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Abstract. This paper aims to explore the arithmetic properties of Fu’s k

dots bracelet partition where k = pα, p is a prime number with p ≥ 5 and α

is an integer with α ≥ 0. For pα dots bracelet partitions with p = 5, 7 and
11, we found several exciting Ramanujan-like congruences modulo p. We also

used Newman’s theorems to demonstrate certain congruence modulo p.

1. Introduction

In his acclaimed work Combinatory Analysis [22], P. A. MacMahon pioneered
partition analysis as a computational approach for tackling combinatorial ques-
tions affecting systems of linear diophantine inequalities and equations.

Andrews et al. [2,3,5–13] studied partition functions through MacMohan’s par-
tition analysis. To define the k dots bracelet partition, we have to start with the
plane partition, treated by MacMahon in [22]; this is the scenario in which the
partition’s non-negative integer components ci are positioned at the corners of a
square in such a way that the following order relations hold:

c1 ≥ c2, c1 ≥ c3, c2 ≥ c4, and c3 ≥ c4. (1.1)

It is assumed here and throughout this paper that the arrow leading from ci to
cj is represented as ci ≥ cj , the graphical representation of relations (1.1) shown
in Figure 1.

c2

c1 c4

c3

Figure 1. Graphical representation of (1.1).

In 2007, Andrews and Paul [13] proposed a generalization of the diamond shape
called the k-elongated partition diamonds as shown in Figure 2. Then they defined

2000 Mathematics Subject Classification. 11P83, 05A15, 05A17.
Key words and phrases. Congruences, Partitions, l-Regular partitions, k Dots bracelet

partitions.

*Corresponding author.

Global and Stochastic Analysis  
Vol. 11 No. 2 (March, 2024) 
 
Received: 15th November 2023             Revised: 07th January 2024            Accepted: 12th January 2024 
 

1



S. N. FATHIMA, N. V. MAJID, M. A. SRIRAJ, AND P. S. K. REDDY

the broken k-diamond partition, consisting of two separated k-elongated partition
diamonds of length n where the source is deleted in one of them, as shown in
Figure 3.
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Figure 2. k-elongated partition diamond of length 1.
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Figure 3. Broken k-diamond of length 2n.

Andrews and Paul [13] found the generating function for the broken k-diamond
partition, let ∆k(n) be the total number of broken k-diamond partitions for any
positive integer n, then for n ≥ 0 and k ≥ 1,

∞∑
n=0

∆k(n)q
n =

f2 f2k+1

f3
1 f4k+2

,

where fk = (qk; qk)∞ =

∞∏
n=0

(1− qkn), |q| < 1.

In 2011, Fu [19] generalized the broken k-diamond partition, which he called
the k dots bracelet partition. He initially defined infinite bracelet partitions rather
than k dots bracelet partitions. Figure 4 displays bracelet partitions made of
repeating diamonds and dots, with k − 2 dots between two successive diamonds.
And we see that an infinite bracelet partition can be cut into k− 1 different ways
with k dots in half. For any k ≥ 3, a k-dots bracelet partition consists of k − 1
different half bracelets as shown in Figure 5.

Let Bk(n) denote the number of k dots bracelet partition for positive integer
n, the generating function for Bk(n), k ≥ 3 is given by (See [19]):

∞∑
n=0

Bk(n)q
n =

f2 fk
fk
1 f2k

. (1.2)

2



FU’S pα DOTS BRACELET PARTITION

cm−3

cm−1

cm−2

cm cm+k−3

cm+k−1

cm+k−2

cm+k

Figure 4. Infinite bracelet with k dots.
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Figure 5. k − 1 different half bracelet.

He also proved the following congruences for k dots bracelet partitions:

(i) For n ≥ 0, If k = pr ≥ 3 is a prime power,

Bk(2n+ 1) ≡ 0 (mod p).

(ii) For n ≥ 0, k ≥ 3, and 1 ≤ s ≤ p − 1 such that 12s + 1 is a quadratic
nonresidue modulo p, if p | k for some prime p ≥ 5,

Bk(pn+ s) ≡ 0 (mod p).
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(iii) For n ≥ 0 and k ≥ 3 even, say k = 2ml, where l is odd,

Bk(2n+ 1) ≡ 0 (mod 2m).

