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Abstract. This paper investigates the approximate controllability for non-
autonomous impulsive integro-differential equations in Hilbert spaces, em-

phasizing their importance. First, we consider a linear problem and estab-

lished the approximate controllability results by finding a feedback control.
We then establish the existence of a mild solution using the fixed-point ap-

proach. Conditions for approximate controllability are derived with the aid of

linear evolution ssytems, impulsive resolvent operators and the adjoint prob-
lem. An illustrative example is provided to demonstrate the applicability of

the proposed results.

1. Introduction

Controllability is a fundamental concept in mathematical control theory, essen-
tial for addressing various control challenges, such as stabilizing unstable systems
via feedback control [1], ensuring the irreducibility of transition semigroups [2]
and solving optimal control problems [3]. Several types of controllability have
been developed, including exact, null, approximate, interior, boundary, and finite-
approximate controllability [4]. Exact controllability ensures that a system can be
guided to any desired final state, whereas approximate controllability guarantees
that the system can be brought arbitrarily close to a given final state. Studies
on infinite-dimensional control systems indicate that exact controllability is rarely
achieved (cf. [5]). In contrast, approximate controllability is more prevalent and, in
many applications, is entirely sufficient (see, for example, [6, 7, 8]). Consequently,
investigating this weaker yet practically significant notion of controllability is both
important and necessary, particularly for nonlinear systems.

The theory of impulsive differential equations provides a broader framework
than traditional differential equations by capturing abrupt changes in system dy-
namics. Such systems exhibit unique behaviors like oscillations, solution merging,
and discontinuous trajectories, making them applicable in diverse fields.
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Recently, Mahmudov [9] investigated the approximate controllability of an im-
pulsive system in a Hilbert space H, given by

x′(t) = Ax(t) + Bu(t), t ∈ J = [0, b]\ {t1, . . . , tm} ,
∆x (tk) = Dkx (tk) + Ekvk, k = 1, . . . ,m,

x(0) = x0.

(1.1)

Where x(.) ∈ H, u(.) ∈ L2([0, b],U), and vk ∈ U. If vk = u(tk), the jump ∆x (tk)
depends on both the control and state at tk.

Previous studies primarily focused on finite-dimensional cases [10, 11, 12, 13,
14], whereas Mahmudov’s work represents the first extension of this impulse struc-
ture to infinite-dimensional spaces. Using semigroup theory and impulsive opera-
tors, he established necessary and sufficient conditions for approximate controlla-
bility. Traditional impulsive models use

∆x (tk) = Ik
(
x
(
t−k
))
,

where Ik is a predefined impulse function. While suitable for predictable systems,
this approach may not capture complex or unpredictable impulses. The alternative
formulation

∆x (tk+1) = Dk+1x (tk+1) + Ek+1vk+1,

offers greater flexibility for modeling frequent or intricate abrupt shifts. Further
advancements in this area have been made by Asadzade et al. [15, 16], who ex-
plored the existence and optimal control of impulsive stochastic evolution systems
and the approximate controllability of semilinear systems.

Impulsive integro-differential equations arise naturally in various real-world sys-
tems where abrupt changes or discontinuities occur at specific moments in time.
In many practical situations, the presence of memory effects and hereditary prop-
erties, which are inherently captured by integro-differential equations, makes their
study crucial [17, 18].

Recent research has extended controllability concepts to impulsive integro-
differential systems, considering the combined effects of memory terms and sudden
changes in system dynamics. Approximate controllability results for such systems
have been established using techniques based on semigroup theory, fixed point
theorems, and operator theory [19, 20]. The study of approximate controllability
for impulsive integro-differential systems is essential for the development of effi-
cient control strategies in fields such as medicine, economics, and environmental
sciences.

The study of approximate controllability in non-autonomous systems is essen-
tial for managing time-dependent dynamics in real-world applications. It allows
systems to adapt and achieve desired behaviors despite uncertainties, using flex-
ible and adaptive control strategies. This has significant implications in fields
such as robotics (following time-varying paths), climate science (modeling seasonal
changes), economics (managing market fluctuations), and biomedical engineering
(targeted therapies). For a comprehensive exploration of non-autonomous systems,
we refer readers to the book by Kloeden et al. [21]. Noteworthy contributions in
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this area include the articles by Arora et al. [22] and Ravikumar et al., which pro-
vide valuable insights into the approximate controllability of non-autonomous sys-
tems. The above literature review clearly indicates that the approximate controlla-
bility of non-autonomous semilinear integro differential systems with the specified
impulse structure, as in system (1.1), has not yet been explored. This gap has
motivated us to investigate non-autonomous integro-impulsive systems within a
separable Hilbert space, as described below:

x′(t) = A(t)x(t) + Bu(t) + f (t, x(t)) +

∫ t

0

q(t− s)ξ(s, x(s))ds,

t ∈ J = [0, b]\ {t1, . . . , tm} ,
∆x (tk) = Dkx (tk) + Ekvk, k = 1, . . . ,m,

x(0) = x0,

(1.2)

where {A(t) : t ∈ J} is a family of linear operators (not necessarily bounded)
on H. Control u : J → U, where U is Hilbert space identified with its own
dual is given in L2([0, b],U), vk ∈ U, k = 1, . . . ,m. B : U → H, Dk : H → H,
Ek : U → H are bounded linear operators and ‖B‖L = MB . The functions
f, ξ : J × H → H are satisfying some suitable assumptions. q : [0, b] → H is
continuous and q ∈ L1 ([0, b],R+).

At the points of discontinuance tk (where k = 1, . . . ,m and 0 = t0 < t1 <
t2 < · · · < tm < tn+1 = b), the state variable’s abrupt change is determined by
∆x (tk) = x(t+k ) − x(t−k ), with x(t±k ) = limh→0± x(tk + h) and the supposition

that x(t−k ) = x(tk).
∏k
j=1Aj denotes the operator composition A1A2 . . . Ak. For

j = k+1 to k,
∏k+1
j=k Aj = 1. In the same way,

∏1
j=k Aj represents the composition

AkAk−1 . . . A1 and
∏k
j=k+1Aj = 1.

2. Preliminaries and Assumptions

This section contains some essential definitions and specified assumptions which
are required to derive the sufficient conditions for ensuring the approximate con-
trollability of system (1.2). Also we include the list of important symbols which
are frequently used throughtout in this paper

H→ Hilbert space
N→ set of natural numbers
R→ set of real numbers
X→ Banach space
L(X)→ the set of bounded linear operators from X to X
U→ Hilbert sace
J = [0, b]→ time interval
x→ state variable
A→ linear (not necessarily bounded) operator
B, Dk, Ek → linear bounded operators for k = 1 . . .m
I→ identity operator
Ω→ bounded linear operator
U(t, s)→ evolution family for (t, s) ∈ J × J, t ≥ s
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N ,K0,K1,K2, N , Ci, L → are non-negative real numbers
Let us define the function space

PC(J ;H) := {ψ : J → H : ψ(·) is piecewise continuous with jump

discontinuity at tk satisfying x(t−k ) = x(tk)}.

