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Abstract. This paper deals with the modification of the theory of guiding
functions such that it becomes applicable to the investigation of ordinary

differential equations on noncompact finite-dimensional smooth manifolds.
The main purpose is to apply this theory to searching for periodic solutions of
those equations. We introduce two different constructions of topological index

compatible with the problem under consideration and prove the existence of
a periodic solution basing on the theory of guiding potentials. All results
are formulated in terms of internal topological structures of manifolds, i.e.,
geometrical notions are used only as a machinery and are not involved into

the formulations.

1. Introduction

The method of guiding functions was originally developed by M.A. Krasnosel’-
skii and A.I. Perov as one of the tools for solving problems of periodic oscillations
and bounded solutions in nonlinear systems (see, e.g., [1, 2, 3, 4]). Being geomet-
rically clear and simple to use in applications, it became one of the most powerful
and effective instruments for dealing with periodic problems. In the subsequent
years it was generalized and extended in many various directions and found impor-
tant applications not only in the frameworks of periodic and bounded solutions but
also to the investigations of qualitative behavior of solutions including such prop-
erties as bifurcations, asymptotic estimates and others (see, e.g., the monograph
[5] and the references therein).

It is worth noting that all these numerous extensions and applications were
dealing only with systems governed by differential equations and inclusions in finite
dimensional linear spaces or in infinite dimensional Hilbert spaces. Meantime it
is well known that the problems of qualitative behavior of solutions are of a great
importance also for systems given on manifolds which arise from applications in
mathematical physics and in other branches of natural sciences (see, e.g., [6]).
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In the present paper we are trying to extend the method of guiding functions
towards the study of the periodic problem for differential equations on smooth non-
compact finite dimensional manifolds. We introduce two different constructions of
the topological index compatible with the problem under consideration and prove
the existence of a periodic solution basing on the theory of guiding potentials. All
results are formulated in terms of internal topological structures of manifolds, i.e.,
geometrical notions are used only as a machinery and are not involved into the
formulations.

2. The Topological Index of Maps on a Manifold

Let M be an n-dimensional noncompact manifold and Ω a domain in M home-
omorphic to an open ball in Rn. By Ω we denote the closure of Ω, and by ∂Ω its
boundary. We will suppose everywhere that Ω is homeomorphic to a closed ball
and hence it is compact.1

Let F : Ω → M be a continuous map which is fixed point free on the boundary
∂Ω (i.e., x ̸= F (x), ∀x ∈ ∂Ω).

By the Whitney theorem (see, e.g., [7]) the manifold M can be embedded into
the Euclidean space RN of sufficiently large dimension N ≥ 2n+ 1. Let W ⊂ RN

be a tubular neighborhood of M and r : W → M a retraction. Let U ⊂ W be an
open set such that r(U) = Ω. Let us extend the map F to U as F : U → M ⊂ RN

by the formula

F (x) = F (r(x)).

By construction, it is clear that the map F is fixed point free on the boundary ∂U .
This means that for the corresponding vector field I − F , where I : RN → RN is
the identity, the topological degree (or rotation) γ(I −F, ∂U) is well defined (see,
e.g., [2, 4]).

Definition 2.1. The fixed point index of the map F on ∂Ω is defined in the
following way

ind(F, ∂Ω) := γ(I − F, ∂U).

First of all, let us mention that the above notion is well defined.

Theorem 2.2. The fixed point index ind(F, ∂Ω) does not depend on the choice
of space RN , embedding, open set U , and retraction r.

The proof of Theorem 2.2 (even for an infinite-dimensional case) can be found
in [8].

Immediately from the construction it follows that the characteristic, defined
above, possesses usual properties, including homotopy invariance. It is also easy
to see that its difference from zero implies the existence of at least one fixed point
of F in Ω.

For dealing with zeros of tangent and cotangent vector fields inside Ω we have
to apply another construction of index.

