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Abstract. The Hida-Streit method of evaluating the Feynman path integral

is applied to relativistic quantum mechanical systems. A charged particle in

a uniform magnetic field is taken as an example where the Green function for

the Dirac particle is obtained.

1. Introduction

Since Feynman introduced his path integral formulation of quantum mechan-
ics [11], various approaches aimed at providing a mathematically rigorous mean-
ing to the path integral have been given. Notable among these would be the
prodistributions of DeWitt-Morette [10], the oscillatory integrals of Albeverio and
Høegh-Krohn [1] which explores the Fresnel integrals, and the white noise anal-
ysis approach of Hida and Streit [27]. In this paper, we shall consider the Hida-
Streit approach which, through the years, has solved various classes of potentials
[2, 3, 5, 6, 7, 8, 13, 18, 19, 21, 27] in nonrelativistic quantum mechanics. In white
noise analysis, the velocity of Brownian motion B, i.e., ω (τ) = dB/dτ , τ ∈ R,
which are independent random variables at each point in time, form the coordi-
nates of an infinite dimensional space [14]. We note that white noise analysis as
applied here is also referred to as Hida calculus [14, 16, 20, 23], and differs from
the use of white noise in Parisi-Wu stochastic quantization [25]. The calculus al-
lows the generalization of concepts in finite dimensions to the infinite dimensional
case, including differential operators and integral transforms such as Fourier and
Fourier-Mehler transforms [16]. This makes it particularly suitable for the eval-
uation of the Feynman path integral. Here we extend the applicability of the
Hida-Streit white noise path integral to solve systems in relativistic quantum me-
chanics where the Green function for the Dirac equation is obtained.

In Section 2 we briefly discuss a general procedure for obtaining the Dirac Green
function using the path integral method. We then take as an example in Section
3 the case of a relativistic charged particle in a uniform magnetic field. In Section
4, the paths of this particle are parametrized in terms of the white noise variable
ω and the effective potential becomes similar in form to that of Lévy’s stochastic
area. As in the nonrelativistic case, the path integral can be evaluated with the
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help of the T -transform in white noise analysis from which we obtain the Dirac
Green function. Concluding remarks are given in Section 5 where we cite other
relativistic problems that may be solved using this approach.

2. Quantum Relativistic Systems

The Hida-Streit white noise path integral can be used to solve the Dirac equation
for a spin 1

2 particle of mass m given by
(
m − M̂

)
G (r′′, r′) = δ (r′′ − r′) , (2.1)

where we have defined an operator M̂ in terms of the Dirac matrices α and β of
the form,

M̂ = −βα · (p − eA) − βV + βE. (2.2)

Here V and A are the scalar and vector potentials, respectively. By expressing
the Green function G (r′′, r′) in Eq. (2.1) as,

G (r′′, r′) =
(
m + M̂

)
g (r′′, r′) . (2.3)

we obtain an iterated Dirac equation,
(
m2 − M̂2

)
g (r′′, r′) = δ (r′′ − r′) . (2.4)

The solution of Eq. (2.1) are also solutions of Eq. (2.4), but not conversely.
The Green functions, G (r′′, r′) = 〈r′′|G|r′〉 and g (r′′, r′) = 〈r′′|g|r′〉 , are matrix

elements of the operators, G = (m − M̂)−1, and g = (m2 −M̂2)−1, respectively.
We can also write, for example operator g, in integral form using the relation (see,
e.g., [11], Eq. 5-17),

lim
ε→0

[
− (θ + iε)

−1
]

= i

∫
∞

0

exp (iθΛ) dΛ. (2.5)

Defining

H =
(
m2 − M̂2

)
/2m, (2.6)

we can express the operator g = (1/2m) (1/H) as (see also [9, 26])

g = (i/2m)

∞∫

0

exp (−iHΛ) dΛ . (2.7)

Taking the matrix element of Eq. (2.7),

g (r′′, r′) = (i/2m)

