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Abstract. The optimal filter π = {πt, t ≥ 0} for a general observation model

is approximated by a probability measure valued process πn = {πn

t
, t ≥ 0}.

The process πn is the empirical measure of a system of weighted particles that

at time 0 consists of n particles. The particles branch at equally spaced time

instances jn−2α where j = 1, 2, ... and 0 < α < 1. We prove the convergence

of the process πn to π and derive sharp upper bounds for the mean square

error. We also prove a central limit theorem to characterize the convergence

rate of the approximate filter. A similar result is obtained for the unweighted,

unnormalized version introduced in [8]. As a corollary, we show that α = 1

3

is the optimal exponent for that version.

1. Introduction

The approximation of the optimal nonlinear filter by means of particle approx-
imations has been studied extensively in last ten years (see, for example, [5], [7],
[10], [12] and the references therein). The use of particle approximations stems
from the fact that the unnormalized filter can be approximated by a weighted
particle system. Since the weights have variances which grow exponentially fast,
the particle system needs to be corrected after small time steps to control the
error. At each time step, the particles will be replaced by a random number of
“offsprings”. The expected number of offsprings is the weight of the corresponding
particle decided according to its path during the period prior to that time step.

In the following, we will work within a very general filtering framework. Namely,
we will assume that the observation process takes values in a space of measures
(rather than the usual k-dimensional Euclidean space). In particular, the observa-
tion process can be given by a random measure in space and time. Moreover, we
will allow the observation and signal noises to be correlated. Let us now introduce
the filtering model in more detail.

Let (Ω,F , (Ft)t≥0 , P0) be a filtered probability space and (H, 〈·, ·〉H), respec-

tively
(

H1, 〈·, ·〉H1

)

be two real separable Hilbert spaces such that H ⊆ H1 and

the injection from H to H1 is a Hilbert-Schmidt operator. On (Ω,F , (Ft)t≥0 , P0)

we define an Ft-adapted d-dimensional Brownian motion B = {Bt,Ft, t ≥ 0} and
an Ft-adapted H-cylindrical Brownian motion (H-c.B.m.) W = {Wt,Ft, t ≥ 0}
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independent of B. We also introduce a d−dimensional stochastic process X =
{Xt,Ft, t ≥ 0} (the signal process) which is the unique solution of the stochastic
differential equation

Xt = X0 +

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds+

∫ t

0

c(Xs)dWs (1.1)

and an H1-valued stochastic process Y = {Yt,Ft, t ≥ 0} (the observation process)
defined by the formula

Yt =

∫ t

0

h(Xs)ds+Wt (1.2)

where the coefficients σ : R
d → R

d×d, b : R
d → R

d, c : R
d → R

d ⊗ H and
h : R

d → H are Lipschitz continuous maps. We are interested in approximating
the optimal filter πt = P0(·|Gt), that is the conditional distribution of Xt given
the observation σ-field Gt = σ(Ys : s ≤ t) (the information available at time t).

Particular cases of the above framework are the finite dimensional case (H =
H1 = R

m) and the filtering model

Xt = X0 +

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds+

∫ t

0

∫

U

σ(Xs, u)W̃ (duds)

with observation

Y (A, t) =

∫ t

0

∫

A

h̃(Xs, u)µ(du)ds+ W̃ (A, t), ∀ A ∈ B(U)

where (U,B(U)) is a measurable space, µ is a σ-finite measure on U and W̃ is a
Gaussian random measure on U × R+ with intensity measure µ. We can convert
this model to (1.1-1.2) by defining H = L2(U, µ) and

W f
t =

∫ t

0

∫

U

f(u)W̃ (duds), ∀f ∈ H.

Then Wt is an H-c.B.M and the filtering problem is given by (1.1-1.2). In this
example, H1 is the completion of H with respect to the norm ‖ · ‖1 given by

‖ · ‖2
1 =

∑

j

〈·, hj〉H j−2,

where {hj} is a complete orthonormal basis of H.
Let P be a probability measure given by

dP0

dP

∣

∣

∣

∣

Ft

= exp

(

∫ T

0

h(Xs)dYs −
1

2

∫ t

0

|h(Xs)|2Hds
)

, t ≥ 0.