For x ∈ PC(J ;H), we define ‖x‖PC = supt∈J ‖x(t)‖.

2.1. Evolution family. An evolution family is an essential concept in the study
of nonautonomous systems, particularly when dealing with time-dependent differ-
ential equations. Here is a formal definition:

Definition 2.1 ([23]). Let X be a Banach space, and let J = [0, b], be an interval of
the real line. An evolution family {U(t, s)}(t,s)∈J×J, t≥s is a two-parameter family
of bounded linear operators on X with the following properties:

(1) Initial Condition:

U(s, s) = I for all s ∈ J,

where I is the identity operator on X.
(2) Semigroup Property (also called the cocycle condition):

U(t, s) = U(t, r)U(r, s) for all s ≤ r ≤ t in J.

(3) Strong Continuity: The mapping (t, s) 7→ U(t, s)x is continuous for each
fixed x ∈ X.

Definition 2.2. If A is a linear, not necessarily bounded, operator in X, the
resolvent set ρ(A) of A is the set of all comlex numbers λ for which λI − A is
invertible, i.e., (λI−A)−1 is a bounded linear operator in X. The family R(λ,A) =
(λI−A)−1, λ ∈ ρ(A) of bounded linear operators is called the resolvent of A.

To construct an evolution family, let us impose the following assumptions on
the family of linear operators {A(t) : t ∈ J} (see, chapter 5, [23]).

(R1) The linear operator A(t) is closed for each t ∈ J and the domain D(A(t)) =
D(A) is dense in X and independent of t.

(R2) The resolvent operator R(λ,A(t)) for t ∈ J exists for all λ with Reλ ≤ 0
and there exists K > 0 such that

‖R(λ,A(t))‖L(X) ≤
K

|λ|+ 1
.

(R3) There exist constants P > 0 and 0 < δ ≤ 1 such that∥∥(A(t)−A(s))A−1(τ)
∥∥
L(X) ≤ P |t− s|

δ, for all t, s, τ ∈ J.

(R4) The operator R(λ,A(t)), t ∈ J is compact for some λ ∈ ρ(A(t)), where
ρ(A(t)) is the resolvent set of A(t).

Lemma 2.3 (Theorem 6.1, Chapter 5, [23]). Suppose that (R1)-(R3) hold true.
Then there esists a unique evolution family U(t, s) on 0 ≤ s ≤ t ≤ b satisfying the
following:

(1) For 0 ≤ s ≤ t ≤ b, we have ‖U(t, s)‖L(X) ≤M .
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(2) The operator U(t, s) : X 7→ D(A) for 0 ≤ s ≤ t ≤ b and the mapping
t 7→ U(t, s) is strongly differentiable in X. The derivative ∂

∂tU(t, s) ∈ L(X)
and it is strongly continuous on 0 ≤ s ≤ t ≤ b. Moreover,

∂

∂t
U(t, s)−A(t)U(t, s) = 0, for 0 ≤ s ≤ t ≤ b,

∥∥∥∥ ∂∂tU(t, s)

∥∥∥∥
L(X)

= ‖A(t)U(t, s)‖L(X) ≤
M

t− s
,

and ∥∥A(t)U(t, s)A(s)−1
∥∥
L(X) ≤M, for 0 ≤ s ≤ t ≤ b.

(3) For each t ∈ J and every v ∈ D(A), U(t, s)v is differentiable with respect
to s on 0 ≤ s ≤ t ≤ b and

∂

∂t
U(t, s)v = −U(t, s)A(s)v.

Lemma 2.4 (Proposition 2.1,[24]). Supose {A(t) : t ∈ J} satisfies the assumptions
(R1)-(R4). Let {U(t, s) : 0 ≤ s ≤ t ≤ b} be the linear evolution family generated
by {A(t) : t ∈ J}, then {U(t, s) : 0 ≤ s ≤ t ≤ b} is a compact operator, whenever
t− s > 0.

Definition 2.5. A mild solution x : J → H of the system (1.2) satisfying x(0) = x0
and ∆x (tk) = Dkx (tk) + Ekvk, k = 1, . . . ,m on the intervals tk−1 < t ≤ tk is
continuous, which is given by

x(t) =



U(t, 0)x(0) +
∫ t
0

U(t, s)[Bu(s)

+f (s, x(s)) +
∫ s
0
q(s− τ)ξ(τ, x(τ))dτ ]ds, 0 ≤ t ≤ t1,

U (t, tk)x
(
t+k
)

+
∫ t
tk

U(t, s)[Bu(s) + f (s, x(s)) +
∫ s
0
q(s− τ)ξ(τ, x(τ))dτ ]ds,

tk < t ≤ tk+1, k = 1, . . . ,m,

(2.1)

with

x
(
t+k
)

=

1∏
j=k

(I + Dj) U (tj , tj−1)x0 +

k∑
i=1

i+1∏
j=k

(I + Dj) U (tj , tj−1) (I + Di)

×

(∫ ti

ti−1

U (ti, s) [Bu(s) + f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ ]ds

)

+

k∑
i=2

i∏
j=k

(I + Dj) U (tj , tj−1) Ei−1vi−1 + Ekvk.

Definition 2.6. [8] The system (1.2) is considered approximately controllable on
the interval J if the closure of the reachable set equals the entire space H. The
reachable set is defined by

Rt = {x ∈ H | x = x(t, 0, u), u(·) ∈ L2(J ;U)}.
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Lemma 2.7 (Theorem 1, [25]). (Krasnoselskii’s Fixed Point Theorem) Let E be
a closed, bounded and convex subset of a Banach space X and let G1 and G2 be two
mappings of E into X such that G1(w) + G2(x) ∈ E, whenever w, x ∈ E. If G1 is
continuous and G1(E) is relatively compact subset of E . Also G2 is a contraction
map. Then there exists z ∈ E such that z = G1(z) + G2(z).

2.2. Linear nonautonomous system. The linear nonautonomous impulsive
system corresponding to system (1.2) in H is given by:

x′(t) = A(t)x(t) + Bu(t), t ∈ J = [0, b]\ {t1, . . . , tm} ,
∆x (tk) = Dkx (tk) + Ekvk, k = 1, . . . ,m,

x(0) = x0.

(2.2)

The mild solution of the above linear system is given by the following expression

x(t) =


U(t, 0)x(0) +

∫ t
0

U(t, s)Bu(s)ds, 0 ≤ t ≤ t1
U (t, tk)x

(
t+k
)

+
∫ t
tk

U(t, s)Bu(s)ds,

tk < t ≤ tk+1, k = 1, . . . ,m,

(2.3)

with

x
(
t+k
)

=

1∏
j=k

(I + Dj) U (tj , tj−1)x0 +

k∑
i=1

i+1∏
j=k

(I + Dj) U (tj , tj−1) (I + Di)

×
∫ ti

ti−1

U (ti, s) Bu(s) +

k∑
i=2

i∏
j=k

(I + Dj) U (tj , tj−1) Ei−1vi−1 + Ekvk.