∞∫

0

〈r′′| exp (−iHΛ) |r′〉 dΛ, (2.8)

we observe that the integrand in Eq. (2.8) is analogous in form to a quantum
propagator evolving in Λ−time with an effective Hamiltonian H. Following Feyn-
mans’s prescription for handling quantum propagators [11] we can express the
integrand 〈r′′| exp (−iHΛ) |r′〉 as a path integral. After evaluating the propaga-
tor 〈r′′| exp (−iHΛ) |r′〉 , we can integrate out Λ as in Eq. (2.8) to get g (r′′, r′) ,
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and from Eq. (2.3), the Green function G (r′′, r′) for the Dirac equation can then
be subsequently calculated. This procedure, therefore, enables us to arrive at a
solution for the Dirac equation via the path integral method. We evaluate as an
example a charged particle in a uniform magnetic field where white noise analytical
methods are used.

3. Particle in a Uniform Magnetic Field

Let us consider an electron of charge e (e < 0) and mass m subjected to a
uniform magnetic field B along the z-axis and represented by the vector potential

A = (1/2) (−By,Bx, 0) . Here we represent the magnetic field by B= Bk̂ in order

to distinguish it from our notation for the Brownian motion, B. With M̂ =
−βα · (p − eA) + βE, the operator H in Eq. (2.6) has the form,

H = (1/2m)
[
(px + eBy/2)

2
+ (py − eBx/2)

2
+ p2

z

]

−
(
k2
0/2m

)
− (eσ · B/2m) , (3.1)

where k2
0 = E2 − m2. The spin part, with the magnetic field B along the z-axis,

is just −eσ · B/2m = −eBσz/2m. We can then use Eq. (3.1) as the effective
Hamiltonian in 〈r′′| exp (−iHΛ) |r′〉 of Eq. (2.8). Defining the operator Sz =
(1/2) σz, then Sz acting upon an eigenspinor has the eigenvalues, si = ±1/2.
Noting that |r >= |xyz > |χ >, with |χ > a spinor, we can use

∑ |si >< si| = 1,
to write the integrand in Eq. (2.8) as,

〈r′′| exp (−iHΛ) |r′〉 ≡
∑

si

〈χ|si〉 〈x′′y′′z′′| exp (−iHsΛ) |x′y′z′〉 〈si|χ〉

=
∑

si

ηsi
η+

si
〈x′′y′′z′′| exp (−iHsΛ) |x′y′z′〉 (3.2)

where ηsi
= 〈χ|si〉 . The coordinate part, 〈x′′y′′z′′| exp (−iHsΛ) |x′y′z′〉 , has an

effective Hamiltonian of the form (setting γ = eB/2),

Hs = (1/2m)
[
(px + eBy/2)

2
+ (py − eBx/2)

2
+ p2

z

]

−
(
k2
0/2m

)
− (2γsi/m) . (3.3)

We then evaluate the coordinate part as the path integral

〈x′′y′′z′′| exp (−iHsΛ) |x′y′z′〉 =

∫
exp (iS) D [xyz] (3.4)

for a system evolving with a time-like parameter Λ, and an action corresponding
to Eq. (3.3) given by

S =

Λ∫

0

[
1

2
m
(

.
x

2
+

.
y
2

+
.
z
2
)

+ γ
(
x

.
y − y

.
x
)

+
(
k2
0/2m

)
+ (2γsi/m)

]
dλ. (3.5)

The path integral, Eq. (3.4), with an action given by Eq. (3.5) can be written as,

〈x′′y′′z′′| exp (−iHsΛ) |x′y′z′〉 = ei[(k2

0
/2m)+(2γsi/m)]ΛK (x′′, y′′;x′, y′) K (z′′, z′)

(3.6)
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where the propagator along the z-coordinate is similar to the free particle case,
i.e.,

K (z′′, z′) =

∫
exp

[
(im/2)

.
z
2
]
D [z]

= (1/2π)

∫
exp

{[
ikz (z′′ − z′) −

(
ik2

z/2m
)]

Λ
}

dkz. (3.7)

On the other hand, the propagator along the (x, y) axes is,

K (x′′y′′;x′y′) =

∫
exp



i

Λ∫

0

[
1

2
m
(

.
x

2
+

.
y
2
)

+ γ
(
x

.
y − y

.
x
)]

dλ



D [xy] . (3.8)

This equation is similar to the propagator for a nonrelativistic charged particle in
a uniform magnetic field [6, 11] which can be evaluated using white noise calculus.