Using Girsanov theorem we see that Y becomes an H-c.B.m. under P which is
independent of B. The signal can be rewritten as

Xt = X0 +

∫ t

0

σ(Xs)dBs +

∫ t

0

b̃(Xs)ds+

∫ t

0

c(Xs)dYs

where

b̃(x) = b(x) − 〈c, h〉H (x) and 〈c, h〉H (x) = 〈c(x), h(x)〉H .
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By Kallianpur-Striebel formula, the optimal filter can be written as

〈πt, f〉 = E
P0 (f(Xt)|Gt) =

〈Vt, f〉
〈Vt, 1〉

, ∀ f ∈ Cb(R
d)

where
〈Vt, f〉 = E (M(t)f(Xt)|Gt)

and
dM(t) = M(t)h(Xt)dYt.

As in the classical framework (cf, for example, [1]) one can show that V is the
unique solution of the following linear equation, called the Zakai equation

〈Vt, f〉 = 〈V0, f〉 +

∫ t

0

〈Vs, Lf〉 ds+

∫ t

0

〈Vs,∇∗fc+ hf〉 dYs. (1.3)

Next, we introduce the branching interacting particle system to be used to ap-
proximate the optimal filter. We start with n particles of weight 1

n each at
xn

i , i = 1, 2, · · · , n (the initial position of the particles may be random). We
define V n

0 = 1
n

∑n
i=1 δxn

i
and asume that, P0-almost surely, limn→∞ V n

0 = π0 in

MF (Rd), where MF (Rd) is the set of finite measures over the Borel σ-field on R
d

and the above convergence is taken in the weak topology.
Let δ = δn = n−2α, 0 < α < 1. At time t = jδ, there are mn

j particles alive. Dur-
ing the time interval (jδ, (j + 1)δ), the particles move according to the following
diffusions: For i = 1, 2, · · · ,mn

j ,

Xi
t = Xi

jδ +

∫ t

jδ

σ(Xi
s)dB

i
s +

∫ t

jδ

b̃(Xi
s)ds+

∫ t

jδ

c(Xi
s)dYs,

where Bi =
{

Bi
t,Ft, t ≥ 0

}

are Ft-adapted d-dimensional Brownian motions in-
dependent of Y .
At the end of the interval, the i-th particle (i = 1, 2, · · · ,mn

j ) branches (indepen-

dent of others) into a random number ξi
j+1 of offsprings such that

E
(

ξi
j+1|F(j+1)δ−

)

= M̃n
j+1(X

i)

V ar
(

ξi
j+1|F(j+1)δ−

)

= γn
j+1(X

i),

where

M̃n
j (Xi) =

Mn
j (Xi)

1
mn

j−1

∑mn
j−1

`=1 Mn
j (X`)

Mn
j (Xi) = exp

(

∫ jδ

(j−1)δ

h(Xi
t)dYt −

1

2

∫ jδ

(j−1)δ

|h(Xi
t)|2Hdt

)

.

To minimize γn
j , we take

ξi
j =

{

[M̃n
j (Xi)] with probability 1 − {M̃n

j (Xi)}
[M̃n

j (Xi)] + 1 with probability {M̃n
j (Xi)}

where {x} = x− [x] is the fraction of x. In this case

γn
j (Xi) = {M̃n

j (Xi)}(1 − {M̃n
j (Xi)}).
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The approximation to the optimal filter is then given by the process πn = {πn
t , t ≥

0} defined by

πn
t =

1

n

mn
j

∑

i=1

Mn
j (Xi, t)δXi

t
, jδ ≤ t < (j + 1)δ,

where

Mn
j (Xi, s) = exp

(∫ s

jδ

h(Xi
t)dYt −

1

2

∫ s

jδ

|h(Xi
t)|2Hdt

)

.

In the analysis that follows we will make use of an additional process V n =
{V n

t , t ≥ 0} defined by V n
t = πn

t η
n
t , t ≥ 0, where

ηn
t = Πk−1

j=0

1

mn
j

mn
j

∑

`=1

Mn
j+1(X

`), if kδ ≤ t < (k + 1)δ.

