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Abstract. Filtration of real gases described by Peng-Robinson equations of
state in 3-dimensional space is studied. Thermodynamic states are considered
as either Legendrian submanifolds in contact space, or Lagrangian submani-
folds in symplectic space. The correspondence between singularities of their
projection on the plane of intensives and phase transitions is shown, and co-
existence curves in various coordinates are constructed. A method of finding
explicit solutions of the Dirichlet boundary problem is provided and the case
of a number of sources is discussed in details. The domains corresponding to
different phases are shown.

1. Introduction

A system of equations describing a steady filtration in a 3-dimensional porous
medium consists of [3, 8, 10]

• the Darcy law

u = −k

µ
∇p, (1.1)

where u(x) = (u1, u2, u3) is the velocity field, p(x) is the pressure, x ∈
R

3(x1, x2, x3), k = ‖kij‖ is the permeability tensor, depending on the
medium as well as the viscosity µ. The Darcy law in form (1.1) is valid
for one-component filtration, i.e. medium consists of only one sort of fluid
or gas. Since we consider homogeneous medium, we put kij = kδij , where
δij is the Kronecker symbol.

• the continuity equation

div(ρu) = 0, (1.2)

where ρ(x) is the density. Equation (1.2) is responsible for the mass con-
servation law.

In addition to (1.1) and (1.2) we assume that the specific entropy of the gas σ(x)
is constant along the trajectories of the velocity field u:

(u,∇σ) = 0. (1.3)
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Note that system (1.1)-(1.3) is underdetermined. To make it complete, we need
additional relations representing thermodynamic properties of the medium, i.e.
equations of state. Filtration of ideal gases was investigated in [4]. In this paper,
we use one of the most popular in petroleum industry model of real gases, the
Peng-Robinson model [9]. One of the most important properties of such gases is
phase transitions. We obtain coexistence curves, i.e. sets of points where phase
transition occurs, for such gases in the space of thermodynamic variables and hav-
ing solutions of the Dirichlet problem for (1.1)-(1.3) extended by Peng-Robinson
equations of state, we can move these curves onto the space R

3(x1, x2, x3) and
find the domains where phase transitions occur. Similar results have already been
obtained by authors in [1] for the Navier-Stokes flows, in [6] for the van der Waals
gases filtration and in [7] for the Redlich-Kwong gases filtration.

2. Thermodynamic state

Here, we briefly recall (for details see [5, 6]) necessary constructions describing
thermodynamic states by means of contact and symplectic geometry [2]. Let us
introduce a contact manifold (R5, θ) with coordinates (p, T, e, v, σ) standing for
the pressure, the temperature, the specific energy, the specific volume v = ρ−1

and the specific entropy respectively. The structure form θ represents the first law
of thermodynamics:

θ = dσ − T−1de − T−1pdv.

In our consideration, the thermodynamic state is a 2-dimensional Legendrian sub-

manifold L̂ ⊂ (R5, θ), i.e. maximal integral manifold of the form θ:

θ|L̂ = 0,

which means that the first law of thermodynamics holds on L̂.
Since thermodynamic state is defined by interplay of measurable quantities, it

is reasonable to eliminate the specific entropy, which can be done by projection

π : R5 → R
4, π(p, T, e, v, σ) = (p, T, e, v). The restriction of this projection on L̂

gives an immersed Lagrangian submanifold L ⊂ (R4,Ω), such as Ω|L = 0, where
Ω is a symplectic form

Ω = −dθ = d(T−1) ∧ de+ d(pT−1) ∧ dv.

Thus, in (R4,Ω) the Lagrangian submanifold L is given by equations of state:

L = {f(p, T, e, v) = 0, g(p, T, e, v) = 0} .
Then, the condition for L to be Lagrangian is that the Poisson bracket [f, g]
between functions f and g with respect to structure form Ω

[f, g] Ω ∧ Ω = df ∧ dg ∧ Ω

vanishes on the surface L:

[f, g] = 0 on L. (2.1)

We will consider gases with thermodynamic states obeying equations of state
in the form

f(p, T, e, v) = p−A(v, T ), g(p, T, e, v) = e−B(v, T ).
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The first equation is called thermic equation of state, while the second one is
called caloric equation of state. Usually the thermic equation of state is derived
from experiments, but the caloric one remains unknown. Using the compatibility
condition (2.1) one can get the caloric equation. Moreover, the following theorem
is valid [6]:

Theorem 2.1. The Legendrian submanifold L̂ is given by the Massieu-Plank po-
tential φ(v, T ):

p = RTφv, e = RT 2φT , σ = R(φ+ TφT ), (2.2)

where R is the universal gas constant.

