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Abstract. Time-changed stochastic processes have attracted much atten-

tion and wide interest due to their extensive applications, especially in finan-
cial time series, network traffic, biology, and physics. This paper pays atten-

tion to a fractional stochastic process, defined by taking linear combinations

of a finite number of independent fractional Brownian motions with differ-
ent Hurst indices called the generalized mixed fractional Brownian motion,

which is a Gaussian process with stationary increments exhibit long-range

dependence controlled by the Hurst indices. We prove that under some condi-
tions on the Hurst indices, the generalized mixed fractional Brownian motion

time changed by inverse α-stable subordinator exhibits long-range depen-
dence property. As application, we deduce that the mixed fractional Brown-

ian motion of Hurst index H has long-range dependence for all H > 1/2.

1. Introduction

Fractional Brownian motion (fBm) introduced by Mandelbrot and Ness [12] is
a self-similar process with stationary increments. A fBm BH = {BH

t , t ≥ 0} with
Hirst index H ∈ (0, 1), is a centered Gaussian process with covariance function

Cov(BH
t , BH

s ) =
1

2
[t2H + s2H − |t− s|2H ], s, t ≥ 0,

where H is a real number in (0, 1), called the Hurst index. The fBm is often
used to model phenomena that exhibit long-range dependence property.The case
H = 1/2 corresponds to the Brownian motion (Bm).

An extension of the fBm was introduced by Cheridito [3], called the mixed
fractional Brownian motion (mfBm) which is a linear combination between a Bm
and an independent fBm of Hurst index H, with stationary increments exhibiting
a long-range dependence for H > 1/2. A mfBm of parameters a1, a2 and H is a
process MH(a1, a2) = {MH

t (a1, a2), t ≥ 0}, defined on some probability space
(Ω,F , P ) by

MH
t (a1, a2) = a1Bt + a2B

H
t , t ≥ 0,
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where B = {Bt, t ≥ 0} is a Bm and BH =
{
BH

t , t ≥ 0
}
is an independent fBm

of Hurst index H ∈ (0, 1). We refer also to [2, 3, 6] for further information on
mfBm process.

C. Elnouty [5] proposes a generalization of the mfBm called fractional mixed
fractional Brownian motion (fmfBm) of parameters a1, a2, and H = (H1, H2). A
fmfBm is a processNH(a1, a2) = {NH

t (a1, a2), t ≥ 0}, defined on some probability
space (Ω,F , P ) by

NH
t (a1, a2) = a1B

H1
t + a2B

H2
t , t ≥ 0,

where BHi = {BHi
t , t ≥ 0} are independent fractional Brownian motion of Hurst

index Hi ∈ (0, 1) for i = 1, 2. Also, the fmfBm was studied by Miao, Y et al. [?].
The fmfBm has been further generalized by Thäle in 2009 [20] to the gen-

eralized mixed fractional Brownian motion (gmfBm). A gmfBm of parameter
H = (H1, H2, ...,Hn) and a = (a1, a2, ..., an), Hk ∈ (0, 1), ak ∈ R, n ∈ N∗ is
a fractional stochastic process, defined by taking linear combinations of a finite
number of independent fBms with different Hurst indices. The gmfBm is a cen-
tered Gaussian process that has stationary increments with long-range dependence
property when there exists some k with Hk > 1/2. The gmfBm has been used in
modeling internet traffic using self-similar processes, see [?] also for an underlying
modeled in the gmfBm market, see [21].

Note that the gmfBm model is a generalization of all the fBm models considered
in the literature. Such a generalized model degenerates to the single fBm model
with n = 1, the Bm model with n = 1 and H1 = 1/2, the mfBm model with n = 2
and H1 = 1/2 and the fmfBm when n = 2. For a detailed survey on the properties
of the gmfBm, we refer to [8, 9, 20].