We will show that V n converges to V .
In [6], the optimal filter is approximated by a particle filter π̃n consisting of

particles without weights but with the same motion law and branching mechanism
as those used to construct πn, namely

π̃n
t =

1

n

mn
j

∑

i=1

δXi(t), jδ ≤ t < (j + 1)δ, (1.4)

In [8], another unweighed particle approximation V̂ n = {V̂ n
t , t ≥ 0} was intro-

duced, an approximation not to the optimal filter but to the unnormalised filter
V . To obtain it, the conditional expectation of ξi

j given Fjδ− was chosen to be

Mn
j (Xi) instead of M̃n

j (Xi) and the approximation was given by

V̂ n
t =

1

n

mn
j

∑

i=1

δXi(t), jδ ≤ t < (j + 1)δ. (1.5)

We would like to differentiate between unweighed particle filters such as π̃n and V̂ n

and the above weighted approximation πn. Since the particles that form πn have
both weights as in [18] and [19] and branching mechnisms as in [8] and [6], we will
call πn a hybrid filter. The approximation introduced in [5] is also a hybrid filter.
It differs from πn through the choice of the branching mechanism (the number of
offsprings of the particles are no longer mutually independent so the total number
of particles stays constant) and the fact that the weights are normalised so that the
approximation is a probability measure. We have yet to understand the asymptotic
behaviour of the branching mechanism used in [5]. That is why we use here the
independent branching mechanism instead.

In the following we will prove the convergence of πn (and π̃n) to π as n → ∞
and study the corresponding convergence rate. It turns out that the best rate
cannot be achieved for πn

t , while it is achieved for π̃n
t when α = 1

3 . Nevertheless,

the convergence rate for πn
t when α < 1

3 is better than the optimal rate for π̃n
t .

We will prove this fact via a central limit type theorem in a modification of the
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Schwartz distribution space. Hence attaching weights to particles is certainly
advantageous.

As mentioned above, the limiting behavior of πn is shown via the convergence
of V n to V . In particular, we prove that

lim
n→0

E[ sup
0≤t≤T

d(V n
t , Vt)

2] = 0, (1.6)

where d(·, ·) is a suitable distance defined on MF (Rd). This result is stronger
than, for example, the corresponding result in [8] where only the convergence of

E[d(V̂ n
t , Vt)] to 0 is proved (supplemented with the tightness of the sequence {V̂ n}

in D([0, T ],MF (Rd))). Also the model presented here is more general than in
any of the existing papers. The central limit theorem presented below is the first
result of this type for any of the particle filters enumerated above. In [10], [11]
and [12], similar results are proved for a class of unweighted particle filter which
uses a multinomial branching mechanism. See also [2] and [17] for central limit
theorems in the discrete time framework.

This paper is organized as follows: In Section 2 we prove the convergence of
the approximating filter V n

t to the optimal filter Vt, for arbitrary, but fixed, t ≥ 0.
This preliminary convergence result is used in Section 3 to prove the stronger
version (1.6). Finally, in Section 4, we establish a central limit type theorem to
characterize the convergence rate of the approximating filter. The corresponding
results for π̃n

t and V̂ n
t are also briefly discussed.

Throughout this paper, we shall use K with a subscript to denote a constant
whose value might be different in different proofs.

2. Preliminary results

Hereafter we will denote by Cm
b

(

R
d,X

)

to be the set of all bounded continuous

maps from R
d to X with bounded partial derivatives up to order m, where X is a

Hilbert space. We endow Cm
b

(

R
d,X

)

with the following norm

||ϕ||m,∞ =
∑

|α|≤m

sup
x∈Rd

|Dαϕ (x)|X , ϕ ∈ Cm
b

(

R
d,X

)

,

where α =
(

α1, .., αd
)

is a multi-index andDαϕ = ∂α1

1 ...∂αd

d ϕ.Also letWm
p

(

R
d,X

)

be the set of all functions with generalized partial derivatives up to order m with
both the function and all its partial derivatives being p-integrable. We endow
Wm

p

(

R
d
)

with the following Sobolev norm

||ϕ||m,p =





∑

|α|≤m

∫

Rd

|Dαϕ (x)|p dx





1
p

.

When X is clear from the context or X = R, we will drop it from the notation for
simplicity. The main tool for showing the convergence of V n

t to Vt for fixed t is
the dual ψ = {ψs, s ∈ [0, t]} of the process V . The dual of V is the solution of the
backward SPDE.