4. Evaluation in terms of White Noise

Let us now evaluate Eq. (3.8), K (x′′, y′′;x′, y′) , by parametrizing the paths in
terms of Brownian motion variables as (setting, m = ~ = c = 1) ,

x (Λ) = x′ + Bx (Λ)

= x′ +

∫ Λ

0

ωx (λ) dλ, (4.1)

where ωx (λ) = dBx (λ) /dλ, is the corresponding white noise variable. Similarly,

y (Λ) = y′ + By (Λ)

= y′ +

∫ Λ

0

ωy (λ) dλ, (4.2)

with ωy (λ) = dBy (λ) /dλ. Here x′ and y′ are the fixed initial points. With this, the
velocity of the particle, for instance along the x-direction, becomes, (dx/dλ) = ωx,
and the kinetic part acquires the form,

exp


 i

2

Λ∫

0

(
·

x
2
)

dλ


 = exp


 i

2

Λ∫

0

ωx(τ)2 dλ


 . (4.3)

The integration over all paths (limN→∞

∏
d[xj ] or d∞x), on the other hand, leads

to an integration over the Gaussian white noise measure of the form, dµ(ωx) =
Nω exp

(
− 1

2

∫
ωx(τ)2 dτ

)
d∞ωx. The exponential factor exp

(
− 1

2

∫
ωx(τ)2 dτ

)
in

dµ(ωx), which is responsible for the Gaussian fall-off, spoils the direct correspon-
dence between d∞x of the Feynman path integral and d∞ωx of the white noise
measure. A better comparison can, therefore, be attained by multiplying dµ(ωx)
by a factor exp

(
1
2

∫
ωx(τ)2 dτ

)
to obtain the correspondence, d∞x → d∞ω. To-

gether with Eq. (4.3), the translation of the integrand for the Feynman integral
into the language of white noise analysis leads us to consider the Gauss kernel (for
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the x-degree of freedom),

I0 = N exp



(

i + 1

2

) Λ∫

0

ωx(λ)2 dλ


 , (4.4)

where N is a normalization.
The kinetic part of Eq. (3.8) leads to a white noise functional which is a two-

dimensional version of Eq. (4.4). We have,

Ixy = N exp





(
i + 1

2

) Λ∫

0

[
ωx (λ)

2
+ ωy (λ)

2
]

dλ



 . (4.5)

On the other hand, the interaction part in Eq. (3.8) can be written as,

exp


iγ

Λ∫

0

(
x

.
y − y

.
x
)
dλ


 = exp



iγ

Λ∫

0

[x′ + Bx (λ)] ωy (λ) dλ

−iγ

Λ∫

0

[y′ + By (λ)] ωx (λ) dλ





= exp



iγ

Λ∫

0

[x′ωy (λ) − y′ωx (λ)] dλ





× exp (2iγST ) , (4.6)

where ST is Lévy’s stochastic area given by

ST =
1

2

Λ∫

0

[Bx (λ) dBy (λ) − By (λ) dBx (λ)] . (4.7)

This may be handled by noting that the two-dimensional Brownian motion, Bx (λ)
and By (λ) , can be realized on the probability space of a one-dimensional white
noise [6, 15, 22], where

Bx (λ) =

λ∫

0

ω (τ) dτ ; dBx (λ) = ω (λ) dλ. (4.8)

By (λ) =

0∫

−λ

ω (τ) dτ ; dBy (λ) = ω (−λ) dλ. (4.9)

Eqs. (4.8) and (4.9) enable us to write Eq. (4.7) as

ST =

∫

R2

ω (τ1) FS (τ1, τ2) ω (τ2) dτ1dτ2,

= 〈ω, FS (τ1, τ2) ω〉 (4.10)
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where

FS (τ1, τ2) =
1

4

[
χ[−Λ,0] (τ1) χ[0,−τ1] (τ2) + χ[−Λ,0] (τ2) χ[0,−τ2] (τ1)

]

−1

4

[
χ[0,Λ] (τ1) χ[−τ1,0] (τ2) + χ[0,Λ] (τ2) χ[−τ2,0] (τ1)

]
.