The time-changed generalized mixed fractional Brownian motion is defined as

LH,a
β = {LH,a

βt
, t ≥ 0} = {ZH,a

βt
, t ≥ 0},

where the parent process TH,a is a gmfBm with parameters H = (H1, H2, ...,Hn),
a = (a1, a2, ..., an) and the internal process is the subordinator β = {βt, t ≥ 0}
assumed to be independent of BHk

t , for k = 1, 2, ..., n. If H = ( 12 , 0, ..., 0) and

a = (1, 0, ..., 0), the process LH,a
β is called subordinated Bm. Also, the case of the

process LH,α
β , where H = (H1, 0, ..., 0) and a = (1, 0, .., 0) is called subordinated

fBm.
A time-changed process is constructed by taking the superposition of two in-

dependent stochastic systems. The evolution of time in the external process is
replaced by a non-decreasing stochastic process, called the subordinator. The re-
sulting time-changed process very often retains important properties of the exter-
nal process, however certain characteristics might change. Time-changed processes
are a powerful tool for modeling a wide range of phenomena, including scaling limit
of continuous time random walks, they are useful to model anomalous diffusion
and fractional kinetics that appear in economics, finance, and recently also in
neuronal modeling.

In the case H = ( 12 , H2, 0..., 0) and a = (a1, a2, 0, ..., 0), the time-changed mixed
fractional Brownian motion has been discussed in [7] to present a stochastic model
of the discounted stock price in some arbitrage-free and complete financial markets.
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This model is the process

XH,a
t = XH,a

0 exp{µβt + σMH,a
βt

},

where µ is the rate of the return and σ is the volatility and βt is the α-inverse
stable subordinator.

The time-changed processes have found many interesting applications, for ex-
ample in [1, 7, 15, 18].

In this work, we aims to discuss the main properties of the time-changed gmfBm
by inverse α-stable subordinator paying attention to the long-range dependence
property. This process can be used to model phenomena that exhibit long-range
dependence, even when the underlying process is not itself long-range dependent.
The fact that the time-changed gmfBm by α-stable subordinator exhibits long-
range dependence is significant because it means that this process can be used to
model phenomena that exhibit long-range dependence, even when the underlying
process is not itself long-range dependent. This opens up a wide range of new
possibilities for modeling real-world data.

This paper extends the results in [15] for fmfBm to gmfBm and it gives a
sufficient condition for the long-range dependence property depending on the Hurst
indices H1, ...,Hn.

The remainder of this paper is organized as follows. First, we review the nec-
essary background of the inverse α-stable subordinator. Second, we recall some
properties of the gmfBm. Next, we study the long-range dependence property of
the time changed generalized mixed fractional Brownian motion by the inverse
α-stable subordinator. Finally, we deduce some results of known fractional pro-
cesses.

2. Preliminaries

In this section we review the necessary background of inverse α-stable subor-
dinator and we recall some properties of the gmfBm. Also, we recall briefly the
commonly used definitions of long range dependence, based on the correlation
function of a process.

We begin by defining the mgfBm.

Definition 2.1. A generalized mixed fractional Brownian motion of parameter
H = (H1, H2, ...,Hn) and a = (a1, a2, ..., an), Hk ∈ (0, 1), ak ∈ R, n ∈ N∗ is a

stochastic process ZH,a = {ZH,a
t , t ≥ 0} defined on some probability space by

ZH,a
t =

n∑
k=1

akB
Hk
t , (2.1)

where BHi
t are independent fractional Brownian motions of Hurst indexHk ∈ (0, 1)

for k = 1, 2, ..., n and a1, a2, ..., an are real coefficients.

Below we collect some properties of the gmfBm. For proofs and additional
information on the importance of this process see [20] and the references therein.
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Lemma 2.2. The gmfBm ZH,a = {ZH,a
t , t ≥ 0} is a centered Gaussian process

with variance
∑n

k=1 a
2
kt

2Hk and covariance function

Cov(BH
t , BH

s ) =
1

2

n∑
k=1

a2k[t
2Hk + s2Hk − |t− s|2Hk ], s, t ≥ 0, (2.2)

and it has stationary increments. ZH,a is also (c1, ..., cn;H1, ...,Hn)-self-similar
in the sense that

n∑
k=1

akc
−Hk

k BHk
ckt

=

n∑
k=1

akB
Hk
t

in law. ZH,a is neither a Markov process nor a semi-martingale, unless Hk = 1/2
for all k.

Proposition 2.3. ZH,a has the LRD if and only if there exists k with Hk > 1/2.

The mgfBm is a versatile stochastic process with a wide range of applications.
It is used in finance, hydrology, physics, network science, and other fields. For ex-
ample, mgfBm has been used to model the prices of financial assets, the dynamics
of physical systems, and the behavior of networks.