To demonstrate the approximate controllability of the linear system mentioned
above, we introduce a bounded linear operator Ω : L2(J,U)×Um → H as follows:

Ω (u(·), {vk}mk=1)

= U (b, tm)

m∑
i=1

i+1∏
j=m

(I + Dj) U (tj , tj−1) (I + Di)

∫ ti

ti−1

U (ti, s) Bu(s)ds

+

∫ b

tm

U(b, s)Bu(s)ds+ U (b, tm)

m∑
i=2

i∏
j=m

(I + Dj) U (tj , tj−1) Ei−1vi−1

+ U (b, tm) Emvm.

Remark 2.8. We can verify Lemma 7 and Lemma 9 in [9] for the linear system
(2.2) in similar way.

The operator Ω∗ is the adjoint of Ω and has the following form (it can be verified
in the similar way as in Lemma 9,[9])

Ω∗ϕ =
(
B∗ψ(·),

{
D∗kψ

(
t+k
)}m
k=1

)
,

B∗ψ(t) =


B∗U∗(b, t)ϕ, tm < t ≤ b,
B∗U∗ (tk, t) (I + D∗k)

∏m
i=k+1 U∗ (ti, ti−1) (I + D∗i ) U∗ (b, tm)ϕ,

tk−1 < t ≤ tk,
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E∗kψ
(
t+k
)

=

{
E∗mU∗ (b, tm)ϕ, k = m,

E∗k
∏m
i=k+1 U∗ (ti, ti−1) (I + D∗i ) U∗ (b, tm)ϕ, k = m− 1, . . . , 1,

where the operators U∗, B∗, D∗k, E∗m are the adjoint operators of U, B, Dk and Ek
respectively and ψ(.) is the solution of the adjoint problem associated with system
(2.2). The operator ΩΩ∗ : H→ H has the following form:

ΩΩ∗ = Θtm
0 + Γbtm + Θ̃tm

0 + Γ̃btm ,

where Γbtm , Γ̃
b
tm ,Θ

tm
0 , Θ̃tm

0 : H → H are non-negative operators and defined as
follows:

Γbtm :=

∫ b

tm

U(b, s)BB∗U(b, s)ds, Γ̃btm := U (b, tm) EmE∗mU∗ (b, tm) ,

Θtm
0 :=U (b, tm)

×
m∑
i=1

i+1∏
j=m

(I + Dj) U (tj , tj−1) (I + Di)

∫ ti

ti−1

U (ti, s) BB∗U∗ (tk, s) ds

× (I + D∗i )

m∏
k=i+1

U∗ (tk, tk−1) (I + D∗k) U∗ (b, tm) ,

Θ̃tm
0 :=U (b, tm)

m∑
i=2

i∏
j=m

(I + Dj) U (tj , tj−1) Ei−1E∗i−1

×
m∏
k=i

U∗ (tk, tk−1) (I + D∗k) U∗ (b, tm) .

Remark 2.9. The linear system 2.2 is said to be approximately controllable on
[0, b] if Im Ω = H.

Now we will prove the approximate controllability of linear non-autonomous
system (2.2).

Theorem 2.10. Under the assumptions (R1)-(R4), for the system (2.2), the fol-
lowing statements are equivalent:

(a) System (2.2) is approximately controllable on [0, b].
(b) Ω∗ϕ = 0 implies that ϕ = 0.

(c) Θtm
0 + Γbtm + Θ̃tm

0 + Γ̃btm is strictly positive.

(d) λ
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
converges to zero operator as λ→ 0+

in strong operator topology.

(e) λ
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
converges to zero operator as λ→ 0+

in weak operator topology.

Proof. The proof of the equivalence (a)⇐⇒ (b) is standard. Approximately con-
trollability of system (2.2) on [0, b] is equivalent to Im Ω is dense in H. That means,
the kernel of Ω∗ is trivial in H. Equivalently,

Ω∗ϕ =
(
B∗ψ(·),

{
E∗kψ

(
t+k
)}m
k=1

)
= 0,
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implies that ϕ = 0. For the equivalence (a) ⇐⇒ (c) is clear from [9]. The
equivalence (d)⇐⇒ (e) is a consequence of positivity of

λ
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
.

We prove only (a)⇐⇒ (d). To do so, consider the functional

Jλ(ϕ) =
1

2
‖Ω∗ϕ‖2 +

λ

2
‖ϕ‖2 −

〈
ϕ, h−U (b, tm)

1∏
j=m

(I + Dj) U (tj , tj−1)x0

〉
.

The map ϕ → Jλ(ϕ) is continuous and strictly convex. The functional Jλ(·)
admits a unique minimum ϕ̂λ that defines a map Φ : H → H. Since Jλ(ϕ) is
Frechet differentiable at ϕ̂λ, by the optimality of ϕ̂λ, we must have

d

dϕ
Jλ(ϕ) =Θtm

0 ϕ̂λ + Γbtm ϕ̂λ + Θ̃tm
0 ϕ̂λ + Γ̃btm ϕ̂λ + λϕ̂λ − h

+ U (b, tm)

1∏
j=m

(I + Dj) U (tj , tj−1)x0 = 0. (2.4)

By solving above equation (2.4) for ϕ̂λ, we get

ϕ̂λ =
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
×

h−U (b, tm)

1∏
j=m

(I + Dj) U (tj , tj−1)x0

 . (2.5)

Now we define control u(s) as following

u(s) =

( m∑
k=1

B∗U(tk, s)
∗

m∏
i=k+1

U(ti, ti−1)∗U(b, tm)∗χ(tk−1, tk)

+B∗U(b, s)∗χ(tm, b)

)
ϕ̂λ,

vm = E∗mU(b, tm)∗ϕ̂λ, vk = E∗k

m∏
i=k

U(ti, ti−1)∗(I + D∗i )U(b, tm)∗ϕ̂λ.

(2.6)

Let xλ(b) be the solution at the final point b corresponding to the above defined
control, can be expressed as:

xλ(b) = U(b, tm)

1∏
j=p

(I + Dj) (U(tj − tj−1))x0

+ Θtm
0 ϕ̂λ + Γbtp ϕ̂λ + Θ̃

tp
0 ϕ̂λ + Γ̃btp ϕ̂λ + λϕ̂λ.

