ON THE COINCIDENCE OF SPACES WITH MARTINGALE MIXED NORM WITH THE SPACE OF BOUNDED RANDOM VARIABLES IN THE CASE OF IRREGULAR STOCHASTIC BASES

IGOR PAVLOV*

Abstract

For spaces $L_{\mathbf{p}}$ of random variables with martingale mixed norm the theorem of the coincidence of $L_{\mathbf{p}}$ with the space L_{∞} is generalized. Namely, in [1] a criteria for such a coincidence was obtained in the case of a stochastic basis with a regular filtration, and in the present paper, a transition was made to irregular ones. It is a much more complicated problem. In particular, a family of irregular filtrations was found, for which a criterion for the coincidence of $L_{\mathbf{p}}$ and L_{∞} was obtained.

1. Introduction

Let (Ω, \mathcal{A}, P) be a probability space, where Ω is an arbitrary set, \mathcal{A} is a σ algebra on Ω, and P is a probability measure on (Ω, \mathcal{A}). Fix a filtration (i.e. increasing sequence of σ-algebras) $\mathbf{F}=\left(\mathcal{F}_{n}\right)_{n=0}^{\infty}$ such that $\mathcal{F}_{0}=\{\Omega, \emptyset\}$ and \mathcal{A} is the σ-algebra generated by this filtration. A triplet (Ω, \mathbf{F}, P) is called stochastic basis (s.b.).

Let f be an integrable random variable (r.v.) on (Ω, \mathcal{A}, P) and $f_{n}:=E^{P}\left[f \mid \mathcal{F}_{n}\right]$ (i.e. $\mathbf{f}=\left(f_{n}, \mathbf{F}, P\right)$ is a martingale). Let $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}, \ldots\right)$ be an infinite dimensional vector ($1 \leq p_{k} \leq \infty, k=1,2, \ldots$). Martingale mixed norm for r.v. f is defined as follows:

$$
\begin{equation*}
\|f\|_{\mathbf{p}}:=\sup _{n}\|\cdots\|\left\|f_{n}\right\|_{p_{n}, \mathcal{F}_{n-1}}\left\|_{p_{n-1}, \mathcal{F}_{n-2}} \ldots\right\|_{p_{1}, \mathcal{F}_{0}}, \tag{1.1}
\end{equation*}
$$

where the expression $g_{p, \mathcal{F}}$ is equel to $\left(E\left[|g|^{p} \mid \mathcal{F}\right]\right)^{1 / p}$ if $p<\infty$ and $\lim _{r \uparrow \infty} \uparrow\|g\|_{r, \mathcal{F}}$ if $p=\infty$. In what follows, we will also use the following notations:

$$
\mathbf{p}^{n}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)
$$

[^0]and
$$
\|g\|_{\mathbf{p}^{n}}=\|\ldots\|\|g\|_{p_{n}, \mathcal{F}_{n-1}}\left\|_{p_{n-1}, \mathcal{F}_{n-2}} \ldots\right\|_{p_{1}, \mathcal{F}_{0}}
$$

If $\|f\|_{\mathbf{p}}<\infty$, we say that $f \in L_{\mathbf{p}}$. Remark that if $\forall k(1 \leq k<\infty) p_{k}=p$, then $\|f\|_{\mathbf{p}}=L_{p}:=L_{p}(\Omega, \mathcal{A}, P)$.

Throughout this paper, we will assume that $\forall n(1 \leq n<\infty) \sigma$-algebra \mathcal{F}_{n} is finite and generated by the partition \mathcal{D}_{n} of Ω into atoms of strictly positive probability. Remark that $\mathcal{D}_{0}=\{\Omega\}$. We assume that $\forall n \geq 0$ the transition from time n to time $n+1$ cannot be trivial, i.e. $\left|\mathcal{D}_{n}\right| \geq n+1$, where $\left|\mathcal{D}_{n}\right|$ denotes the number of elements of the set \mathcal{D}_{n}. This means that in the transition from n to $n+1$ at least one atom from \mathcal{D}_{n} is split up. When moving from the point in time n to the point $n+1$ an atom $A_{n} \in \mathcal{D}_{n}$ is split into exactly m atoms of \mathcal{D}_{n+1}, we call m branch index of A_{n}.