Thus, by a system of filtration equations we shall mean equations (1.1)-(1.3)

extended by the Legendrian surface L̂.
In general, not all the points on L are applicable. This means that not all

possible combinations of thermodynamic variables satisfy the condition of ther-
modynamic stability. The set of applicable points is defined by means of the
quadratic differential form κ on L [5]:

κ = d(T−1) · de+ d(pT−1) · dv,
which in terms of Massieu-Plank potential takes the following form:

R−1κ = −(φTT + 2T−1φT )dT · dT + φvvdv · dv.
Theorem 2.2. Applicable states on L correspond to the set of points where the
differential quadratic form κ is negative and are given by inequalities:

φTT + 2T−1φT > 0, φvv < 0,

or, equivalently,
eT > 0, pv < 0.

Consequently, we may have two types of singular submanifolds on L:

• singular submanifold Σ1 ⊂ L, where the differential form de∧ dv degener-
ates:

Σ1 =
{
φTT + 2T−1φT = 0

}
.

In this case the projection of L on the plane of extensive variables has
singularities.

• singular submanifold Σ2 ⊂ L, where the differential form dp ∧ dT degen-
erates:

Σ2 = {φvv = 0} .
In this case the projection of L on the plane of intensive variables has
singularities.

Singularities of the second type are of special interest for us. Let applicable do-
mains on L be separated by Σ2 from the set of points where φvv > 0. This means
that thermodynamic system has a number of phases. A jump between two appli-
cable points a1 = (p, T, e1, v1) ∈ L and a1 = (p, T, e2, v2) ∈ L corresponding to
different phases, characterized by intensives p and T and the specific Gibbs free
energy γ = e − Tσ + pv conservation law γ(a1) = γ(a2) is what we call phase
transition.
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of Massieu-Plank potential φ in the following way:

γ = RT (vφv − φ).

From what follows, that points (v1, T ) and (v2, T ) can be found from equations:

φv (v2, T ) = φv (v1, T ) ,

φ (v2, T )− v2φv (v2, T ) = φ (v1, T )− v1φv (v1, T ) .
(2.3)

Equations (2.3) allow to construct coexistence curves in R
2(v, T ). Equivalent

equations

φv (v2, T ) =
p

RT
, φv (v1, T ) =

p

RT
,

φ (v2, T )− v2φv (v2, T ) = φ (v1, T )− v1φv (v1, T ) ,
(2.4)

allow to get coexistence curves in R
3(p, v, T ) and in R

2(p, T ). Coexistence curves
show where phase transition occurs on the Lagrangian surface L.

3. Peng-Robinson gases

Peng-Robinson state equation was proposed by D.Y. Peng and D. Robinson in
[9]. It appeared to be a superior description of nonpolar materials and became of
wide use in petroleum industry. The first state equation (thermic state equation)
is of the form:

f(p, T, e, v) = p− RT

v − b
+

a

(v + b)2 − 2b2
, (3.1)

where a and b are constants responsible for the interaction between particles and
particles’ volume respectively. To define the Lagrangian surface L completely, we
need one more equation, the caloric state equation. It can be obtained by means
of (2.1). Assuming g(p, T, e, v) = e − B(v, T ) and taking the restriction of the
Poisson bracket [f, g]|L we get an equation for B(v, T ):

Bv

(
(v + b)2 − 2b2

)
− a = 0,

with solution of the form

B(v, T ) = F (T ) +
a
√
2

4b
ln

(
v + b−

√
2b

v + b+
√
2b

)
.

Since taking a = 0, b = 0 in (3.1) we get an ideal gas state equation, we have to
put F (T ) = nRT/2, where n is the degree of freedom.