1Notice that it does not follow from the homeomorphism of Ω to an open ball.
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Let a continuous tangent vector field X having no zero singular points be given
on ∂Ω. Since Ω is homeomorphic to a closed ball, there exists a neighbourhood V
of Ω that is a chart, i.e., it can be presented as a set in Rn, homeomorphic to an
open ball. According to this presentation the tangent vectors of X are becoming
vectors in Rn (are embedded into Rn), and for the field X on ∂Ω the ordinary
topological degree of a vector field is well defined. In order not to confuse it with
the index of γ(F, ∂Ω) type, we denote it by γ̂(X, ∂Ω). Note that the presentation
of V as a chart is ambiguously determined, but different versions of such presen-
tation are diffeomorphic to each other and so γ̂ does not depend on the choice of
such presentation, i.e., it is well defined. Since by the use of a scalar product in
Rn the cotangent vectors (1-forms) can be identified with the tangent ones, the
index γ̂ is well defined for cotangent vectors also.

Let a continuous map Φ : ∂Ω → M be given.

Definition 2.3. We call Φ admissible on Ω, if for every m ∈ Ω the point Φ(m)
belongs to V .

Definition 2.4. The fixed point index of γ̂ type for an admissible map Φ is defined
by the formula

înd(Φ, ∂Ω) := γ̂(I − Φ, ∂Ω).

Consider the case where the map F mentioned above, is admissible. In this

situation, besides index ind(F, ∂Ω) we can deal with the index înd(F, ∂Ω).

Theorem 2.5. Let the mapping F be admissible on Ω. Then

ind(F, ∂Ω) = înd(F, ∂Ω).

Proof. In fact we have to show that γ(I − F , ∂U) coincides with γ̂(I − F, ∂Ω).
Since F sends U to V and on V it coincides with F , this fact follows from the
principle of a map restriction (see, e.g., [2, 4]). �

3. The Main Result

Recall the following notion.

Definition 3.1. A map from the topological space Y to the topological space Z
is called proper, if the preimage of every relatively compact set in Z is relatively
compact in Y . In particular, a function φ : M → R is called proper if the preimage
of every bounded subset of R is relatively compact in M .

Remark 3.2. It is easy to see that a function φ : Rn → R is proper if and only if
it is coercive, i.e., ∥x∥ → ∞ implies |φ(x)| → ∞.

The replacement of the coercivity property with that of properness allows us
not to deal with metric notions on the manifold from the very beginning. The
notion of properness is formulated in topological terms, i.e., it does not require
the use of additional structures on a manifold.
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By the symbol Xf we denote the derivative of a function f : M → R in the
direction of a vector field X. Recall that always

Xf = df(X),

where df(X) denotes the value of the co-vector df on the vector X. Notice also
that if a Riemannian metric is given on M (e.g., the Euclidean metric (·, ·) after
embedding of M into RN ), then

Xf = df(X) = (grad f,X).

Notice that if a non-autonomous vector field X(t,m) for all t does not equal to
zero on ∂Ω, the fields at different values of t are homotopic to each other without
zeroes on ∂Ω, i.e., they have the same indices γ̂. In pasrticular the fields X(t,m)
on ∂Ω for all t do not equal to zero if for all t on ∂Ω the relation Xφ > 0 holds
for a certain function φ.

The next proposition is a simple generalisation of the theorem on the existence
of a solution to the Cauchy problem under the estimates of one-sided type (see,
e.g., [3, 6]).

Proposition 3.3. Let f : M → R be a proper smooth positive function and for a
vector field X the inequality

Xf < C (3.1)

holds at all points for a certain constant C > 0. Then every solution of the Cauchy
problem for the differential equation

x′ = X

is well defined for all t ∈ [0,∞).

Proof. Indeed, from the the theorem on the existence of a local solution to the
Cauchy problem it follows that the domain of a solution is an open set. However,
inequality (3.1) implies that on every open bounded interval [0, ε) the values of
the function f on the solution are not greater than Cε. Hence, the solution on the
open interval [0, ε) belongs to a relatively compact set in M , i.e., the solution can
be prolonged to the closed interval [0, ε]. Thus, the domain of the solution is both
open and closed. But the only set in metric topology on R that is both open and
closed, is the entire R. �

We will consider the problem of existence of T -periodic solutions of the differ-
ential equation

d

dt
m(t) = X(t,m(t)). (3.2)

Our main result is the following assertion.