Let $A_{n} \in \mathcal{D}_{n}$ and $A_{n-1} \in \mathcal{D}_{n-1}$ be such that $A_{n} \subset A_{n-1}$ (it is clear that $A_{0}=\Omega$). Denote $A_{n}^{\prime}:=A_{n-1} \backslash A_{n}$ and $\mathcal{D}_{n}^{\prime}:=\mathcal{D}_{n} \backslash\left\{A_{n} \in \mathcal{D}_{n} \mid A_{n}^{\prime}=\emptyset\right\}$. Let us introduce the following two sequences, which will play an important role in what follows:

$$
\begin{equation*}
c_{n}:=\min _{A_{n} \in \mathcal{D}_{n}^{\prime}} \frac{P\left(A_{n}\right)}{P\left(A_{n-1}\right)}=\min _{A_{n} \in \mathcal{D}_{n}} \frac{P\left(A_{n}\right)}{P\left(A_{n-1}\right)}, n=1,2, \ldots, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n}^{\prime}:=\min _{A_{n} \in \mathcal{D}_{n}^{\prime}} \frac{P\left(A_{n}^{\prime}\right)}{P\left(A_{n-1}\right)}, n=1,2, \ldots \tag{1.3}
\end{equation*}
$$

Formulas (1.2) and (1.3) are understood in the following sense. Numbers c_{n} and c_{n}^{\prime} are calculated for a fixed n, and the same index n is fixed on the right-hand side of these formulas as the index at \mathcal{D}^{\prime} and \mathcal{D}. In this case, the minima are taken under the condition that A_{n} runs through the entire set of atoms \mathcal{D}_{n}^{\prime}.

Proposition 1.1. For any $n \geq 1$ the inequalities

$$
\begin{equation*}
0<c_{n} \leq c_{n}^{\prime}<1 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n} \leq 1-c_{n}^{\prime} \tag{1.5}
\end{equation*}
$$

are fulfilled.
If each atom from $\bigcup_{n=0}^{\infty} \mathcal{D}_{n}$ has an branch index not exceeding 2, then $\forall n \geq 1$ $c_{n}=c_{n}^{\prime}$
Proof. We prove only formula (1.5). Let the expression (1.3) on an event $\tilde{A}_{n}^{\prime} \in \mathcal{D}_{n}$ achieve the equality $c_{n}^{\prime}=\frac{P\left(\widetilde{A}_{n}^{\prime}\right)}{P\left(\tilde{A}_{n-1}\right)}$. Then

$$
c_{n}^{\prime}=\frac{P\left(\tilde{A}_{n}^{\prime}\right)}{P\left(\tilde{A}_{n-1}\right)}=\frac{P\left(\tilde{A}_{n-1}\right)-P\left(\tilde{A}_{n}\right)}{P\left(\tilde{A}_{n-1}\right)}=1-\frac{P\left(\tilde{A}_{n}\right)}{P\left(\tilde{A}_{n-1}\right)} \leq 1-c_{n}
$$

(c.f. (1.2)). From here we get (1.5)

Definition 1.2. We say that a s.b. (Ω, \mathbf{F}, P) is forked if $\forall n \geq 1 \mathcal{D}_{n}=\mathcal{D}_{n}^{\prime}$, and locally forked if there exists a chain of embedded atoms $A_{0} \supset A_{1} \cdots \supset A_{n} \supset \ldots$ such that $\forall n \geq 1 A_{n} \in \mathcal{D}_{n}^{\prime}$.

It is clear that if a s.b. (Ω, \mathbf{F}, P) is forked, then it is locally forked.
The following definition is borrowed from [2].
Definition 1.3. We say that a s.b. (Ω, \mathbf{F}, P) is regular if there exists an independent on n constant $c, 0<c<1$, such that $\forall n \geq 1$, for each atom $A_{n} \in \mathcal{D}_{n}$, and for the atom $A_{n-1} \in \mathcal{D}_{n-1}$ containing A_{n} the following inequality is fulfilled:

$$
P\left(A_{n}\right) \geq c \cdot P\left(A_{n-1}\right)
$$

Otherwise, s.b. is called irregular.
In the case of a locally forked regular stochastic basis, the criteria for the coincidence of $L_{\mathbf{p}}$ and L_{∞} obtained in [1] (see also [3]) is presented in this paper by Corollary 3.1. The main result of this paper is Corollary 3.3, which follows from Theorems 2.1 and 2.2.
2. Theorems on the coincidence of $L_{\mathbf{p}}$ and L_{∞}