. Now from (2.3), (2.5) and (2.6) we get

xλ(b)− h = −λ
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
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×

h−U (b, tm)

1∏
j=m

(I +Dj)T (tj − tj−1)x0

 . (2.7)

The above expression shows that the linear system (2.2) is approximately control-

lable iff λ
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
converges to zero operator as λ 7→ 0+

in strong operator topology. Therefore, (a)⇐⇒ (d). �

In order to establish the existence results for the system (1.2), we require the
following assumptions:

(A1) For every x ∈ H, λ
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
converges to zero

operator as λ→ 0+ in strong operator topology.
(A2) (i) The function f : [0, b]×H→ H is continuous and there is a constant

Lf such that for every t ∈ [0, b] and x, y ∈ H,

‖f(t, x)− f(t, y)‖ ≤ Lf‖x− y‖,
(ii) there exists Cf such that ‖f (t, x(t))‖ ≤ Cf for t ∈ [0, b].

(A3) (i) The function ξ : [0, b]×H→ H is continuous and there is a constant

L̃ξ such that for every t ∈ [0, b] and x, y ∈ H,

‖ξ(t, x)− ξ(t, y)‖ ≤ Lξ‖x− y‖,
(ii) there exists Cξ such that ‖ξ (t, x(t))‖ ≤ Cξ for t ∈ [0, b].

3. Existence and Approximate Controllability of Semilinear System

The primary goal of this section is to identify sufficient conditions for the solv-
ability of system (1.2). To achieve this, we will first demonstrate that, for each λ
and a fixed h ∈ H, system (1.2) possesses at least one mild solution. We prove the
existence of a mild solution of the system (1.2) with the control

u(s) =

( m∑
k=1

B∗U(tk, s)
∗

m∏
i=k+1

U(ti, ti−1)∗U(b, tm)∗χ(tk−1, tk)

+B∗U(b, s)∗χ(tm, b)

)
ϕ̂λ,

vm = E∗mU(b, tm)∗ϕ̂λ, vk = E∗k

m∏
i=k

U(ti, ti−1)∗(I + D∗i )U(b, tm)∗ϕ̂λ,

(3.1)

with

ϕ̂λ =

(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
× g (x(·)) ,

where

g (x(·)) =

(
h−U (b, tm)

1∏
j=m

(I + Dj)U (tj , tj−1)x0

−
∫ b

tm

U(b, s)

(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
ds
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−U (b, tm)

m∑
i=1

i+1∏
j=m

(I + Dj) U (tj , tj−1) (I + Di)

×
∫ ti

ti−1

U (ti, s)

(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
ds

)
.

With these assumptions established, we are now ready to prove the existence and
uniqueness of the mild solution for (1.2) using the fixed point theorem 2.7.

Theorem 3.1. If the assumptions (R1)-(R4) and (A2)-(A3) are satisfied. Then
for every λ > 0 and for fixed h ∈ H, the system (1.2) has at least one mild solution
in PC ([0, b],H) provided that

max {N ,K1} < 1, (3.2)

and

max {M ; L } < 1, (3.3)

where N and K1 are given by:

N = M +
M3M2

Bb
λ ,

K1 = Mk+1
∏k
j=i (1 + ‖Dj‖)

(
1 +

M2M2
Bb

λ

(
mMm−k + 1

)
(MN + 1) +K0

+M2

λ ‖Ek‖ ‖E
∗
k

∏m
i=k ‖U∗(ti, ti−1)‖ (I + D∗i )‖

)
,

K0 = M2

λ

∑k
i=2

∏k
j=i (1 + ‖Dj‖) ‖U(tj , tj−1)‖

×‖Ei−1‖
∥∥E∗i−1

∏m
l=i−1 ‖U(tl, tl−1)∗‖ (I + D∗l )

∥∥ ,
Ci =

∏i+1
j=k (1 + ‖Dj‖) ‖T (tj − tj−1)‖ (1 + ‖Di‖) , N =

∑k
i=1 Ci,

L = Mk+1
∏k
j=1 (1 + ‖Dj‖) +M2Nb (Lf + q∗Lξ) and q∗ =

∫ t
0
|q(t− s)|ds.

Proof. For each constant r0 > 0, let

Br0 = {x ∈ PC ([0, b],H) : ‖x‖PC ≤ r0} .

It is easy to see that Br0 is a bounded closed convex set. Define operators F1 and
F2 on Br0 as follows:

(F1x) (t)=

U(t, 0)x0, for t0 < t ≤ t1,

U(t, tk)
∏1

j=k (I + Dj)U (tj , tj−1)x0

+U(t, tk)
∑k

i=1

∏i+1
j=k (I + Dj)U (tj , tj−1) (I + Di)

∫ ti
ti−1

U(ti, s) Bu(s)ds

+U(t, tk)
∑k

i=1

∏i+1
j=k (I + Dj)U (tj , tj−1) (I + Di)

∫ ti
ti−1

U(ti, s)
[
f (s, x(s))

+
∫ s

0
q(s− τ)ξ(τ, x(τ))dτ

]
ds+U(t, tk)

∑k
i=2

∏i
j=k (I + Dj)U (tj , tj−1) Ei−1vi−1

+U(t, tk) Ekvk, for tk < t ≤ tk+1, k ≥ 1,

and

(F2x) (t) =


∫ t
0

U(t, s)
[
Bu(s) + f (s, x(s))

+
∫ s
0
q(s− τ)ξ(τ, x(τ))dτ

]
ds, for t0 < t ≤ t1∫ t

tk
U(t, s)

[
Bu(s) + f (s, x(s))

+
∫ s
0
q(s− τ)ξ(τ, x(τ))dτ

]
ds, for tk < t ≤ tk+1, k ≥ 1.
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Clearly, x is a mild solution of (2) if and only if the operator equation x =
F1x+F2x has a solution. To establish this, we will demonstrate that the operator
F1 + F2 has a fixed point by applying theorem 2.7 . For this, we proceed in
several steps. Step 1:To prove that there exists a positive number r0 such that
F1x+ F2y ∈ Br0 whenever x, y ∈ Br0 , we choose
r0 ≥

max

((M2M2
Bb

λ ‖h‖+
M2M2

Bb
λ (MbCf +MbCξq

∗) +MbCf +MbCξq
∗
)

1−N
,
K2

1−K1

)
,

where K2 =

(
M2M2

Bb

λ
(MN + 1)

(
mMm−k + 1

)
+K0

M2

λ
‖Ek‖

∥∥∥∥∥E∗k

m∏
i=k

‖U(ti, ti−1)∗‖ (I + D∗i )

∥∥∥∥∥
)

×
(
‖h‖+M (Cf + q∗Cξ) b+M2NCb

)
+Mb (Cf + q∗Cξ) (MN + 1).

First, we calculate for t0 < t ≤ t1 and s ∈ [0, b],

u(s) = B∗Ux(t1, s)
∗(λI + Γt10

)−1[
h−U(t, 0)x0

−
∫ t1

0

U(t1, s)

(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
ds

]
.