{

dψs = −Lψsds− (∇∗ψsc+ hψs) d̂Ys, 0 ≤ s ≤ t
ψt = φ

(2.1)
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where d̂ denotes the backward Itô’s integral. Namely, we take the right point in
the Riemann sum when defining the stochastic integral. The same idea has been
used in previous papers ([5], [8], [6], etc.). The dificulty here is that the backward
SPDE (2.1) is driven by an H-c.B.m hence all classical estimates (such as those
that appear in Rozovskii [21]) are no longer available. We need to prove them
ourselves and we do so shortly. Further, because the correlation of the noises
(observation and signal), some of the estimates have to be carefully refined. Let
us define

Ỹs = Yt − Yt−s and ψ̃s = ψt−s.

Then {ψ̃s, s ∈ [0, t]} satisfies the following forward SPDE, written here in weak
form

d
〈

ψ̃s, ϕ
〉

=
〈

ψ̃s, L
?ϕ
〉

ds+
〈

ψ̃s,∇∗ (ϕc) + hϕ
〉

dỸs (2.2)

with ψ̃0 having density φ with respect to the Lebesgue measure and L? being the
adjoint of L. Using Theorem 3.4 from [18], provided aij ∈ C2

b (Rd), bi, c ∈ C1
b (Rd),

h ∈ C0
b (Rd) and φ ∈ W 0

2

(

R
d
)

, the SPDE (2.2) has a solution which is a measure
valued process with square integrable density for all t ≥ 0. In particular ψs belongs
to W 0

2

(

R
d
)

for all s ≥ 0. However we need here the solution of (2.1) to be a process

with values in C2
b

(

R
d
)

. To achieve this, we show that ψs ∈ Wm
2

(

R
d
)

where m is
chosen so that 2(m−2) > d and then use a standard Sobolev imbedding argument.
To fix the ideas, in the following we will choose m =

[

d
2

]

+3. We have the following

Lemma 2.1. Suppose that the following condition on boundedness of the deriva-
tives holds:

(BD): a, b, c, h, φ ∈ Cm+2
b (Rd) and φ ∈Wm

2 (Rd).

Then there exists a constant K1 independent of φ and s ∈ [0, t] such that

E[‖ψs‖2
m,2] ≤ K1‖φ‖2

m,2 (2.3)

As a consequence ψs ∈ C2
b

(

R
d
)

and there exists a constant K independent of φ
and s ∈ [0, t] such that

E[‖ψs‖2
2,∞] ≤ K1‖φ‖2

m,2.

Proof. The bound on E[‖ψs‖2
0,2] follows from the same arguments as in [18]. Next,

we differentiate (smoothing out by a Brownian semigroup as in [18] if necessary)

both sides of (2.2). For simplicity of notations, we assume d = 1. Then ψ̃1
s ≡ ∇ψ̃s

satisfies the following SPDE

dψ̃1
s = L1ψ̃

1
sds+

(

∇∗ψ̃1
sc+ c1ψ̃

1
s + c2ψ̃

)

dỸs

with initial ∇φ, where L1 is a second order differential operator with bounded
coefficients, ci are bounded functions. Similar to the arguments as in [18] we can
prove that

E[‖ψ1
s‖2

0,2] ≤ K1‖φ‖2
1,2

The higher derivative estimates follow by induction. The last inequality follows
from the Sobolev’s imbedding theorem. ¤
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Let kδ ≤ t < (k + 1)δ. Note that

〈V n
t , φ〉 − 〈V n

0 , ψ0〉 = 〈V n
t , ψt〉 − 〈V n

kδ, ψkδ〉

+

k
∑

j=1

(〈

V n
jδ, ψjδ

〉

− E
(〈

V n
jδ, ψjδ

〉

|Fjδ− ∨ Gjδ,t

))

+

k
∑

j=1

(

E
(〈

V n
jδ, ψjδ

〉

|Fjδ− ∨ Gjδ,t

)

−
〈

V n
(j−1)δ, ψ(j−1)δ

〉)