(4.11)

The χ[α,β] (τj), j = 1, 2, with [α, β] as the limits of integration, denotes the inte-
gration over τj in Eq. (4.10).

On the other hand, the terms in the exponent of the kinetic part, Eq. (4.5),
can be written as,

(
i + 1

2

) Λ∫

0

[
ωx (τ)

2
+ ωy (τ)

2
]

dτ =

(
i + 1

2

) Λ∫

0

[
ω (τ)

2
+ ω (−τ)

2
]

dτ

= − 1

2

Λ∫

−Λ

ω (τ) K ω (τ) dτ, (4.12)

where K = − (i + 1). Furthermore, to fix the endpoints x′′ and y′′, we use the
Donsker delta function δ (x (Λ) − x′′) and δ (y (Λ) − y′′) . where x (Λ) and y (Λ)
are given by Eqs. (4.1) and (4.2). With Eqs. (4.6) to (4.12), we can now write
Eq. (3.8) as,

K (x′′, y′′;x′, y′) =

∫
Ixy exp


iγ


x′

0∫

−Λ

ω (λ) dλ − y′

Λ∫

0

ω (λ) dλ






× exp

(
− 1

2
〈ω,L ω〉

)

×δ


x′ − x′′ +

Λ∫

0

ω (λ) dλ




×δ


y′ − y′′ +

0∫

−Λ

ω (λ) dλ


 dµ (ω) , (4.13)

where L = −4iγFS (τ1, τ2) and FS (τ1, τ2) is given by Eq. (4.11). To evaluate the
integration over the white noise measure, we write the delta functions in terms of
their Fourier representation so that Eq. (4.13) becomes,

K (x′′, y′′;x′, y′) =
1

(2π)
2

∫

R2

d2p exp [ip· (x′ − x′′)]

×
∫

N exp


i (px − γy′)

Λ∫

0

ω (λ) dλ






EVALUATING THE PATH INTEGRAL 157

× exp


i (py + γx′)

0∫

−Λ

ω (λ) dλ




× exp

(
−1

2
〈ω,Kω〉

)
exp

(
− 1

2
〈ω,L ω〉

)
dµ (ω)

=
1

(2π)
2

∫

R2

d2p exp [ip· (x′ − x′′)]

∫
N exp (i 〈ω, ξ〉)

× exp

(
− 1

2
〈ω,Kω〉

)
exp

(
− 1

2
〈ω,L ω〉

)
dµ (ω) ,

(4.14)

where x =(x, y), p =(px, py), and, ξ = (px − γy′) χ[0,Λ] + (py + γx′) χ[−Λ,0]. We
then note that the integration over dµ (ω) is just the T -transform of the white
noise functional, Φ = N exp

(
− 1

2 〈ω,Kω〉
)
exp

(
− 1

2 〈ω,L ω〉
)
, i.e.,

(TΦ) (ξ) =

∫
N exp (i 〈ω, ξ〉) exp

(
− 1

2
〈ω,Kω〉

)
exp

(
−1

2
〈ω,L ω〉

)
dµ (ω)

=
[
det
(
1 + L (1 + K)

−1
)]

−
1

2

exp

[
−1

2

〈
ξ, (1 + K + L)

−1
ξ
〉]

,

(4.15)

where we used Eq. (33) of ref. [6]. With K = − (i + 1), we also have,

[
det
(
1 + L (1 + K)

−1
)]

−
1

2

= [det (1 + iL)]
−

1

2

= [cos (γΛ)]
−1

, (4.16)

and [6],
〈
ξ, (1 + K + L)

−1
ξ
〉

= (i/γ) tan (γΛ)
[(

p2
x + p2

y

)

+γ2
(
x′2 + y′2

)
+ 2γ (pyx′ − pxy′)

]
. (4.17)

With Eqs. (4.15), (4.16) and (4.17), Eq. (4.14) becomes,

K (x′′, y′′;x′, y′) =
cos (γΛ)

−1

(2π)
2 exp

[
− i

2
γ tan (γΛ)

(
x′2 + y′2

)]

×
+∞∫

−∞

exp
{
−i tan (γΛ) (2γ)

−1
p2

x

}

× exp {i [(x′ − x′′) + tan (γΛ) y′] px} dpx

×
+∞∫

−∞

exp
{
−i tan (γΛ) (2γ)

−1
p2

y

}

× exp {i [(y′ − y′′) − tan (γΛ) x′] py} dpy.