Using the triangle inequality, Lipschitz conditions, and the boundedness of the
evolution family U(t, s), the norm ‖u(s)‖U can be calculated as:

‖u(s)‖U =

∥∥∥∥B∗U(t1, s)
∗(λI + Γt10

)−1[
h−U(t, 0)x0

−
∫ t1

0

U(t1, s)

(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
ds

]∥∥∥∥
≤ ‖B∗‖L ‖U(t1 − s)∗‖H

∥∥∥(λI + Γt10
)−1∥∥∥ ∥∥∥∥h−U(t, 0)x0

−
∫ t1

0

U(t1, s)

(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
ds

∥∥∥∥
≤ MMB

λ

(
‖h‖+ ‖U(t1, 0)‖H ‖x0‖

+ ‖U(t1, s)‖H
∫ t1

0

∥∥∥∥(f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)∥∥∥∥ ds)
≤ MMB

λ
(‖h‖+Mr0 +MCfb+MCξq

∗) .

To calculate the norm of u for tk < t ≤ tk+1, k ≥ 1 and s ∈ [0, b] , first we find
the norm of ϕ̂λ as follows:

‖ϕ̂λ‖ ≤

∥∥∥∥∥
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1∥∥∥∥∥
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×

(
‖h‖+

∥∥U (b, tm)

1∏
j=m

(I + Dj)U (tj , tj−1)x0
∥∥

+

∥∥∥∥∥
∫ b

tm

U(b, s)

(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
ds

∥∥∥∥∥
+

∥∥∥∥U (b, tm)

m∑
i=1

i+1∏
j=m

(I + Dj) U (tj − tj−1) (I + Di)

×
∫ ti

ti−1

U (ti − s)
(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
ds

∥∥∥∥
)

≤ 1

λ

(
‖h‖+Mk+1

k∏
j=1

(1 + ‖Dj‖) ‖x0‖+Mb(Cf + q∗Cξ)

+M2
m∑
i=1

Ci

∫ ti

ti−1

∥∥∥∥(f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)∥∥∥∥ ds
)

≤ 1

λ

(
‖h‖+Mk+1

k∏
j=1

(1 + ‖Dj‖) ‖x0‖+Mb(Cf + q∗Cξ)

+M2Nb(Cf + q∗Cξ)

)
.

With the above help we can find the norm of u as follows:

‖u(s)‖U ≤
∥∥∥∥( m∑

k=1

B∗U(tk, s)
∗

m∏
i=k+1

U∗(ti, ti−1)U∗(b, tm)χ(tk−1, tk)

+ B∗U(b, s)∗χ(tm, b)

)∥∥∥∥ ‖ϕ̂λ‖
≤ 1

λ

(
mMBM

m+1−k +MBM
)
×

(
‖h‖

+Mk+1
k∏
j=1

(1 + ‖Dj‖) r0 +Mb(Cf + q∗Cξ) +M2N(Cf + q∗Cξ)

)
.

Now, for 0 ≤ t ≤ t1, we have

‖(F1x) (t) + (F2x) (t)‖ ≤ ‖U(t, 0)x(0)‖H +

∥∥∥∥∫ t

0

U(t, s)Bu(s)ds

∥∥∥∥+

∥∥∥∥∫ t

0

U(t, s)

×
(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
ds

∥∥∥∥
≤M ‖x0‖+M‖B‖L

∫ t

0

u(s)ds+MbCf +MbCξq
∗

≤Mr0 +
M2M2

Bb

λ
(‖h‖+Mr0 +MbCf +MbCξq

∗)
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+MbCf +MbCξq
∗

= N r0 +

(
M2M2

Bb

λ
‖h‖

+

(
M2M2

Bb

λ
+ 1

)
(MbCf +MbCξq

∗)

)
≤ r0.

For tk < t ≤ tk+1 for k ≥ 1, we have,

‖(F1x) (t) + (F2x) (t)‖

≤

∥∥∥∥∥∥U (t, tk)

1∏
j=k

(I + Dj)T (tj − tj−1)x0

∥∥∥∥∥∥
+

∥∥∥∥∥∥U (t, tk)

k∑
i=1

i+1∏
j=k

(I + Dj) U (tj , tj−1) (I + Di)

∫ ti

ti−1

U (ti, s) Bu(s)ds

∥∥∥∥∥∥
+

∥∥∥∥U (t, tk)

k∑
i=1

i+1∏
j=k

(I + Dj) U (tj , tj−1) (I + Di)

×
∫ ti

ti−1

U (ti, s)

(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
ds

∥∥∥∥
+

∥∥∥∥∥∥U (t, tk)

k∑
i=2

i∏
j=k

(I + Dj) U (tj , tj−1) Ei−1vi−1

∥∥∥∥∥∥
+ ‖U (t, tk) Ekvk‖+

∥∥∥∥∫ t

tk

U(t, s)Bu(s)ds

∥∥∥∥
+

∥∥∥∥∫ t

tk

U(t, s)

(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
ds

∥∥∥∥
≤Mk+1

k∏
j=1

(1 + ‖Dj‖) r0 +M2‖B‖L
k∑
i=1

Ci

∫ ti

ti−1

‖u(s)‖ ds

+M2
k∑
i=1

Ci

∫ ti

ti−1

‖
(
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)
‖ds

+M

k∑
i=2

k∏
j=i

(1 + ‖Dj‖) ‖U(tj , tj−1)‖ ‖Ei−1‖ ‖vi−1‖+M ‖Ek‖ ‖vk‖

+M‖B‖L
∫ t

tk

u(s)ds+M

∫ t

tk

∥∥∥∥(f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ
)∥∥∥∥ds

≤ K1r0 +K2

≤ r0.
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Consequently, F1 + F2 maps Br0 to Br0 .
Step 2: The next step is to prove that F1 is a contraction.
To demonstrate that F1 is a contraction mapping on the set Br, it is necessary

to show that there exists a constant 0 < L < 1 such that for all x, y ∈ Br,

‖F1x− F1y‖PC ≤ L ‖x− y‖PC .

Let x, y ∈ Br. We will estimate ‖F1x− F1y‖PC for t0 < t ≤ t1 and tk < t ≤
tk+1. For t0 < t ≤ t1 :

‖(F1x) (t)− (F1y) (t)‖ = ‖U(t, 0)(x(0)− y(0))‖H.