≡ In
1 + In

2 + In
3 , (2.4)

where Gjδ,t = σ (Ys − Yt : jδ ≤ s ≤ t) . Then

In
1 = ηn

kδ

1

n

mn
k

∑

i=1

(

Mn
k (Xi, t)ψt(X

i
t) − ψkδ(X

i
kδ)
)

,

In
2 =

k
∑

j=1

ηn
jδ

1

n

mn
j−1
∑

i=1

ψjδ(X
i
jδ)(ξ

i
j − M̃n

j (Xi))

In
3 =

k
∑

j=1



ηn
jδ

1

n

mn
j−1
∑

i=1

ψjδ(X
i
jδ)M̃

n
j (Xi) − ηn

(j−1)δ

1

n

mn
j−1
∑

i=1

ψ(j−1)δ(X
i
(j−1)δ)





=

k
∑

j=1

ηn
(j−1)δ

1

n

mn
j−1
∑

i=1

(

ψjδ(X
i
jδ)M

n
j (Xi) − ψ(j−1)δ(X

i
(j−1)δ)

)

.

The following lemma can be proved by adapting the argument in [4]. We leave
the details to the reader.

Lemma 2.2.

ψ(j+1)δ(X
i
(j+1)δ)M

n
j+1(X

i) − ψjδ(X
i
jδ) =

∫ (j+1)δ

jδ

Mn
j (Xi, s)∇∗ψsσ(Xi

s)dB
i
s.

(2.5)

By replacing (j + 1)δ and jδ by t and 0 respectively, in (2.5) i.e., take j = 0
and δ = t, we also get that

〈Vt, φ〉 = E

(

φ(Xt) exp

(∫ t

0

h(Xs)dYs −
1

2

∫ t

0

|h(Xs)|2Hds
)

|Gt

)

= E(ψ0(X0)|Gt) = 〈π0, ψ0〉 .
The following theorem establishes the rates of convergence of the approximating
filter to the optimal one. For this we need to assume the following initial condition
of V n (valid, for example, if V n

0 consists of n independent samples from π0).

(I): E| 〈V n
0 , φ〉 − 〈π0, φ〉 |2 ≤ K2n

−1||φ||20,∞ and φ ∈ C0
b (Rd).

Theorem 2.3. Suppose that φ ∈ Cm+2
b (Rd)∩Wm

2 (Rd) with m =
[

d
2

]

+3, and the
conditions (BD) and (I) hold. Then there exists a constant K3, independent of φ,
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such that

E| 〈V n
t , φ〉 − 〈Vt, φ〉 |2 ≤ K3n

−(1−α)||φ||2m,2.

Proof. First let us note that

〈V n
t , φ〉 − 〈Vt, φ〉 = In

1 + In
2 + In

3 + (〈V n
0 , ψ0〉 − 〈π0, ψ0〉)

Since the control of the last term is immediate from (BD) and (I) it only remains
to control In

1 , In
2 and In

3 . Via a straightforward argument similar to the one in [5],
one shows that there exists a constant K2, independent of φ such that

E((In
3 )2) ≤ K2n

−2
E
(

mn
j (ηn

jδ)
2
)

||φ||2m,2.

Note that

E
(

mn
j (ηn

jδ)
2
)

= EE

(

(

mn
j (ηn

jδ)
2
)

∣

∣

∣

∣

Fjδ−

)

= E
(

mn
j−1(η

n
jδ)

2
)

= E

(

mn
j−1(η

n
(j−1)δ)

2
E

(

(

ηn
jδ/η

n
(j−1)δ

)2

|F(j−1)δ

))

≤ eK2δ
E

(

mn
j−1(η

n
(j−1)δ)

2
)

where the last inequality follows from

E











1

mn
j−1

mn
j−1
∑

k=1

Mn
j (Xk)





2

|F(j−1)δ







≤ 1

mn
j−1

mn
j−1
∑

k=1

E
(

Mn
j (Xk)2|F(j−1)δ

)

≤ eK2δ.

By induction, we have E

(

mn
j (ηn

jδ)
2
)

≤ eK2Tn. Hence, there exists a constant K,

independent of φ such that

E((In
3 )2) ≤ Kn−1||φ||m,2. (2.6)

One also shows that

E((In
2 )2) ≤

k
∑

j=1

1

n2

mn
j−1
∑

i=1

ψjδ(X
i
jδ)

2γn
j (Xi)(ηn

jδ)
2.

which implies, similarly as in [5], that there exists a constant K, independent of
φ such that

E((In
2 )2) ≤ Kn−(1−α)||φ||m,2.