Radu and Sellers [25] found Some new Ramanujan like congruence for Bk(n),

B5(10n+ 7) ≡ 0 (mod 52),

B7(14n+ 11) ≡ 0 (mod 72),

B11(22n+ 21) ≡ 0 (mod 112).

Later, Cui and Gu [18] found some congruence modulo 2 for 5 dots bracelet
partition and modulo p ≥ 5 for k dots bracelet partitions, Xia and Yao [27] also
found several congruences modulo 2 for 5 dots bracelet partition, and Baruah and
Ahmed [14] found congruence modulo p2 and p3 for k dots bracelet partitions with
k = mps for s ≥ 2 and s ≥ 3, respectively.

A partition of a positive integer n is a finite non-increasing sequence of positive
integers whose sum equals n. Let p(n) be the number of partitions of n. The
generating function for p(n) is given by

∞∑
n=0

p(n)qn =
1

f1
.

The most inspiring congruences of p(n) discovered by Ramanujan [26] for n ≥ 0
are:

p(5n+ 4) ≡ 0 (mod 5), (1.3)

p(7n+ 5) ≡ 0 (mod 7), (1.4)

p(11n+ 6) ≡ 0 (mod 11). (1.5)

Let m be a positive integer with m ≥ 1. A partition of n is called an m-regular
partition, if none of its part is divisible by m. If bm(n) denote the number of
m-regular partition of n, the generating function for bm(n) is given by

∞∑
n=0

bm(n)qn =
fm
f1

. (1.6)

Several mathematicians study the arithmetic properties of m-regular partition
(for example, [4, 15,16,20,21]).

In this paper, we extend our investigation of the arithmetic properties of the k
dots bracelet partitions, where k = pα for all α ≥ 0 and p ≥ 5 is a prime num-
ber. Our fundamental goal in this paper is to show the following theorems, thus
expanding the family of congruences modulo p for p ≥ 5, the authors mentioned
above for k dots bracelet partitions. The main theorems of this paper are the
followings:
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Theorem 1.1. Let p be a prime with p ≥ 5. Then for α ≥ 0,
∞∑

n=0

Bp2α+1

(
2 · p2α+1n+

p2α+2 − 1

12

)
qn ≡ (−1)

(α+1)(±p−1
6 )fp−1

1 (mod p), (1.7)

∞∑
n=0

Bp2α

(
p2α+1n+

p2α+2 − 1

12

)
qn ≡ (−1)

±p−1
6 (mod p), (1.8)

where
±p− 1

6
:=

{
p−1
6 , if p ≡ 1 (mod 6)

−p−1
6 , if p ≡ −1 (mod 6).

Corollary 1.2. Let p be a prime with p ≥ 5. Then for α ≥ 0,

Bp2α+1

(
2 · p2α+1n+ p2α+1 +

p2α+2 − 1

12

)
≡ 0 (mod p). (1.9)

Corollary 1.3. Let p be a prime with p ≥ 5. Then for α ≥ 0,

Bp2α+1

(
2 · p3α+1n+

2 · p2α+2 + pα+1 − pα − p− 1

12

)
≡ (1.10)

(−1)
(α+1)(±p−1

6 )bp(n) (mod p),

where
±p− 1

6
:=

{
p−1
6 , if p ≡ 1 (mod 6)

−p−1
6 , if p ≡ −1 (mod 6).

and bp(n) is p-regular partition.

Here and throughout assume that,

∞∑
n=0

Pr(n)q
n = fr

1 , r ≥ 1.