Theorem 3.4. Let X(t,m) be a smooth T -periodic vector field on R×M , i.e.,

X(t+ T,m) = X(t,m), ∀t ∈ R, m ∈ M

and let a smooth proper positive function φ : M → R+ be such that:
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(i) for every t ∈ [0, T ] the inequality

Xφ < ∞, (3.3)

holds;
(ii) the relation

Xφ > 0, (3.4)

is fulfilled on ∂Ω;
(iii) every point x0 ∈ ∂Ω is a T -non-recurrence point for solutions of equation

(3.2), i.e., x(t) ̸= x0, ∀t ∈ (0, T ] for every solution x(·) of (3.2) emanating
from x0;

(iv) for the covector field (1-form) dφ the relation

γ̂(dφ, ∂Ω) ̸= 0. (3.5)

holds.

Then there exists a T -periodic solution of equation (3.2) with an initial condition
in Ω.

Proof. By Proposition 3.3 it follows from (3.3) that all solutions of equation (3.2)
exist for t ∈ [0,∞). From (3.4) it follows that on ∂Ω for all t the field X does not
equal to zero, i.e., the index γ̂(X, ∂Ω) is well defined. Recall that the transition
from dφ to gradφ is realized by a fiber-wise linear isomorphism of the tangent
and cotangent bundles. Hence,

γ̂(dφ, ∂Ω) = γ̂(gradφ, ∂Ω) ̸= 0.

In addition, from (3.4) it follows that for every t the inequality

(X, gradφ) > 0

holds, i.e., the angle between the vectors X and gradφ is acute. Thus, the linear
homotopy between these vectors has no zeroes on ∂Ω and so

γ̂(X, ∂Ω) ̸= 0.

Consider on ∂Ω the operator of translation u(T ) : ∂Ω → M along the trajec-
tories of equation (3.2), that sends a point m ∈ ∂Ω to the value of the solution
of (3.2) with initial condition m at the time T (see [2, 3, 4, 5]). From condition
(iii) it follows that the index ind(u(T ), ∂Ω) for u(T ) is well defined. Consider the
family of the operators of translation u(t) for t ∈ [0, T ] along the trajectories of
(3.2). Since ∂Ω is compact, there exists t∗ ∈ [0, T ] such that u(t∗) is admissible
on ∂Ω. Moreover, condition (iii) yields that the operators u(t) for t ∈ [0, T ] form
the homotopy without fixed points on ∂Ω that connects u(T ) with u(t∗) implying

ind(u(T ), ∂Ω) = ind(u(t∗), ∂Ω).

From Theorem 2.5 we get

înd(u(t∗), ∂Ω) = ind(u(t∗), ∂Ω).

In complete analogy with the proof of [3, Lemma 6.1] it can be shown that the
fields X(0) and u(t∗)− I do not admit opposite directions on ∂Ω. This yields

γ̂(X, ∂Ω) = înd(u(t∗), ∂Ω).
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From all the above arguments we obtain that

ind(u(T ), ∂Ω) ̸= 0.

Hence, inside Ω there exists a fixed point of u(T ), implying that a solution of (3.2)
emanating from this point is T -periodic. �

Let us present an example of situation where condition (3.5) is fulfilled.

Proposition 3.5. Let there exist a vector field Y on ∂Ω, transversal to ∂Ω and
such that dφ(Y ) > 0. Then condition (3.5) is fulfilled.

Proof. Since Y is transversal to ∂Ω,

γ̂(Y, ∂Ω) = ±1.

From dφ(Y ) > 0 it follows that

(Y, gradφ) > 0

and as above, by the linear homotopy without zeroes on ∂Ω we obtain that

γ̂(gradφ, ∂Ω) = ±1.

Hence
γ̂(dφ, ∂Ω) = ±1.

�
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