The result follows after estimating In
1 in a similar manner as In

3 . ¤
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In a similar manner one can treat the approximation π̃n as defined in (1.4). We

define Ṽ n
t = π̃n

t η
n
t and can write that

〈

Ṽ n
t , ψt

〉

−
〈

Ṽ n
kδ, ψkδ

〉

=
1

n

mn
k

∑

i=1

(

ψt(X
i
t)M

n
k (Xi, t) − ψkδ(X

i
kδ)
)

ηn
kδ

+
1

n

mn
k

∑

i=1

φt(X
i
t)
(

1 −Mn
k (Xi, t)

)

ηn
kδ.

It can be proved that the second moment of the second term is bounded by
Kn−2α||φ||2m,2. Therefore, we have

E| < Ṽ n
t , φ > − < Vt, φ > |2 ≤ K

(

n−(1−α) ∨ n−2α
)

||φ||2m,2.

The same inequality holds for the approximation V̂ n as defined in (1.5).

3. Convergence of V n

In this section, we study the convergence of V n, regarding as a sequence of
stochastic processes. More specifically, we derive the convergence rate uniformly
for t in an interval. First we observe that

〈V n
t , f〉 = 〈V n

0 , f〉 +

∫ t

0

〈V n
s , Lf〉 ds+

∫ t

0

〈V n
s ,∇∗fc+ hf〉 dYs

+Nn,f
t + N̂n,f

t , (3.1)

where

Nn,f
t =

[t/δ]
∑

j=0

1

n

mn
j

∑

i=1

∫ ((j+1)δ)∧t

jδ

∇∗fσ(Xi
s)dB

i
sη

n
jδ

N̂n,f
t =

[t/δ]
∑

j=1

ηn
jδ

1

n

mn
j−1
∑

i=1

(ξi
j − M̃n

j (Xi))f(Xi
jδ).

Nn,f and N̂n,f are uncorrelated martingales with quadratic variation processes

〈

Nn,f
〉

t
=

[t/δ]
∑

j=0

1

n2

mn
j

∑

i=1

∫ ((j+1)δ)∧t

jδ

|∇∗fσ(Xi
s)|2ds(ηn

jδ)
2

〈

N̂n,f
〉

t
=

[t/δ]
∑

j=1

1

n2
E











mn
j−1
∑

i=1

(ξi
j −Mn

j (Xi))f(Xi
jδ)





2

|Fjδ−






(ηn

jδ)
2

=

[t/δ]
∑

j=1

1

n2

mn
j−1
∑

i=1

γn
j (Xi)f2(Xi

jδ)(η
n
jδ)

2. (3.2)

We need the following technical estimate.
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Lemma 3.1. For any f ∈ C2
b (Rd) with ||f ||2,∞ ≤ 1, there exists a constant K4,

independent of f such that
∣

∣

∣

∣

E

(

γn
j+1(X

i)f2(Xi
(j+1)δ)(η

n
(j+1)δ/η

n
jδ)

2|Fjδ

)

−
√

2π−1|h(Xi
jδ) − h̄jδ|Hf2(Xi

jδ)
√
δ

∣

∣

∣

∣

≤ K4δ,

where h̄r = 1
mn

j

∑mn
j

k=1 M̃
n
j (Xk, r)h(Xk

r ).

Proof. Let M̂n
j (t) = 1

mn
j

∑mn
j

k=1M
n
j (Xk, t). Then ηn

(j+1)δ/η
n
jδ = M̂n

j ((j + 1)δ) and

by (20) in [9],

M̃n
j (Xi, t) = 1 +

∫ t

jδ

M̃n
j (Xi, r)

〈

h(Xi
r) − h̄r, dYr − h̄rdr

〉

H
.

Similarly, we can prove that

dM̂n
j (t)2 = 2M̂n

j (t)2h̄tdYt + M̂n
j (t)2|h̄t|2dt.