Theorem 2.1. If

$$
\begin{equation*}
\prod_{k=1}^{\infty} c_{k}^{\frac{1}{p_{k}}}>0 \tag{2.1}
\end{equation*}
$$

then $L_{\mathbf{p}}=L_{\infty}$.
Proof. Prove first that $\forall n=1,2, \ldots$ and for any event $A \in \mathcal{F}_{n}$

$$
\begin{equation*}
\left\|I_{A}\right\|_{\mathbf{p}} \geq \prod_{k=1}^{n} c_{k}^{1 / p_{k}}, 1 \leq \mathbf{p} \leq \infty \tag{2.2}
\end{equation*}
$$

Consider an atom $A_{n} \in \mathcal{D}_{n}$ such that $A_{n} \subset A$ and the atom $A_{n-1} \in \mathcal{D}_{n-1}$ such that $A_{n} \subset A_{n-1}$. We have: $\left\|I_{A}\right\|_{\mathbf{p}} \geq\left\|I_{A_{n}}\right\|_{\mathbf{p}}=\left\|I_{A_{n}}\right\|_{\mathbf{p}^{n}}$. Now we get for $p_{n}<\infty$:

$$
\left\|I_{A_{n}}\right\|_{p_{n}, \mathcal{F}_{n-1}}=\left(E\left[I_{A_{n}} \mid \mathcal{F}_{n-1}\right]\right)^{1 / p_{n}}=\left(\frac{P\left(A_{n}\right)}{P\left(A_{n-1}\right)} \cdot I_{A_{n-1}}\right)^{1 / p_{n}} \geq c_{n}^{1 / p_{n}} \cdot I_{A_{n-1}}
$$

It is clear, that the obtained inequality is valid for $p_{n}=\infty$ too. Therefore, (2.2) follows from the formula (1.1).

Now let the condition of theorem 2.1 be satisfy, $f \in L_{\mathbf{p}}$, but $f \notin L_{\infty}$. Denote by A_{n} such atom in \mathcal{D}_{n}, for which $\left\|f_{n}\right\|_{\infty}=\left|a_{n}\right|$, where a_{n} is the value of f_{n} on A_{n}. Therefore, $\sup \left|a_{n}\right|=\infty$. We get:

$$
\|f\|_{\mathbf{p}}=\sup _{n}\left\|f_{n}\right\|_{\mathbf{p}} \geq \sup _{n}\left|a_{n}\right| \cdot\left\|I_{A_{n}}\right\|_{\mathbf{p}} \geq \sup _{n}\left(\left|a_{n}\right| \cdot \prod_{k=1}^{n} c_{k}^{1 / p_{k}}\right)=\infty .
$$

The contradiction shows that $L_{\mathbf{p}}=L_{\infty}$.
Theorem 2.2. Let s.b. (Ω, \mathbf{F}, P) is locally forked. Then from $L_{\mathbf{p}}=L_{\infty}$ it follows

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left(1-c_{k}^{\prime}\right)^{\frac{1}{p_{k}}}>0 \tag{2.3}
\end{equation*}
$$

Proof. Consider the chain $A_{0} \supset A_{1} \cdots \supset A_{n} \supset \ldots$ from Definition 1.2. Prove first that

$$
\begin{equation*}
\left\|I_{A_{n}}\right\|_{\mathbf{p}} \leq \prod_{k=1}^{n}\left(1-c_{k}^{\prime}\right)^{1 / p_{k}}, 1 \leq \mathbf{p} \leq \infty \tag{2.4}
\end{equation*}
$$

We obtain if $p_{n}<\infty$:

$$
\begin{gathered}
\left\|I_{A_{n}}\right\|_{p_{n}, \mathcal{F}_{n-1}}=\left(\frac{P\left(A_{n}\right)}{P\left(A_{n-1}\right)} \cdot I_{A_{n-1}}\right)^{1 / r_{n}}=\left(\frac{P\left(A_{n-1}\right)-P\left(A_{n}^{\prime}\right)}{P\left(A_{n-1}\right)} \cdot I_{A_{n-1}}\right)^{1 / r_{n}} \\
\leq\left(1-c_{n}^{\prime}\right)^{1 / r_{n}} \cdot I_{A_{n-1}} .
\end{gathered}
$$

The obtained inequality is valid for $p_{n}=\infty$ too. Inequality (2.4) follows from the formula (1.1).

Suppose now that $L_{\mathbf{p}}=L_{\infty}$. Then there exists a strictly positive number d such that for any r.v. $f \in L_{\infty}$ the inequality $\|f\|_{\infty} \leq d\|f\|_{\mathbf{p}}$ is true. Applying this inequality for r.v. $f=I_{A_{n}}$ and taking into account the inequality (2.4), we obtain the inequality:

$$
1=\left\|I_{A_{n}}\right\|_{\infty} \leq d\left\|I_{A_{n}}\right\|_{\mathbf{p}} \leq d \cdot \prod_{k=1}^{n}\left(1-c_{n}^{\prime}\right)^{1 / p_{k}}
$$

It follows from it the inequality we need.