Thus,

g(p, T, e, v) = e− nRT

2
− a

√
2

4b
ln

(
v + b−

√
2b

v + b+
√
2b

)
, (3.2)

and the Lagrangian surface for Peng-Robinson gases is given by (3.1) and (3.2).
It is easy to check that the Massieu-Plank potential for Peng-Robinson gases is

φ(v, T ) = ln
(
T n/2(v − b)

)
− a

√
2

4bRT
ln

(
(3− 2

√
2)(v

√
2 + v − b)

v
√
2− v + b

)
. (3.3)
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One may show that the specific Gibbs free energy γ can be expressed in terms
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Using (2.2) one can show that the specific entropy σ for Peng-Robinson gases is
(up to a constant)

σ(v, T ) = R ln
(
T n/2(v − b)

)
, (3.4)

and the Legendrian surface L̂ is defined by (3.1), (3.2) and (3.4).
By introducing the scale contact transformation

p 7→ a

b2
p, T 7→ a

bR
T, e 7→ a

b
e, v 7→ bv, σ 7→ Rσ

one gets the reduced form of Peng-Robinson equations of state:

p =
T

v − 1
− 1

(v + 1)2 − 2
, e =

nT

2
+

√
2

4
ln

(
v
√
2 + v − 1

v
√
2− v + 1

)
,

σ = ln
(
T n/2(v − 1)

)
.

(3.5)

Note that since p > 0 and T > 0, we consider only v > 1.
The Massieu-Plank potential takes the form:

φ(v, T ) = ln
(
T n/2(v − 1)

)
−

√
2

4T
ln

(
(3− 2

√
2)(v

√
2 + v − 1)

v
√
2− v + 1

)
.

The differential quadratic form κ can be written in the following way:

R−1κ = − n

2T 2
dT ·dT−Tv4 + 2(2T − 1)v3 + 2(T + 1)v2 − 2(2T − 1)v + T − 2

T (v − 1)2(v2 + 2v − 1)2
dv·dv.

Since n/2T 2 > 0, the applicable domain for Peng-Robinson gases is given by
inequality

T >
2(v + 1)(v − 1)2

(v2 + 2v − 1)2

and is shown in Figure 1.
We can see that there is a critical temperature T0, and if T > T0 there are no

phase transitions.

Theorem 3.1. The critical temperature for Peng-Robinson gases T0 and the cor-
responding critical volume v0 are defined as follows:

v0 = 1 + 2(4 + 2
√
2)−1/3 + (4 + 2

√
2)1/3, T0 =

2(v0 + 1)(v0 − 1)2

(v20 + 2v0 − 1)2
.

3.1. Coexistence curves. Coexistence curve is a level submanifold Γ ⊂ L for
the specific Gibbs potential γ. Such curves separate different phases of the medium
and are given in terms of Massieu-Plank potential by (2.3) and (2.4). Resolving
(2.4) with respect to v1 and changing v2 by v we get Γ ⊂ R

3(p, v, T ), which is
shown in Figure 2 and its projections Γ1 ⊂ R

2(p, T ) and Γ2 ⊂ R
2(v, T ), which are

Figures 3(a) and 3(b) respectively.
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Figure 1. Applicable domain for Peng-Robinson gases. The
curve corresponds to the projection of singular submanifold Σ2 ⊂
L, where κ changes its type. Applicable states are located above
the curve.

Figure 2. Coexistence curve Γ ⊂ R
3(p, v, T ) for Peng-Robinson gases.

4. Solution of filtration equations

Suppose that filtration domain D ⊂ R
3 with a smooth boundary ∂D contains

a number N of isotropic sources. If N = 1, condition (1.3) implies the constancy
of the specific entropy, because stream lines intersect at the location of the source.
Increasing the number of sources one gets one of two cases. Either stream lines
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(a) (b)

Figure 3. Coexistence curves for Peng-Robinson gases: (a) in
R

2(p, T ), liquid phase is on the left of the curve, gas phase is on
the right; (b) in R

2(v, T ), inside the curve — intermediate state
(condensation process).

intersect, which means that all the sources have to be of the same entropy, or not.
The last means that sources may have different values of the specific entropy, but
since stream lines do not intersect, filtrations with sources of different entropy are
independent. Summarizing above discussion, we may say that the domain D can
be represented as a disjoint union of domains D = ∪Dk, where each of subsets Dk

contains sources with common specific entropy. Therefore, we restrict ourselves to
consider adiabatic filtration with a given level of the specific entropy σ0.