By Itô’s formula, we get

d
(

M̂n
j (t)2f2(Xi

t)
)

= M̂n
j (t)2

(

|h̄t|2f2(Xi
t) + Lf2(Xi

t) + 2∇∗f2ch̄t

)

dt

+M̂n
j (t)2

(

2f2(Xi
t)h̄t + ∇∗f2c(Xi

t)
)

dYt

+M̂n
j (t)2∇∗f2σ(Xi

t)dBt.

Now we adapt the argument in the proof of Proposition 6 in [3]. Let F (x) =
{x}(1 − {x}). By Itô’s formula, we have

γn
j+1(X

i)(ηn
(j+1)δ/η

n
jδ)

2f2(Xi
(j+1)δ)

=

∫ (j+1)δ

jδ

M̂n
j (t)2f2(Xi

t)D
−F (M̃n

j (Xi, t))M̃n
j (Xi, t)

×
〈

h(Xi
t) − h̄t, dYt − h̄tdt

〉

H

−
∫ (j+1)δ

jδ

M̂n
j (t)2f2(Xi

t)|M̃n
j (Xi, t)|2|h(Xi

t) − h̄t|2Hdt

+2
∑

k≥1

∫ (j+1)δ

jδ

M̂n
j (t)2f2(Xi

t)dLt(k)

+

∫ (j+1)δ

jδ

F (M̃n
j (Xi, t))M̂n

j (t)2
(

|h̄t|2f2(Xi
t) + Lf2(Xi

t) + 2∇∗f2ch̄t

)

dt

+

∫ (j+1)δ

jδ

F (M̃n
j (Xi, t))M̂n

j (t)2
(

2f2(Xi
t)h̄t + ∇∗f2c(Xi

t)
)

dYt

+

∫ (j+1)δ

jδ

F (M̃n
j (Xi, t))M̂n

j (t)2∇∗f2σ(Xi
t)dBt

+

∫ (j+1)δ

jδ

M̂n
j (t)2f2(Xi

t)D
−F (M̃n

j (Xi, t))M̃n
j (Xi, t)
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×
〈

h(Xi
t) − h̄t, 2f

2(Xi
t)h̄t + ∇∗f2c(Xi

t)
〉

H
dt

≡
7
∑

i=1

Ii

where D−F is the left derivative which is bounded by 1, and Lt(k) is the local

time at k for the semimartingale M̃n
j (Xi, t), jδ ≤ t ≤ (j + 1)δ. Note that

E (I1|Fjδ) = E

(∫ (j+1)δ

jδ

M̂n
j (t)2f2(Xi

t)D
−F (M̃n

j (Xi, t))

×M̃n
j (Xi, t)

〈

h(Xi
t) − h̄t,−h̄tdt

〉

H

∣

∣

∣

∣

Fjδ

)

≤ E

(

∫ (j+1)δ

jδ

M̂n
j (t)2‖f2‖0,∞M̃

n
j (Xi, t)2‖h‖2

∞dt

∣

∣

∣

∣

Fjδ

)

≤ Kδ.

Similarly, we can prove that E (I4 + I7|Fjδ) ≤ Kδ. Further, we have that I2 ≤ 0
and that E (I5 + I6|Fjδ) = 0. Thus, we only need to deal with I3. Similar to the
proof of Proposition 6 in [3], we can show that

E





∑

k≥2

∫ (j+1)δ

jδ

M̂n
j (t)2f2(Xi

t)dLt(k)
∣

∣

∣
Fjδ



 ≤ Kδ.

Thus we only need to deal with the first term in the sum for I3. Note that
∫ (j+1)δ

jδ

M̂n
j (t)2f2(Xi

t)dLt(1) − L(j+1)δ(1)f
2(Xi

jδ)

=

∫ (j+1)δ

jδ

(

M̂n
j (t)2f2(Xi

t) − f2(Xi
jδ)
)

dLt(1).

It is easy to prove that

E

(

sup
jδ≤t≤(j+1)δ

∣

∣

∣
M̂n

j (t)2f2(Xi
t) − f2(Xi

jδ)
∣

∣

∣

2 ∣
∣

∣
Fjδ

)

≤ Kδ

and that EL(j+1)δ(1)
2 ≤ Kδ.. Hence,

E

(∣

∣

∣

∣

∣

∫ (j+1)δ

jδ

M̂n
j (t)2f2(Xi

t)dLt(1) − L(j+1)δ(1)f
2(Xi

jδ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fjδ

)

≤ Kδ.