(4.18)
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The Gaussian integration in Eq. (4.18) over dpx and dpy can be performed and
we obtain,

K (x′′, y′′;x′, y′) =
γ

2πi sin (γΛ)
exp

{
i

2
γ cot (γΛ)

[
(x′ − x′′)

2
+ (y′ − y′′)

2
]}

× exp {iγ (x′y′′ − x′′y′)} . (4.19)

In terms of the Hermite polynomials Hn, Eq.(4.19) becomes,

K (x′′, y′′;x′, y′) = (γ/π) exp {iγ (x′y′′ − x′′y′)}
× exp

{
(−γ/2)

[
(x′′ − x′)

2
+ (y′′ − y′)

2
]}

×
∞∑

n=0

n∑

q=0

(−1)
−n

2−2n

q! (n − q)!

×H2q (
√

γ (x′′ − x′)) H2(n−q) (
√

γ (y′′ − y))

× exp

[
−i

(
n +

1

2

)
2γΛ

]
. (4.20)

Using Eqs. (3.7) and (4.20), we can now write Eq. (3.6) as,

〈x′′y′′z′′| exp (−iHsΛ) |x′y′z′〉
=

(
γ/2π2

)
exp {iγ (x′y′′ − x′′y′)}

× exp
{

(−γ/2)
[
(x′′ − x′)

2
+ (y′′ − y′)

2
]}

×
∫

dkz exp [ikz (z′′ − z′)]

∞∑

n=0

n∑

q=0

(−1)
−n

2−2n

q! (n − q)!

×H2q (
√

γ (x′′ − x′)) H2(n−q) (
√

γ (y′′ − y′))

× exp
[
−i
(
k2

z − b2
)
Λ/2m

]
, (4.21)

where b2/2m =
(
k2
0/2m

)
+
[
si −

(
n + 1

2

)]
(2γ/m) (putting back the mass m).

From Eqs. (3.2) and (4.21), the Green function for the iterated Dirac equation
(2.8), appears as,

g (r′′, r′) =

[
iγ/m (2π)

2
∫

dkz

∑

si

ηsi
η+

si
exp [ikz (z′′ − z′)]

]

× exp {iγ (x′y′′ − x′′y′)} exp {(−γ/2)

×
[
(x′′ − x′)

2
+ (y′′ − y′)

2
]} ∞∑

n=0

n∑

q=0

[
(−1)

−n
2−2n

q! (n − q)!

]

×H2q (
√

γ (x′′ − x′)) H2(n−q) (
√

γ (y′′ − y′))

×
∞∫

0

exp
[
−i
(
k2

z − b2
)
Λ/2m

]
dΛ. (4.22)



EVALUATING THE PATH INTEGRAL 159

The integration over Λ in Eq. (4.22) makes use of Eq. (2.5) which yields the result
[12],

g (r′′, r′) =
[
iγ/m (2π)

2
] ∫

dkz

∑

si

ηsi
η+

si
exp [ikz (z′′ − z′)]

× exp {iγ (x′y′′ − x′′y′)} exp {(−γ/2)

×
[
(x′′ − x′)

2
+ (y′′ − y′)

2
]} ∞∑

n=0

n∑

q=0

[
(−1)

−n
2−2n

q! (n − q)!

