ too. Inequality (2.4) follows from the
formula (1.1).

Suppose now that Lp = L∞. Then there exists a strictly positive number d
such that for any r.v. f ∈ L∞ the inequality ‖f‖∞ ≤ d‖f‖p is true. Applying
this inequality for r.v. f = IAn

and taking into account the inequality (2.4), we
obtain the inequality:

1 = ‖IAn
‖∞ ≤ d‖IAn

‖p ≤ d ·
n∏

k=1

(1− c′n)1/pk .

It follows from it the inequality we need. �

3. Corollaries and examples

Corollary 3.1. Let s.b. (Ω,F, P ) is locally forked and regular. Equality Lp = L∞
holds if and only if

∑∞
k=1 1/rk <∞.

Proof. Denote c = infn≥1 cn > 0 and c′ = infn≥1 c
′
n. It is obvious that the

regularity of s.b. (Ω,F, P ) is equivalent to the inequality c > 0.

Let
∑∞

k=1 1/rk < ∞. Since
∏∞

k=1 c
1/pk

k ≥
∏∞

k=1 c
1/pk > 0, it follows from

Theorem 2.1 that Lp = L∞.
Let Lp = L∞. We obtain from the inequality 1 − c ≥ 1 − c′n and Theorem

2.2 that
∏∞

k=1(1 − c)1/pk ≥
∏∞

k=1(1 − c′k)1/pk > 0. This implies the inequality∑∞
k=1 1/rk <∞. �

Corollary 3.2. Let s.b. (Ω,F, P ) is locally forked. If ∀n ≥ 1 cn = 1 − c′n, then
Lp = L∞ if and only if the inequality (2.1) holds.

Proof. The proof follows from Theorems 2.1 and 2.2. �

Corollary 3.3. Let (Ω,F, P ) is locally forked. If lim
n→∞

cn = 0 and also ∀n ≥ 1

and for two positive constants c and d 0 < c ≤ 1−c′n
cn
≤ d, then Lp = L∞ if and

only if the inequality (2.1) holds.

Proof. From the relations lim
n→∞

cn = 0 and 0 < c ≤ 1−c′n
cn
≤ d it easily follows that

ln(1 − c′n) ∼ ln cn as n → ∞. Hence inequalities (2.1) and (2.3) are equivalent.
This implies the required assertion. �
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Corollary 3.4. Let a locally forked s.b. (Ω,F, P ) is such that each atom from⋃∞
n=0Dn has a branch index not exceeding 2. If lim

n→∞
cn = 0, then

Lp = L∞ ⇒
∞∑
k=1

ck
pk

<∞ and

∞∑
k=1

| ln ck|
pk

<∞⇒ Lp = L∞

.

Proof. From Proposition 1.1 we obtain equality c′n = cn ∀n ≥ 1. Applying Theo-
rems 2.2 and 2.1 we have:

Lp = L∞ ⇒
∞∏
k=1

(1− c′k)
1
pk > 0⇔

∞∏
k=1

(1− ck)
1
pk > 0⇔

∞∑
k=1

ck
pk

<∞,

∞∑
k=1

| ln ck|
pk

<∞⇔
∞∏
k=1

c
1
pk

k > 0⇒ Lp = L∞.

Corollary 3.4 shows that, generally speaking, Theorems 2.1 and 2.2 provide a
fairly large gap between necessary and sufficient conditions for the coincidence of
spaces Lp and L∞. �

Example 3.5. Let (mn)∞n=1, where mn ≥ 2 ∀n ≤ 1, be a sequence of natural
numbers. Suppose that ∀n ≥ 1 each atom from Dn−1 has a branch index mn and

if An ∈ Dn and An−1 ∈ Dn−1 are such that An ⊂ An−1, then P (An) = P (An−1)
mn

.

In this case cn = 1
mn

, c′n = mn−1
mn

and hence cn = 1 − c′n. From Corollary 3.2

it easily follows that Lp = L∞ if and only if
∑∞

k=1
ln(mk)

pk
< ∞. Remark that if

supk≤1mk =∞ we have here irregular s.b.

Example 3.6. In the scheme considered in Example 3.5, change a little the data.
For all n ≥ 1 choose arbitrarily an atom An−1 ∈ Dn−1 and two atoms Ãn and Ân

from Dn such that Ãn ⊂ An−1 and Ân ⊂ An−1. Let us put P (Ãn) = P (An−1)
2mn

,

P (Ân) = 3P (An−1)
2mn

and the probabilities of all other atoms are determined as

in Example 3.5. We have cn = 1
2mn

and 1 − c′n = 3
2mn

. The conditions of

Corollary 3.3 are satisfied and hence Lp = L∞ if and only if
∑∞

k=1
ln(2mk)

pk
< ∞

⇔
∑∞

k=1
ln(mk)

pk
<∞.

4. Conclusion

This article is made within the framework of the topic related to the general
question posed by Professor E.M. Semenov: in what cases do martingale spaces
Lp with mixed norm coincide with the classical spaces Lr, 1 ≤ r ≤ ∞? At present,
only partial answers to this question are known in cases r = 1 and r = ∞ (c.f.
this article and works [1], [3]). To solve this problem in a more general form, it
seems that completely new ideas and methods are needed.
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