Now, we define the inverse α-stable subordinator.

Definition 2.4. The inverse α-stable subordinator Tα = {Tα
t , t ≥ 0} is defined

in the following way

Tα
t = inf{r > 0, ηαr ≥ t}, (2.3)

where ηα = {ηαr , r ≥ 0} is the α-stable subordinator [17, 19] with Laplace trans-
form

E(e−uηα
r ) = e−ruα

, α ∈ (0, 1).

The inverse α-stable subordinator is a non-decreasing Lévy process, starting from
zero, and has stationary and independent increments with α-self similar. Specially,
when α ↑ 1, Tα

t reduces to the physical time t.

Lemma 2.5. Let Tα be an inverse α-stable subordinator with index α ∈ (0, 1).
From [13, 14], we know that

E(Tα
t ) =

tα

Γ(α+ 1)
and E((Tα

t )
n) =

tnαn!

Γ(nα+ 1)
.

Lemma 2.6. Let Tα be an inverse α-stable subordinator with index α ∈ (0, 1) and
BH be a fBm. Then, by α-self-similar and non-decreasing sample path of Tα

t , we
have

E(BH
Tα
t
)2 =

(
tα

Γ(α+ 1)

)2H

.

Proof. See [?, 14]. □
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Notation 2.7. Let X and Y be two centered random variables defined on the same
probability space. Let

Corr(X,Y ) =
Cov(X,Y )√
E(X2)E(Y 2)

, (2.4)

denote the correlation coefficient between X and Y.

Now, we discuss the long-range dependent behavior of the inverse α-stable sub-
ordinator.

Definition 2.8. A finite variance stationary process {Xt, t ≥ 0} is said to have
long-range dependence property [4], if

∑∞
k=0 γk = ∞, where

γk = Cov(Xk, Xk+1).

In the following definition we give the equivalent definition for a non-stationary
process {Xt, t ≥ 0}.

Definition 2.9. Let s > 0 be fixed and t > s. The process {Xt, t ≥ 0} is said to
have long-range dependence property (LRD) if

Corr(Xt, Xs) ∼ c(s)t−d, as t → ∞,

where c(s) is a constant depending on s and d ∈ (0, 1).
An equivalent definition is given in [11].

Let 0 < s < t and s be fixed. Assume a stochastic process {Xt, t ≥ 0} has the
correlation function Corr(Xs, Xt) that satisfies

c1(s)t
−d ≤ Corr(Xs, Xt) ≤ c2(s)t

−d

for large t, d > 0, c1(s) > 0 and c2(s) > 0.
That is,

limt→∞
Corr(Xs, Xt)

t−d
= c(s)

for some c(s) > 0 and d > 0. We say {Xt, t ≥ 0} has the long-range dependence
property (LRD for short) if d ∈ (0, 1).

Long-range dependence is a common feature of many real-world processes, such
as financial time series, hydrological data, telecommunications, and network traffic.
Long-range dependence is a well-known challenge in financial forecasting, as it
makes it difficult to predict the future values of financial assets based on their
past values.

Proposition 2.10. The inverse α-stable subordinator with index α ∈ (0, 1) has
the LRD property.

Proof. First, we compute the covariance function using the independent increment
property of the subordinator. For 0 < s < t, we have

Cov[Tα
s , T

α
t ] = Cov[Tα

s , (T
α
t − Tα

s )− Tα
s ]

= Cov[Tα
s , (T

α
t − Tα

s )] + Cov[Tα
s , T

α
s ]

= V ar[Tα
s ]

= c(α)s2α
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Thus the correlation function is given by

Corr[Tα
s , T

α
t ] =

Cov[Tα
s , T

α
t ]

V ar[Tα
s ]

1
2V ar[Tα

t ]
1
2

=
V ar[Tα

s ]
1
2

V ar[Tα
t ]

1
2

= sαt−α

Hence,

limt→∞
Corr[Tα

s , T
α
t ]

t−α
= sα.

Therefore, the inverse α-stable subordinator has the LRD property. □

3. LRD of gmfBm time changed by inverse α-stable subordinator

In this section we will discuss the LRD propert of the generalized mixed frac-
tional Brownian motion time changed by inverse α-stable subordinator.