]

×H2q (
√

γ (x′′ − x′)) H2(n−q) (
√

γ (y′′ − y′))

×
{

(1/2m)
(
E2 − m2 − k2

z

)
+

[
si −

(
n +

1

2

)]
(2γ/m) + iε

}
−1

,

(4.23)

where ε → 0. The discrete energy spectrum [17] can be obtained from the poles of
the Green function and is given by, E2 = m2 + k2

z + [(2n + 1) − 2si] eB.
The Green function G (r′′, r′) for the first-order Dirac equation can be obtained

with the help of Eqs. (2.3) and (4.23). We can rewrite M̂ in Eq. (2.2) with V = 0
as

M̂ = −βαx (−i∂/∂x′′ + eBy′′/2) − βαy (−i∂/∂y′′ − eBx′′/2)

+ (iβαz∂/∂z′′) + βE

and using the recursion relations of the Hermite polynomials

dHn (x)

dx
= 2nHn−1 (x) ,

we obtain,

G (r′′, r′) =

{
m −

(
eB
2

)
βα+[ (y′′ − y′) + i (x′′ − x′)] + βE − kzβαz

}

×g (r′′, r′) + iβαx
−

g

√
eB
2

4q

×H2q−1

(√
eB
2

(x′′ − x′)

)
H2(n−q)

(√
eB
2

(y′′ − y′)

)

+iβαy
−

g

√
eB
2

4 (n − q)

×H2(n−q)−1

(√
eB
2

(y′′ − y′)

)
H2q

(√
eB
2

(x′′ − x′)

)
,

where α+ = αy + iαx, and

g =
[
ieB/2m (2π)

2
] ∫

dkz

∑

si

ηsi
η+

si
exp [ikz (z′′ − z′)]
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× exp
{

(ieB/2) (x′y′′ − x′′y′) − (eB/4)
[
(x′′ − x′)

2
+ (y′′ − y′)

2
]}

×
∞∑

n=0

n∑

q=0

[
(−1)

−n
2−2n/q! (n − q)!

]

×
{

(1/2m)
(
E2 − m2 − k2

z

)
+

[
si −

(
n +

1

2

)]
(eB/m) + iε

}
−1

,

as ε → 0. We note here that an early attempt to provide a path integral treatment
of a Dirac particle in a uniform magnetic field can be found in reference [24].

5. Conclusion

In this paper, we demonstrated how white noise calculus may be applied to
solve relativistic quantum problems. By iterating the Dirac equation and express-
ing the corresponding Green function in terms of a path integral, the form of the
effective Lagrangian enables one to take advantage of results available in the non-
relativistic case. This similarity with the nonrelativistic problem is, in fact, the
feature which allows us to extend the applicability of the Hida-Streit white noise
path integral to solve quantum relativistic systems. Using the procedure presented
in this paper, other relativistic systems can likewise be handled. Examples would
be a Dirac particle on a circle, as well as a relativistic particle in an Aharonov-
Bohm (AB) potential, and combinations thereof, such as a Dirac particle in the
presence of a uniform magnetic field plus the AB potential [4]. We also note that,
since we made use of the iterated Dirac equation, the procedure discussed in this
paper can likewise be applied to treat spin 0 Klein-Gordon particles.
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[22] Lévy, P.: Le Mouvement Brownien. Gauthier-Villars, Paris, 1954.
[23] Obata, N.: White Noise Calculus and Fock Space, Lecture Notes in Mathematics, Vol. 1577.

Springer, Berlin, 1994.
[24] Papadopoulos, G. J., and Devreese, J. T.: Path integral solutions of the Dirac equation;

Phys. Rev. D13 (1976) 2227.
[25] Parisi, G. and Wu, Y. S.: Perturbation theory without gauge fixing; Scientia Sinica 24

(1981) 483-496.

[26] Schwinger, J.: On gauge invariance and vacuum polarization; Phys. Rev. 82 (1951) 664.
[27] Streit, L., and Hida, T.: Generalized Brownian functionals and the Feynman integral; Stoch.

Proc. Appl. 16 (1983) 55-69.

CHRISTOPHER C. BERNIDO: Research Center for Theoretical Physics, Central

Visayan Institute Foundation, Jagna, Bohol 6308, Philippines

E-mail address: cbernido@mozcom.com

JINKY B. BORNALES: Physics Department, MSU-Iligan Institute of Technology,

Iligan City 9200, Philippines

E-mail address: jbornales@yahoo.com

M. VICTORIA CARPIO-BERNIDO: Research Center for Theoretical Physics, Cen-

tral Visayan Institute Foundation, Jagna, Bohol 6308, Philippines

E-mail address: cbernido@mozcom.com