Fixed level of the specific entropy σ0 and equations of state allow to express the
temperature T and the pressure p as functions of the specific volume v. Namely,
due to (2.2) we have:

σ0 = φ+ TφT . (4.1)

In applicable domain the derivative of the right-hand side of (4.1) with respect
to T is positive, and T (v) can be obtained as a root of (4.1). Substituting the
corresponding expression for T (v) into the thermic equation of state, we get p(v).
General solution of (1.1)-(1.3) can be derived using the following theorem [6]:

Theorem 4.1. Equations of steady filtration (1.1)-(1.3) extended by equations of
state are equivalent to the following equation:

∆(Q(v)) = 0,

where

Q(v) = −
∫

k

vµ
p′(v)dv. (4.2)

Thus, the Dirichlet problem for (1.1)-(1.3) has the following form:

∆(Q(v(x))) = 0, v|∂D = v0. (4.3)
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Suppose that N sources with given intensities Ji are located at points ai ∈ D, i =
1, N . According to the above theorem, a solution of (4.3) (in general, multivalued)
can be expressed explicitly by means of a harmonic in D \ {ai} function u(x):

Q(v(x)) =

N∑

i=1

Ji
4π|x− ai|

+ u(x), u|∂D = Q(v0)−
N∑

i=1

Ji
4π|x− ai|

∣∣∣∣
∂D

. (4.4)

5. Peng-Robinson gases filtration

For Peng-Robinson gases expressions for T (v) and p(v) are following:

T (v) = s0(v − 1)−2/n, p(v) = s0(v − 1)−1−2/n − 1

(v + 1)2 − 2
,

where s0 = exp(2σ0/n).
Due to (4.4), a problem of invertibility of Q(v) needs to be investigated. We

need to find a specific entropy level s0, such that Q(v), including s0 as a parameter,
is invertible for any v > 1.

Theorem 5.1. The function Q(v) is invertible if the specific entropy constant s0
satisfies the inequality:

s0 >
2n(v0 + 1)(v0 − 1)2+2/n

(n+ 2)(v0 + 2v0 − 1)2
,

where v0 is the root of the equation:

(2 − n)v3 + 3(n+ 2)v2 + (3n+ 2)v + 3n− 2 = 0. (5.1)

There exists a real root of (5.1) v0 > 1.

Proof. First of all, the invertibility condition for Q(v) coincides with the condition
of monotony. Function Q(v) is monotonic if Q′(v) 6= 0 for any v > 1. But due to
(4.2) Q′(v) = 0 ⇔ p′(v) = 0, which can be written as

s0(n+ 2)

2n
= w(v),

where

w(v) =
(v + 1)(v − 1)2/n+2

(v2 + 2v − 1)2
.

Therefore, if s0 > 2n(n+2)−1max
v>1

w(v), thenQ(v) is invertible. Condition w′(v) =

0 takes the form

P (v) = (2− n)v3 + 3(n+ 2)v2 + (3n+ 2)v + 3n− 2 = 0,

and the first part of the theorem is proved. Since the degree of freedom n ≥ 3,
P (+∞) = −∞, P (1) = 8(n+ 1) > 0, from what follows the validity of the second
statement of the theorem. �

Having an explicit solution given by (4.4) and coexistence curves in the space
of thermodynamic variables, shown above, we can construct submanifolds in
R

3(x1, x2, x3) where phase transition occurs. The distribution of phases in space
for N = 5 sources located on a plane x3 = 0 is presented in Figure 4.

The velocity field is shown in Figure 5.
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Figure 4. The distribution of phases for Peng-Robinson gases.
Coloured domain corresponds to the condensation process, black
points are the sources.

Figure 5. The velocity field
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