Using the properties of the evolution operator U(t, s) :

‖U(t, 0)(x(0)− y(0))‖ ≤M‖x(0)− y(0)‖,

for M < 1, F1 is a contraction map.
For tk < t ≤ tk+1, k ≥ 1 :

‖(F1x) (t)− (F1y) (t)‖≤
∥∥∥∥∥∥U (t, tk)

1∏
j=k

(I + Dj) U (tj , tj−1) (x0 − y0)

∥∥∥∥∥∥
+

∥∥∥∥U (t, tk)

k∑
i=1

i+1∏
j=k

(I + Dj) U (tj , tj−1) (I + Di)

∫ ti

ti−1

U (ti, s)

×
[
(f (s, x(s))− f (s, y(s))) +

∫ s

0

q(s− τ) (ξ(τ, x(τ))− ξ(τ, y(τ))) dτ

]
ds

∥∥∥∥.
Using the properties of U(t, s), the boundedness of operators Dj , and assump-

tions on f :

∥∥∥∥∥∥U (t, tk)

1∏
j=k

(I + Dj) U (tj , tj−1) (x0 − y0)

∥∥∥∥∥∥ ≤Mk+1
k∏
j=1

(1 + ‖Dj‖) ‖x0 − y0‖ .

Since x, y ∈ Br this gives ‖x0 − y0‖ ≤ ‖x− y‖PC .
Thus,∥∥∥∥∥∥U (t, tk)

1∏
j=k

(I + Dj) U (tj , tj−1) (x0 − y0)

∥∥∥∥∥∥ ≤Mk+1
k∏
j=1

(1 + ‖Dj‖) ‖x− y‖PC .

For the second term, using the properties of U(t, s) and Dj , and assumption
(A2) of f :

∥∥∥∥U (t, tk)

k∑
i=1

i+1∏
j=k

(I + Dj) U (tj , tj−1) (I + Di)

∫ ti

ti−1

U (ti, s)

×
[
(f (s, x(s))− f (s, y(s))) +

∫ s

0

q(s− τ) (ξ(τ, x(τ))− ξ(τ, y(τ))) dτ

]
ds

∥∥∥∥
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≤M2

(
k∑
i=1

k∏
j=i+1

(1 + ‖Dj‖) ‖U (tj , tj−1)‖H (1 + ‖Di‖)

×
∫ ti

ti−1

∥∥ (f (s, x(s))− f (s, y(s)))

+

∫ s

0

q(s− τ) (ξ(τ, x(τ))− ξ(τ, y(τ))) dτ
∥∥ds)

≤M2

( k∑
i=1

Ci

∫ ti

ti−1

[
‖(f (s, x(s))− f (s, y(s)))‖

+

∫ s

0

‖q(s− τ)‖ ‖ξ(τ, x(τ))− ξ(τ, y(τ))‖ dτ
]
ds

)
≤M2Nb (Lf + q∗Lξ) ‖x− y‖PC .

Combining all terms, we get:

‖(F1x) (t)− (F1y) (t)‖

≤

Mk+1
k∏
j=1

(1 + ‖Dj‖) +M2Nb (Lf + q∗Lξ)

 ‖x− y‖PC .
To show that F1 is a contraction, we need the right-hand side to be less than
‖x− y‖PC . Hence, we need

Mk+1
k∏
j=1

(1 + ‖Dj‖) +M2Nb (Lf + q∗Lξ) < 1.

Therefore, there exists a constant L ∈ (0, 1) such that:

‖F1x− F1y‖PC ≤ L ‖x− y‖PC .

This shows that on Br0 , F1 is a contraction map .
Step 3: Now we will show that F2 is continuous and F2(Br0) is relatively

compact subset of Br0 .
First, we need to prove that the mapping F2 is continuous on Br0 . To do this,

let xn → x in Br0 . Then, we have:

f (t, xn(t))→ f (t, x(t)) and ξ (t, xn(t))→ ξ (t, x(t)) as n→∞.

Moreover, for t0 ≤ t ≤ t1 by Lebesgue dominated convergence theorem, we get

∥∥∥∥∫ t

0

U(t, s)

[
f (t, xn(t)) +

∫ s

0

q(s− τ)ξ(τ, xn(τ))dτ − f (t, x(t))

−
∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

]
ds

∥∥∥∥
≤M

∫ t

0

[
‖f (t, xn(t))− f (t, x(t))‖
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+

∫ s

0

‖q(s− τ)‖ ‖ξ(τ, xn(τ))− ξ(τ, x(τ))‖
]
ds→ 0 as n→∞.

‖F2 (xn)− F2(x)‖ ≤
∥∥∥∥∫ t

0

U(t, s)
[
f (t, xn(t)) +

∫ s

0

q(s− τ)ξ(τ, xn(τ))dτ

− f (t, x(t))−
∫ s

0

q(s− τ)ξ(τ, x(τ))dτ
]
ds

∥∥∥∥
→ 0 as n→∞.

For tk < t ≤ tk+1 with k ≥ 1, the argument is similar to that for t0 < t ≤ t1.
Hence, it follows that F2 is continuous on Br0 .

Next, we demonstrate that for any t ∈ [0, b], the set V (t) = {F2(x)(t) | x ∈ Br0}
is relatively compact in H. To establish this, we will utilize the extended version of
the Ascoli-Arzelà theorem (Theorem 2.1, [26]). For t = 0, it is evident that V (0)
is relatively compact in H. Now, for 0 < t ≤ b, let ε ∈ (0, t). By applying Lemma
2.4, we find that the operator U(t, t− ε) is compact. We define an operator F ε on
Br0 by:

(F εx) (t) =



∫ t−ε
0

U(t, s)
[
Bu(s) + f (s, x(s)) +

∫ s
0
q(s− τ)ξ(τ, x(τ))dτ

]
ds

= U(t, t− ε)
∫ t−ε
0

U(t− ε, s)
[
Bu(s) + f (s, x(s))

+
∫ s
0
q(s− τ)ξ(τ, x(τ))dτ

]
ds if t0 < t ≤ t1,∫ t−ε

tk
U(t, s)

[
Bu(s) + f (s, x(s)) +

∫ s
0
q(s− τ)ξ(τ, x(τ))dτ

]
ds

= U(t, t− ε)
∫ t−ε
tk

U(t− ε, s)
[
Bu(s) + f (s, x(s))

+
∫ s
0
q(s− τ)ξ(τ, x(τ))dτ

]
ds if tk < t ≤ tk+1, k ≥ 1.

Then the set {(F ε) (t) : x ∈ Br0} is relatively compact in H because U(t, t− ε)
is compact. This compactness helps us establish the desired continuity properties.
Now, let’s consider the case for t0 < t ≤ t1 :

‖(F2x) (t)− (F εx) (t)‖ ≤
∥∥∥∥∫ t

t−ε
U(t, s)Bu(s)ds

∥∥∥∥+

∥∥∥∥∫ t

t−ε
U(t, s)

[
f (s, x(s))

+

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

]
ds

∥∥∥∥.
To estimate the component involving Buλ(s), we apply the triangle inequality
followed by the Cauchy-Schwarz inequality. This yields:∥∥∥∥∫ t

t−ε
U(t, s)Bu(s)ds

∥∥∥∥ ≤MMBε
1
2

(∫ t

t−ε
‖u(s)‖2ds

) 1
2

Using assumptions (A2) and (A3), we have∥∥∥∥∫ t

t−ε
U(t, s)

[
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

]
ds

∥∥∥∥
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≤
(∫ t

t−ε

∥∥∥∥U(t, s)

[
f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

]∥∥∥∥ ds)
≤M

∫ t

t−ε

∥∥∥∥(f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)∥∥∥∥ ds
≤M (Cf − q∗Cξ) ε.