3. Corollaries and examples

Corollary 3.1. Let s.b. (Ω, \mathbf{F}, P) is locally forked and regular. Equality $L_{\mathbf{p}}=L_{\infty}$ holds if and only if $\sum_{k=1}^{\infty} 1 / r_{k}<\infty$.

Proof. Denote $c=\inf _{n \geq 1} c_{n}>0$ and $c^{\prime}=\inf _{n \geq 1} c_{n}^{\prime}$. It is obvious that the regularity of s.b. $(\Omega, \mathbf{F}, \bar{P})$ is equivalent to the inequality $c>0$.

Let $\sum_{k=1}^{\infty} 1 / r_{k}<\infty$. Since $\prod_{k=1}^{\infty} c_{k}^{1 / p_{k}} \geq \prod_{k=1}^{\infty} c^{1 / p_{k}}>0$, it follows from Theorem 2.1 that $L_{\mathbf{p}}=L_{\infty}$.

Let $L_{\mathbf{p}}=L_{\infty}$. We obtain from the inequality $1-c \geq 1-c_{n}^{\prime}$ and Theorem 2.2 that $\prod_{k=1}^{\infty}(1-c)^{1 / p_{k}} \geq \prod_{k=1}^{\infty}\left(1-c_{k}^{\prime}\right)^{1 / p_{k}}>0$. This implies the inequality $\sum_{k=1}^{\infty} 1 / r_{k}<\infty$.

Corollary 3.2. Let s.b. (Ω, \mathbf{F}, P) is locally forked. If $\forall n \geq 1 c_{n}=1-c_{n}^{\prime}$, then $L_{\mathbf{p}}=L_{\infty}$ if and only if the inequality (2.1) holds.

Proof. The proof follows from Theorems 2.1 and 2.2.
Corollary 3.3. Let (Ω, \mathbf{F}, P) is locally forked. If $\lim _{n \rightarrow \infty} c_{n}=0$ and also $\forall n \geq 1$ and for two positive constants c and $d 0<c \leq \frac{1-c_{n}^{\prime}}{c_{n}} \leq d$, then $L_{\mathbf{p}}=L_{\infty}$ if and only if the inequality (2.1) holds.

Proof. From the relations $\lim _{n \rightarrow \infty} c_{n}=0$ and $0<c \leq \frac{1-c_{n}^{\prime}}{c_{n}} \leq d$ it easily follows that $\ln \left(1-c_{n}^{\prime}\right) \sim \ln c_{n}$ as $n \rightarrow \infty$. Hence inequalities (2.1) and (2.3) are equivalent. This implies the required assertion.

Corollary 3.4. Let a locally forked s.b. (Ω, \mathbf{F}, P) is such that each atom from $\bigcup_{n=0}^{\infty} \mathcal{D}_{n}$ has a branch index not exceeding 2. If $\lim _{n \rightarrow \infty} c_{n}=0$, then

$$
L_{\mathbf{p}}=L_{\infty} \Rightarrow \sum_{k=1}^{\infty} \frac{c_{k}}{p_{k}}<\infty \quad \text { and } \quad \sum_{k=1}^{\infty} \frac{\left|\ln c_{k}\right|}{p_{k}}<\infty \Rightarrow L_{\mathbf{p}}=L_{\infty}
$$

Proof. From Proposition 1.1 we obtain equality $c_{n}^{\prime}=c_{n} \forall n \geq 1$. Applying Theorems 2.2 and 2.1 we have:

$$
\begin{aligned}
L_{\mathbf{p}}=L_{\infty} \Rightarrow & \prod_{k=1}^{\infty}\left(1-c_{k}^{\prime}\right)^{\frac{1}{p_{k}}}>0 \Leftrightarrow \prod_{k=1}^{\infty}\left(1-c_{k}\right)^{\frac{1}{p_{k}}}>0 \Leftrightarrow \sum_{k=1}^{\infty} \frac{c_{k}}{p_{k}}<\infty \\
& \sum_{k=1}^{\infty} \frac{\left|\ln c_{k}\right|}{p_{k}}<\infty \Leftrightarrow \prod_{k=1}^{\infty} c_{k}^{\frac{1}{p_{k}}}>0 \Rightarrow L_{\mathbf{p}}=L_{\infty}
\end{aligned}
$$

Corollary 3.4 shows that, generally speaking, Theorems 2.1 and 2.2 provide a fairly large gap between necessary and sufficient conditions for the coincidence of spaces $L_{\mathbf{p}}$ and L_{∞}.