Definition 3.1. Let ZH,a = {ZH,a
t , t ≥ 0} be a gmfBm of parameters H =

(H1, H2, ...,Hn) and a = (a1, a2, ..., an), Hk ∈ (0, 1), ak ∈ R, n ∈ N∗. Let Tα be
an inverse α-stable subordinator with index α ∈ (0, 1). The subordinated of ZH,a

by means of Tα is the process LH,a
Tα = {LH,a

Tα
t
, t ≥ 0} defined by:

LH,a
Tα
t

= ZH,a
Tα
t

=

n∑
i=1

aiB
Hi

Tα
t
, (3.1)

where the subordinator Tα
t is assumed to be independent of BHk for all k.

Remark 3.2. When α ↑ 1, the processes BH
Tα
t
degenerate to BH

t .

Lemma 3.3. LH,a
Tα is not a stationary process.

The main result can be stated as follows

Theorem 3.4. Let ZH,a = {ZH,a
t , t ≥ 0} be the gmfBm of parameters H =

(H1, H2, ...,Hn) and a = (a1, a2, ..., an), Hk ∈ (0, 1), ak ∈ R, n ∈ N∗ with Hk <
Hn for k = 1, 2, .., n−1. Let Tα = {Tα

t , t ≥ 0} be an inverse α-stable subordinator
with index α ∈ (0, 1) assumed to be independent of all fBm’s BHk with Hurst
indices Hk. Then the time-changed gmfBm by means of Tα exhibits LRD property
for every Hurst indices satisfying 0 < 2αHk − αHn < 1.

Proof. Let n ∈ N∗. Let Tα = {Tα
t , t ≥ 0} be an inverse α-stable subordinator

with index α ∈ (0, 1) assumed to be independent of all fBm’s. Let LH,a
Tα be the

time-changed gmfBm by means of the inverse α-stable subordinator Tα. The pro-

cess LH,a
Tα is not stationary hence Definition 2.9 will be used to establish the LRD

property.

Step 1: Let s ≤ t. The covariance function of LH,a
Tα
t

and LH,a
Tα
s

is defined by

Cov(LH,a
Tα
t
, LH,a

Tα
s
) = E(LH,a

Tα
t
LH,a
Tα
s
)− E(LH,a

Tα
t
)E(LH,a

Tα
s
)
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by observing that E[LH,a
Tα
t
] = 0, t ≥ 0. Then

Cov(LH,a
Tα
t
, LH,a

Tα
s
) = E(LH,a

Tα
t
LH,a
Tα
s
)

=
1

2
E
[
(LH,a

Tα
t
)2 + (LH,a

Tα
s
)2 − (LH,a

Tα
t

− LH,a
Tα
s
)2
]

=
1

2
E[(ZH,a

Tα
t
)2 + (ZH,a

Tα
s
)2 − (ZH,a

Tα
t

− ZH,a
Tα
s
)2]

=
1

2
E[(

n∑
k=1

akB
Hk

Tα
t
)2 + (

n∑
k=1

akB
Hk

Tα
s
)2]

−1

2
E[(

n∑
k=1

ak(B
Hk

Tα
t
−BHk

Tα
s
))2].

Since BHk has stationary increments, then we have

Cov(LH,a
Tα
t
, LH,a

Tα
s
) =

1

2
E[(

n∑
k=1

akB
Hk

Tα
t
)2 + (

n∑
k=1

akB
Hk

Tα
s
)2]− 1

2
E[(

n∑
k=1

akB
Hk

Tα
t−s

)2]

=
1

2
E[(

n∑
k=1

akB
Hk

Tα
t
)2 + 2

n∑
k ̸=l

akalB
Hk

Tα
t
BHl

Tα
t
]

+
1

2
E[(

n∑
k=1

akB
Hk

Tα
s
)2 + 2(

n∑
k ̸=l

akalB
Hk

Tα
s
BHl

Tα
s
)]

−1

2
E[(

n∑
k=1

akB
Hk

Tα
t−s

)2 + 2

n∑
k ̸=l

akblB
Hk

Tα
t−s

BHl

Tα
t−s

)].