Theorem 1.4. Let r = p−1, where p be a prime with 5 ≤ p ≤ 23. If Pr

(
(p−1)2

24

)
≡

0 (mod p), then for all α ≥ 0,

Bp2α+1

(
2 · p2α+2n+

p2α+1 (p− 1)2 + p2α+2 − 1

12

)
≡ 0 (mod p). (1.11)

Theorem 1.5. For α ≥ 0,

B72α+1

(
2 · 72α+2n+ 24 · 72α+1 +

52α+2 − 1

12

)
≡ 0 (mod 7), (1.12)

B112α+1

(
2 · 112α+2n+ 100 · 112α+1 +

112α+2 − 1

12

)
≡ 0 (mod 11). (1.13)

This paper is set up as follows. The initial premises necessary to establish our
theorems and corollaries are presented in section 2. We prove our main theorems
in section 3.

2. Preliminaries

We constructed a few lemmas in this section that are necessary to support our
main theorems.
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The Jacobi’s triple product identity [1, Entry 19] in Ramanujan’s notation is
given by

f(a, b) =

∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞, |ab| < 1. (2.1)

Lemma 2.1. Let p prime with p ≥ 5,

f2 =

p−1
2∑

k=− p−1
2

k ̸=± p−1
6

(−1)kq3k
2+kf

(
−q3p

2+(6k+1)p,−q3p
2−(6k+1)p

)
+ (−1)

±p−1
6 q

p2−1
12 f2p2 ,

(2.2)

where
±p− 1

6
:=

{
p−1
6 , if p ≡ 1 (mod 6)

−p−1
6 , if p ≡ −1 (mod 6).

Furthermore, if −(p−1)
2 ≤ k ≤ p−1

2 and k ̸= ±p−1
6 , then 3k2 + k ̸≡ p2−1

12 (mod p).

Proof. Changing q by q2 in [17, Theorem 2.2], we obtain the Lemma. □

Lemma 2.2. Let p prime with p ≥ 5,
∞∑

n=0

Bp

(
2 · pn+

p2 − 1

12

)
qn ≡ (−1)

±p−1
6 fp−1

1 (mod p), (2.3)

∞∑
n=0

Bp2

(
pn+

p2 − 1

12

)
qn ≡ (−1)

±p−1
6 (mod p), (2.4)

where
±p− 1

6
:=

{
p−1
6 , if p ≡ 1 (mod 6)

−p−1
6 , if p ≡ −1 (mod 6).

Proof. Note that for any prime number p and any positive integer a, we have

fap ≡ fp
a (mod p). (2.5)

Now employing (2.5) in (1.2), we obtain

∞∑
n=0

Bp(n)q
n ≡ f2

f2p
(mod p). (2.6)

Employing Lemma 2.1 in (2.6), we obtain

∞∑
n=0

Bp(n)q
n ≡ 1

f2p

[ p−1
2∑

k=− p−1
2

k ̸=± p−1
6

(−1)kq3k
2+kf

(
−q3p

2+(6k+1)p,−q3p
2−(6k+1)p

)

+ (−1)
±p−1

6 q
p2−1
12 f2p2

]
(mod p). (2.7)

Consider the congruence

3k2 + k ≡ p2 − 1

12
(mod p), (2.8)
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which is equivalent to

(6k + 1)2 ≡ 0 (mod p).

The congruence (2.8) has a unique solution k =
±p− 1

6
. So extracting the terms

involving qpn+
p2−1
12 from (2.7) and replacing qp by q, we obtain

∞∑
n=0

Bp

(
pn+

p2 − 1

12

)
qn ≡ (−1)

±p−1
6 fp−1

2 (mod p). (2.9)

Again extarcting the terms involving q2n and repalcing q2 by q, we obtain (2.3).
Similarly by putting k = p2 in (1.2), employing (2.5) and Lemma 2.1, we obtain

∞∑
n=0

Bp2

(
pn+

p2 − 1

12

)
qn ≡ (−1)

±p−1
6

f2p
f2p

≡ (−1)
±p−1

6 (mod p). (2.10)

□

Lemma 2.3. [23], Suppose r is even with 0 ≤ r ≤ 24, let p be a prime such that

r(p− 1) ≡ 0 (mod 24). Set δ = r(p−1)
24 . Then

Pr(np+ δ) = Pr(δ)Pr(n)− p
r
2−1Pr

(
n− δ

p

)
. (2.11)

Lemma 2.4. [24], suppose r ∈ {2, 4, 6, 8, 10, 14, 26}. Let p be a prime with p > 3,

such that r(p+ 1) ≡ 0 (mod 24)). Set ∆ = r(p2−1)
24 and define Pr(n) as zero if α

is not non-negative integer. Then

Pr(np+∆) = (−p)
r
2−1

Pr

(
n

p

)
. (2.12)

3. Proofs

In this section, we prove Theorem 1.1-1.5, the Ramanujan-like congruences, and
the remaining Corollaries.