Combining all terms, we get:

‖(F2x) (t)− (F εx) (t)‖ ≤M (Cf − q∗Cξ) ε+MMBε
1
2

(∫ t
t−ε ‖u(s)‖2ds

) 1
2

.

As ε→ 0 :

‖(F2x) (t)− (F εx) (t)‖ → 0.

For tk < t ≤ tk+1, with k ≥ 1, the definitions of F2 and F ε allow us to derive
similar results as previously discussed.

Therefore, since F2x can be approximated arbitrarily closely by F εx, and F εx
is relatively compact in H, it follows that V (t) = {F2(x)(t) | x ∈ Br0} is relatively
compact in H.

Finally, we show that F2(Br0) is equicontinuous on [0, b]. Let 0 ≤ s1 ≤ s2 ≤ t1
for any x ∈ Br0 , we consider the following estimate∥∥F2x(s2)− F2x(s1)

∥∥
≤
∥∥∥∥∫ s1

0

[U(s2, s)−U(s1, s)]

[
Bu(s) + f (s, x(s))

+

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

]
ds

∥∥∥∥
+

∥∥∥∥∫ s2

s1

U(s2, s)

[
Bu(s) + f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

]
ds

∥∥∥∥
≤
∫ s2

s1

‖U(s2, s)‖L(H) ‖B‖L‖u(s)‖Uds

+

∫ s2

s1

‖U(s2, s)‖L(H)

∥∥∥∥(f (s, x(s)) +

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)∥∥∥∥
+

∫ s1

0

‖U(s2, s)−U(s1, s)‖L(H) ‖B‖L‖u(s)‖Uds

+

∫ s1

0

‖U(s2, s)−U(s1, s)‖L(H)

∥∥∥∥(f (s, x(s))

+

∫ s

0

q(s− τ)ξ(τ, x(τ))dτ

)∥∥∥∥ds
≤MMB‖u(t)‖L2(J;U)(s2 − s1)

1
2

+MB‖u(t)‖L2(J;U)

∫ s1

0

‖U(s2, s)−U(s1, s)‖L(H) ds

+M (Cf + q∗Cξ) (s2 − s1)

+ (Cf + q∗Cξ)

∫ s1

0

‖U(s2, s)−U(s1, s)‖L(H) ds. (3.4)
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The right hand side of the inequality ((3.4)) converges to zero uniformly for x ∈ Br0
as |s2 − s1| → 0, since the operator U(t, s) is continuous in operator topology for
t ≥ 0. For tk < t ≤ tk+1, k ≥ 1, we can show the equicontinuity of F2 for
any x ∈ Brin the same way as above. Therefore, the image of Br0 under F2

is equicontinuous. This suggests that F2 (Br0) is equicontinuous.As a result, by
applying the extended version of the Arzelà-Ascoli theorem, we conclude that,
F2 (Br0) is relatively compact set. Hence, by Lemma2.7, the operator F1 + F2

possesses at least one fixed point x ∈ Br0 , which coincides with the mild solution
of system (1.2). �

Remark 3.2. We can also show the uniqueness of the mild solution by using the
contraction mapping principle with the constant k = max {k1, k2} < 1, where k1
and k2 are defined as

k1 = Mb (Lf + q∗Lξ) , k2 =
(
M2Nb+Mb

)
(Lf + q∗Lξ) .

.

Our next target is to prove the approximate controllability of semilinear sys-
tem(1.2).

Theorem 3.3. Let the assumptions (R1)-(R4), (A1)-(A3) and the conditions of
theorem 3.1 are true. Then, the system (1.2) is approximately controllable.

Proof. From theorem3.1, we know that for every λ > 0 and h ∈ H, there exists a
mild solution xλ ∈ PC ([0, b],H) such that

xλ(t) =


U(t, 0)x(0) +

∫ t
0

U(t, s)
[
Bu(s) + f(s, xλ(s))

+
∫ s
0
q(s− τ)ξ(τ, xλ(τ))dτ

]
ds, 0 ≤ t ≤ t1

U (t, tk)x
(
t+k
)

+
∫ t
tk

U(t, s)
[
Bu(s) + f(s, xλ(s))

+
∫ s
0
q(s− τ)ξ(τ, xλ(τ))dτ

]
ds, tk < t ≤ tk+1, k = 1, . . . ,m,

(3.5)
where

x
(
t+k
)

=

1∏
j=k

(I + Dj) U (tj , tj−1)x0 +

k∑
i=1

i+1∏
j=k

(I + Dj) U (tj , tj−1) (I + Di)

×
∫ ti

ti−1

U (ti, s)
[
Bu(s) + f(s, xλ(s)) +

∫ s

0

q(s− τ)ξ(τ, xλ(τ))dτ
]
ds

+

k∑
i=2

i∏
j=k

(I + Dj) U (tj , tj−1) Ei−1vi−1 + Ekvk.
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The control u(s) is defined as

u(s) =

( m∑
k=1

B∗U∗(tk, s)

m∏
i=k+1

U(ti, ti−1)∗U(b, tm)∗χ(tk−1, tk)

+B∗U(b, s)∗χ(tm, b)

)
ϕ̂λ,

vm = E∗mU(b, tm)∗ϕ̂λ, vk = E∗k

m∏
i=k

U(ti, ti−1)∗(I + D∗i )U(b, tm)∗ϕ̂λ,

(3.6)

with ϕ̂λ =

(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
g(xλ(.)),

and g(xλ(.)) =

(
h−U (b, tm)

1∏
j=m

(I + Dj)U (tj , tj−1)x0

−
∫ b

tm

U(b, s)
[
f(s, xλ(s)) +

∫ s

0

q(s− τ)ξ(τ, xλ(τ))dτ
]
ds

−U (b, tm)

m∑
i=1

i+1∏
j=m

(I + Dj) U (tj , tj−1) (I + Di)

∫ ti

ti−1

U (ti, s)

[
f(s, xλ(s)) +

∫ s

0

q(s− τ)ξ(τ, xλ(τ))dτ
]
ds

)
.

Using (3.5) and (3.6) we can easily obtain that

xλ(b)− h =λϕ̂λ = λ

(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
g(xλ(.)).