By the independence of the fBms’ BHk
t for k = 1, ..., n and their independence of

the Tα, we get

E[BHk

Tα
t
BHl

Tα
t
] = E[E(BHk

r BHl
r |Tα

t )]

=

∫
E[BHk

r BHl
r ]fTα

t
(dr)

= 0,

where fTα
t
(.) is the distribution function of Tα

t .
Thus

E(LH,a
Tα
t
LH,a
Tα
s
) =

n∑
k=1

a2k
2

[
E(BHk

Tα
t
)2 + E(BHk

Tα
s
)2 − E(BHk

Tα
t−s

)2
]
.

Using Lemma 2.6 we get

E(LH,a
Tα
t
LH,a
Tα
s
) =

n∑
k=1

a2k
2
[(

tα

Γ(α+ 1)
)2Hk + (

sα

Γ(α+ 1)
)2Hk − (

(t− s)α

Γ(α+ 1)
)2Hk ]

=

n∑
k=1

a2k
[
t2αHk + s2αHk − (t− s)2αHk

]
2[Γ(α+ 1)]2Hk

.
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Hence for t > s, we have

E(LH,a
Tα
t
LH,a
Tα
s
) =

n∑
k=1

a2k
[
t2αHk + s2αHk − (t− s)2αHk

]
2[Γ(α+ 1)]2Hk

. (3.2)

Step 2: Let s be fixed. Then by Taylor’s expansion we have for large t

E(LH,a
Tα
t
LH,a
Tα
s
) ∼

n∑
k=1

a2k
2[Γ(α+ 1)]2Hk

t2αHk [2αHk
s

t
+ s2αHkt−2αHk +O(t−2)]

∼
n∑

k=1

a2kt
2αHk

2[Γ(α+ 1)]2Hk
[2αHk

s

t
+ (

s

t
)2αHk +O(t−2)]

∼
n∑

k=1

a2kαs

(Γ(α+ 1))2Hk
t2αHk−1.

Then for fixed s and large t, LH,a
Tα
t

satisfies

E(LH,a
Tα
t
LH,a
Tα
s
) ∼

n∑
k=1

a2kαs

(Γ(α+ 1))2Hk
t2αHk−1. (3.3)

Step 3: Let Hk < Hn for k = 1, 2, .., n−1. Using Eqs. (2.4), (3.3) and by Taylor’s
expansion we get, as t → ∞

Corr(LH,a
Tα
t
, LH,a

Tα
s
) ∼

∑n
k=1

a2
kαs

(Γ(α+1))2Hk
t2αHk−1[∑n

k=1
a2
kα

(Γ(α+1))2Hk
t2αHk

] 1
2

[E(LTα

s )2]
1
2

=

∑n−1
k=1

a2
kαs

(Γ(α+1))2Hk
t2αHk−1 +

a2
nαs

(Γ(α+1))2Hn
t2αHn−1

|an|α
1
2 tαHn

(Γ(α+1))Hn

[∑n−1
k=1

a2
kt

2αHk−2αHn

2a2
n(Γ(α+1))1−2Hn

+ 1
] 1

2

[E(LTα

s )2]
1
2

∼ a2kα
1
2 st2αHk−αHn−1

|an|Γ(α+ 1)2Hk−Hn [E(LTα

s )2]
1
2

+
|an|α

1
2 stαHn−1

Γ(α+ 1)Hn [E(LTα

s )2]
1
2

.

Hence, for k = 1, 2, ..., n, we have

Corr(LH,a
Tα
t
, LH,a

Tα
s
) ∼ c1(s)t

2αHk−αHn−1 + c2(s)t
αHn−1. (3.4)

Thus the time-changed process LH,a
Tα exhibits LRD property for all Hurst indices

satisfying 0 < 2αHk − αHn < 1 for i = 1, ..., n. □

Remark 3.5. Theorem 3.4 extends the results in [15] for fmfBm to gmfBm and it
gives a sufficient condition for the LRD property depending on the Hurst indices
H1, ...,Hn.