Example 3.5. Let $\left(m_{n}\right)_{n=1}^{\infty}$, where $m_{n} \geq 2 \forall n \leq 1$, be a sequence of natural numbers. Suppose that $\forall n \geq 1$ each atom from \mathcal{D}_{n-1} has a branch index m_{n} and if $A_{n} \in \mathcal{D}_{n}$ and $A_{n-1} \in \mathcal{D}_{n-1}$ are such that $A_{n} \subset A_{n-1}$, then $P\left(A_{n}\right)=\frac{P\left(A_{n-1}\right)}{m_{n}}$. In this case $c_{n}=\frac{1}{m_{n}}, c_{n}^{\prime}=\frac{m_{n}-1}{m_{n}}$ and hence $c_{n}=1-c_{n}^{\prime}$. From Corollary 3.2 it easily follows that $L_{\mathbf{p}}=L_{\infty}$ if and only if $\sum_{k=1}^{\infty} \frac{\ln \left(m_{k}\right)}{p_{k}}<\infty$. Remark that if $\sup _{k \leq 1} m_{k}=\infty$ we have here irregular s.b.

Example 3.6. In the scheme considered in Example 3.5, change a little the data. For all $n \geq 1$ choose arbitrarily an atom $A_{n-1} \in \mathcal{D}_{n-1}$ and two atoms \tilde{A}_{n} and \hat{A}_{n} from \mathcal{D}_{n} such that $\tilde{A}_{n} \subset A_{n-1}$ and $\hat{A}_{n} \subset A_{n-1}$. Let us put $P\left(\tilde{A}_{n}\right)=\frac{P\left(A_{n-1}\right)}{2 m_{n}}$, $P\left(\hat{A}_{n}\right)=\frac{3 P\left(A_{n-1}\right)}{2 m_{n}}$ and the probabilities of all other atoms are determined as in Example 3.5. We have $c_{n}=\frac{1}{2 m_{n}}$ and $1-c_{n}^{\prime}=\frac{3}{2 m_{n}}$. The conditions of Corollary 3.3 are satisfied and hence $L_{\mathbf{p}}=L_{\infty}$ if and only if $\sum_{k=1}^{\infty} \frac{\ln \left(2 m_{k}\right)}{p_{k}}<\infty$ $\Leftrightarrow \sum_{k=1}^{\infty} \frac{\ln \left(m_{k}\right)}{p_{k}}<\infty$.

4. Conclusion

This article is made within the framework of the topic related to the general question posed by Professor E.M. Semenov: in what cases do martingale spaces $L_{\mathbf{p}}$ with mixed norm coincide with the classical spaces $L_{r}, 1 \leq r \leq \infty$? At present, only partial answers to this question are known in cases $r=1$ and $r=\infty$ (c.f. this article and works [1], [3]). To solve this problem in a more general form, it seems that completely new ideas and methods are needed.

IGOR PAVLOV

References

1. Pavlov, I.V.: On properties of spaces with martingale mixed norm with summability exponents close to one, Journal of Mathematical Sciences, May 2023, https://doi.org/10.1007/s10958-023-06327-y.
2. Long, R. Martingale Spaces and Inequalities, Hong Kong, Peking Univ. Press, 1993.
3. Pavlov, I.V.: Some properties of martingale spaces $H_{p}, B M O, V M O$ and with mixed norm, Review of Applied and Industrial mathematics, TVP, Moscow, l, no. 2 (1999) 368-386.

Igor V. Pavlov: Chief Researcher of Regional Mathematical Center of Southern Federal University, $105 / 42$, Bolshaya Sadovaya Str., Rostov-on Don, Russia

Email address: pavloviv2005@mail.ru

[^0]: Date: Date of Submission May 15, 2023; Date of Acceptance July 30, 2023, Communicated by Yuri E. Gliklikh .

 2010 Mathematics Subject Classification. Primary 60G46; Secondary 60G42, 46E30.
 Key words and phrases. Martingale, atom, branch index, chain of atoms, regular and irregular filtrations, forked and locally forked filtrations, martingale mixed norm.

 * Research was supported by the Regional mathematical center of the Southern Federal University with the support of the Ministry of Science and Higher Education of Russia, agreement N 075-02-2023-924 dated 16.02.2023.