Now, by using assumptions (A2) , we find∫ b

0

‖f(s, xλ(s))‖2H ds ≤ C
2
f b, and

and the boundedness of the sequence {f(., xλ(.)) : λ > 0} in  L2 ([0, b];H). Then
there is a subsequence still denoted by {f (., xλ(.))} that weakly converges to, say
f(.) in  L2 ([0, b];H). Similarly by using (A3), we obtain the weak convergence of
{ξ (., xλ(.))} that weakly converges to, say ξ(.) in  L2 ([0, b];H). Then by Corollary
3.3 (chapter 3) [27], we obtain

‖g (xλ(.))− ω‖ ≤
∥∥∥∥∫ b

tm

U(b, s)
[

(f(s, xλ(s))− f(s)) (3.7)

+

∫ s

0

q(s− τ) (ξ(τ, xλ(τ))− ξ(τ)) dτ
]
ds

−U (b, tm)

m∑
i=1

i+1∏
j=m

(I + Dj) U (tj , tj−1) (I + Di)

∫ ti

ti−1

U (ti, s)

×
[

(f(s, xλ(s))− f(s))
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+

∫ s

0

q(s− τ) (ξ(τ, xλ(τ))− ξ(τ)) dτ
]
ds

∥∥∥∥
→ 0, (3.8)

where ω = h−U (b, tm)

1∏
j=m

(I + Dj)U (tj , tj−1)x0

−
∫ b

tm

U(b, s)

[
f(s)−

∫ s

0

q(s− τ)ξ(τ)dτ

]
ds

−U (b, tm)

m∑
i=1

i+1∏
j=m

(I + Dj) U (tj , tj−1) (I + Di)

×
∫ ti

ti−1

U (ti, s)

[
f(s)−

∫ s

0

q(s− τ)ξ(τ)dτ

]
ds,

as λ → 0+. The first term in the right hand side of the expression 3.7 goes

to zero because of the compactness of the operator (Qf)(.) =
∫ b
0

U(., s)f(s)ds :

 L2 ([0, b];H) → PC ([0, b],H)( see Lemma 4.1 and theorem 4.2 in [28]) and the
second term tends to zero by using the compactness of the operator U(t, s), for
t ≥ 0. Finally we compute ‖xλ(b)− h‖H as

‖xλ(b)− h‖ =

∥∥∥∥∥λ
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
g(xλ(.))

∥∥∥∥∥ ,
≤

∥∥∥∥∥λ
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
ω

∥∥∥∥∥
+

∥∥∥∥∥λ
(
λI + Θtm

0 + Γbtm + Θ̃tm
0 + Γ̃btm

)−1
(g (xλ(.))− ω)

∥∥∥∥∥ .
By estimate (3.7) and assumption (A1), we obtain

‖xλ(b)− h‖H → 0 as λ→ 0+.

which guarantee that the system (1.2) is approximately controllable in H. �

4. Application

We consider the following impulsive semilinear functional heat problem on H =
U = L2 ([0, π];R):
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

∂

∂t
z(t, ζ) = a(t)

∂2

∂ζ2
z(t, ζ) + µ(t, ζ) +

e−tz (t, ζ)

(9 + et)(1 + z(t, ζ))

+

∫ t

0

et−s
esz (s, ζ)

5 + z (s, ζ)
ds, ζ ∈ [0, π], t ∈ [0, 1], t 6=

{
1

2

}
,

z(t, 0) = 0 = z(t, π), t ∈ [0, 1],

∆z

(
1

2
, ζ

)
= D1z

(
1

2
, ζ

)
+ Ev1,

∆z (1, ζ) = D2z (1, ζ) + E2v2,

z (0, ζ) = φ(ζ).

(4.1)
Where a : [0, 1] 7→ R+, is Holder continuous function of order 0 < ≤ 1, that is
there exists a positive constant Ca such that

|a(t)− a(s)| ≤ Ca|t− s|, for allt, s ∈ [0, 1].

For H = L2 ([0, π];R), the operator A(t)g(ζ) = a(t)g′′(ζ), with the domain D(A(t))

= D(A) = H2 ([0, π];R) ∩W1,2
0 ([0, π];R). We define the operator A(t) as Ag(ζ) =

g′′, ζ ∈ [0, π], with the domain D(A). Moreover, for t ∈ [0, 1] and g ∈ D(A), the
operator A(t) can be expressed as

A(t)g =

∞∑
n=1

(−n2a(t))〈g, wn〉wn, g ∈ D(A), for 〈g, wn〉 =

∫ π

0

g(ζ)wn9ζdζ,

where, −n2(n ∈ N) and wn(ζ) =
√

2
π sin(nζ), are the eigenvalues and the corre-

sponding normalizes eigenfunctions of the operator A respectively. The operator
A(t) satisfies all the conditions (R1)-(R4) (see application section of [28]). Then
by applying Lemma 2.3, we obtain the existence of a unique evolution system
{U(t, s) : 0 ≤ s ≤ t ≤ 1}. From Lemma 2.4, we observe that the evolution system
{U(t, s) : 0 ≤ s ≤ t ≤ 1} is compact for t − s > 0. The evolution system U(t, s)
can be explicitly as

U(t, s)g =

∞∑
n=1

e−n
2
∫ t
s
a(τ)dτ 〈g, wn〉wn, for each g ∈ H.

We also have

U(t, s)∗g∗ =

∞∑
n=1

e−n
2
∫ t
s
a(τ)dτ 〈g∗, wn〉wn, for each g∗ ∈ H.

Next, we define operator B : L2 ([0, π];R)→ H such that

B (u(t)) (ζ) = u(t) (ζ) = µ (t, ζ) , t ∈ [0, 1], ζ ∈ [0, π].

We can see, the operator B defined as above is a linear bounded operator. We also
define Dk = Ek = I, for k = 1, 2.

Let the function x : J → H be given by

x(t) (ζ) = z (t, ζ) , ζ ∈ [0, π].
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The nonlinear functions f, ξ : [0, 1]×D → H is defined as

f (t, x(t)) (ζ) =
e−tz (t, ζ)

(9 + et)(1 + z(t, ζ))
and ξ (t, x(t)) (ζ) =

etz (t, ζ)

5 + z (t, ζ)
, ζ ∈ [0, π].

We can check that for f and ξ, assumptions (A2) and (A3) are satisfied with
Lf = 1

10 , Lξ = e
25 , Cf = 1

10 , Cξ = e
5 . We take v1 = sin(πt), v2 = cos(πt) and

q∗ = e − 1. By the above settings we can transform system(4.1) in the abstract
form as system (1.2).

Since all the conditions are satisfied therefore, there exists a mild solution the
system (4.1) and is approximately controllable.

5. Conclusion

In this study, we have investigated the existence and controllability of a class of
non-autonomous impulsive integro-differential systems in a Hilbert space. Initially,
we established the existence of mild solutions using Krasnoselskii’s fixed point
theorem. Furthermore, we proved the approximate controllability of the system
and provided a detailed example to illustrate the theoretical results. This research
enhances the understanding of control methods for impulsive nonlinear systems
and can be extended to second-order systems in Banach space. The study of finite
approximate controllability for second-order and stochastic systems remains an
open problem and will be explored in future work.
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