4. Applications

As application we deduce the LRD properties for some known fractional models.
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Corollary 4.1. Let Tα = {Tα
t , t ≥ 0} be an inverse α-stable subordinator with

index α ∈ (0, 1) assumed to be independent of all fBm’s BHk . Let LH,a
Tα be the

time-changed gmfBm by means of the inverse α-stable subordinator Tα. Let s be
fixed and let t > s. Then

E[(LH,a
Tα
t

− LH,a
Tα
s
)2] =

n∑
k=1

a2kt
2αHk

[Γ(α+ 1)]Hk
+

n∑
k=1

a2ks
2αHk

[Γ(α+ 1)]Hk

−
n∑

k=1

a2k
[
t2αHk + s2αHk − (t− s)2αHk

]
[Γ(α+ 1)]2Hk

. (4.1)

Proof. Let s be fixed and let t > s. We have

E[(LH,a
Tα
t

− LH,a
Tα
s
)2] = E[(LH,a

Tα
t
)2] + E[(LH,a

Tα
s
)2]− 2E[LH,a

Tα
t
LH,a
Tα
s
]. (4.2)

Since E[LH,a
Tα
t
] = 0, t ≥ 0 and

Cov[LH,a
Tα
t
, LH,a

Tα
s
] = E[LH,a

Tα
t
LH,a
Tα
s
].

Then using Eq. 3.2 and 4.2 Eq. 4.1 holds and we have

V ar(LH,a
Tα
t
) =

n∑
k=1

a2kt
2αHk

[Γ(α+ 1)]Hk
.

Also if t → ∞, we obtain

E[(LH,a
Tα
t

− LH,a
Tα
s
)2] ∼

n∑
k=1

a2kα

(Γ(α+ 1))2Hk
t2αHk +

n∑
k=1

a2kα

(Γ(α+ 1))2Hk
s2αHk

−2

n∑
k=1

a2kαs

(Γ(α+ 1))2Hk
t2αHk−1.

□

Remark 4.2. If (n=1) i.e a1 = 1 and a2 = ... = an = 0 in Eqs. (3.3) and (3.4) we
get

E(LH,a
Tα
t
LH,a
Tα
s
) = E(BH1

Tα
t
BH1

Tα
s
) ∼ αst2αH1−1

(Γ(α+ 1))2H1
, as t → ∞,

Corr(LH,a
Tα
t
, LH,a

Tα
s
) = Corr(BH1

Tα
t
, BH1

Tα
s
) ∼ α

1
2 stαH1−1

(Γ(α+ 1))H1

√
E(BH1

Tα
s
)2
, as t → ∞.

Hence we obtain the following result

Corollary 4.3. The fBm time changed by inverse α-stable subordinator with index
α ∈ (0, 1) has the LRD property for all Hurst index H ∈ (0, 1).

In the case n = 2 and H1 = 1
2 we obtain the following result proved in [1].

Corollary 4.4. The mfBm time changed by inverse α-stable subordinator has the
LRD property for every H ∈ (0, 1).

The case n = 2 we obtain the following result proved in [15].
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Corollary 4.5. The fmfBm motion time changed by inverse α-stable subordinator
exibits LRD for every H1 < H2.

As an application to the original process we obtain the following. .
The case of mfBm when n = 2 and H1 = 1/2. Assume H = H2. Let H > 1/2.

When α ↑ 1, in Eqs. (3.3) and (3.4) we have

limα→1Corr(LH,a
Tα
t
, LH,a

Tα
s
) = c1(s)t

−H + c2(s)t
H−1, as t → ∞.

Hence using Remark 3.2 and Corollary 4 we can see that

Corollary 4.6. The mfBm of parameters a1, a2 and H has the LRD property for
all H > 1/2.

5. Conclusion

The time-changed generalized mixed fractional Brownian motion is defined by
taking linear combinations of a finite number of independent fractional Brownian
motions with different Hurst indices, and then time-changing the process by an
inverse α-stable subordinator with index α ∈ (0, 1). In this paper, it is shown that
the time-changed generalized mixed fractional Brownian motion process exhibits
a long-range dependence property under some conditions on the Hurst indices.
It has a number of advantages over other processes, including its flexibility, ease
of simulation, and theoretical properties. We deduce that the mixed fractional
Brownian motion has long-range dependence for each H > 1/2. These studies
demonstrate the potential of the time-changed stochastic processes for modeling
a wide range of natural phenomena that exhibit long-range dependence. Other
challenging problem in financial mathematics is the evaluation of geometric Asian
power options under time changed generalized mixed fractional Brownian motion
which can be used to model the dynamics of asset prices with long-range depen-
dence and anomalous diffusion. The details of this investigation we postpone for
a forthcoming paper [16].
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