Proof of Theorem 1.1. (2.3) is the α = 0 case of (1.7). Now assume α ≥ 0.
Replacing k by p2α+3 in (1.2), we obtain

∞∑
n=0

Bp2α+3(n)qn =
f2 fp2α+3

fp2α+3

1 f2p2α+3

. (3.1)

Now employing (2.5) and Lemma 2.1 in (3.1), we obtain

∞∑
n=0

Bp2α+3

(
pn+

p2 − 1

12

)
qn ≡ (−1)

±p−1
6

f2p fp2α+2

fp2α+1

p f2p2α+2

(mod p). (3.2)

Extracting the involving qpn from (3.2) and replacing qp by q, we obtain
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∞∑
n=0

Bp2α+3

(
p2n+

p2 − 1

12

)
qn ≡ (−1)

±p−1
6

f2 fp2α+1

fp2α+1

1 f2p2α+1

(mod p)

= (−1)
±p−1

6

∞∑
n=0

Bp2α+1(n)qn (mod p). (3.3)

By (1.7), we deduce that

∞∑
n=0

Bp2α+3

(
p2
(
2 · p2α+1n+

p2α+2 − 1

12

)
+

p2 − 1

12

)
qn

≡ (−1)
(α+2)(±p−1)

6

∞∑
n=0

Bp2α+1

(
2 · p2α+3n+

p2α+4 − 1

12

)
qn (mod p)

≡ (−1)
(α+2)(±p−1)

6 fp−1
1 (mod p). (3.4)

That is, (1.7) is hold for α+ 1. This complete the proof of (1.7).
Since (2.4) is the α = 0 case of (1.8), we can prove (2.4) by similarly using the
mathematical induction as in (2.3). □

Proof of Corollary 1.2. Since there is no terms involving q2n+1 in (2.9), we obtain

∞∑
n=0

Bp

(
2 · pn+ p+

p2 − 1

12

)
≡ 0 (mod p). (3.5)

(3.5) is the α = 0 case of (1.9). By mathematical induction, we can easily prove
(1.9). □

Proof of Corollary 1.3. From (1.6) and (2.5),

∞∑
n=0

bp(n) =
fp
f1

≡ fp−1
1 (mod p). (3.6)

Employing (3.6) in (1.7), we obtain (1.10). □

Proof of Theorem 1.4. Set r = p − 1 in Lemma 2.3, where p be a prime with
5 ≤ p ≤ 23, we obtain

Pr

(
np+

(p− 1)2

24

)
= Pr

(
(p− 1)2

24

)
Pr(n)− p

r
2−1Pr

(
n− (p−1)2

24

p

)
.

≡ Pr

(
(p− 1)2

24

)
Pr(n) (mod p). (3.7)

If Pr

(
(p− 1)2

24

)
≡ 0 (mod p), then Pr

(
np+

(p− 1)2

24

)
≡ 0 (mod p).

(3.8)
Employing (3.8) in (1.7), we complete the proof of (1.11). □
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Proof of Theorem 1.5. Set r = p − 1, for p = 7 and 11. For p = 7 and 11,
we have r(p+ 1) = p2 − 1 ≡ 0 (mod 24). So by Lemma 2.4 , we obtain

P6(7n+ 12) ≡ 0 (mod 7), (3.9)

P10(11n+ 50) ≡ 0 (mod 11). (3.10)

Employing (3.9) and (3.10) in (1.10), we obtain (1.12) and (1.13), respectively. □

Acknowledgment. The authors would like to thank the referees for their invalu-
able comments and suggestions which led to the improvement of the manuscript.
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