By Itô’s formula, we have
∣

∣

∣

∣

∣

∫ (j+1)δ

jδ

M̃n
j (Xi, r)

〈

h(Xi
r) − h̄r, dYr − h̄rdr

〉

H

∣

∣

∣

∣

∣

=
∣

∣

∣M̃n
j (Xi) − 1

∣

∣

∣

=

∫ (j+1)δ

jδ

sgn
(

M̃n
j (Xi, t) − 1

)

M̃n
j (Xi, t)

〈

h(Xi
r) − h̄r, dYr − h̄rdr

〉

H

+2L(j+1)δ(1).
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Thus,

E
(

2L(j+1)δ(1)|Fjδ

)

= E

(∣

∣

∣

∣

∣

∫ (j+1)δ

jδ

M̃n
j (Xi, r)

〈

h(Xi
r) − h̄r, dYr − h(Xt)dt

〉

H

∣

∣

∣

∣

∣

∣

∣

∣
Fjδ

)

+O(δ)

= E





√
2π−1

√

∫ (j+1)δ

jδ

|h(Xi
r) − h̄r|2Hdr

∣

∣

∣Fjδ



+O(δ)

=
√

2π−1|h(Xi
jδ) − h̄jδ|H

√
δ +O(δ).

Here O(δ) represents a term which is bounded by Kδ for K being a deterministic
constant. ¤

We define now the following distance on the space of finite measures

d(ν1, ν2) =

∞
∑

k=0

2−k (| 〈ν1 − ν2, fk〉 | ∧ 1)

where f0 = 1 and for k ≥ 1, fk ∈ Cm+4
b (Rd) ∩Wm+2

2 (Rd) with ||fk||m+4,∞ ≤ 1
and also ||fk||2,m+2 ≤ 1.

Theorem 3.2. Suppose that the conditions (BD) and (I) hold true and, addi-
tionaly, that h ∈ Cm+2

b (Rd) ∩Wm
2 (Rd). Then, there exists a constant K5 such

that
E sup

t≤T
d(V n

t , Vt)
2 ≤ K5n

−(1−α).

Proof. Note that

E sup
t≤T

d(V n
t , Vt)

2 ≤
∞
∑

k=1

2−k

(

E sup
t≤T

〈V n
t − Vt, fk〉2 ∧ 1

)

+E sup
t≤T

〈V n
t − Vt, 1〉2 (3.3)

and

E sup
t≤T

〈V n
t − Vt, f〉2 ≤ KE 〈V n

0 − V0, f〉2 +K

∫ T

0

E 〈V n
t − Vt, Lf〉2 dt

+K

∫ T

0

E |〈V n
t − Vt,∇∗fc+ hf〉|2H dt

+KE

[T/δ]
∑

j=0

1

n2

mn
j

∑

i=1

∫ ((j+1)δ)∧t

jδ

|∇∗fσ(Xi
s)|2ds(ηn

jδ)
2

+KE

[T/δ]
∑

j=1

1

n2

mn
j−1
∑

i=1

γn
j (Xi)f2(Xi

jδ)(η
n
jδ)

2. (3.4)

Following condition (I), the first term is bounded by Kn−1. Next, by Theorem
2.3, we see that the following two terms are bounded by Kn−(1−α). Note that

4th term ≤ K

[T/δ]
∑

j=1

δ

n2
E
(

mn
j (ηn

jδ)
2
)

≤ Kn−1.
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By Lemma 3.1, we have

5th term = KE

[T/δ]
∑

j=1

1

n2

mn
j−1
∑

i=1

E

(

γn
j (Xi)f2(Xi

jδ)(η
n
jδ)

2

∣

∣

∣

∣

F(j−1)δ

)

≤ K

[T/δ]
∑

j=0

√
δ

n2
E
(

mn
j (ηn

jδ)
2
)

≤ Kn−(1−α).

To complete the proof we consider the last term in (3.3). Taking f = 1 in (3.4),
we get

E sup
t≤T

〈V n
t − Vt, 1〉2 ≤ K

∫ T

0

E |〈V n
t − Vt, h〉|2H dt

+KE

[T/δ]
∑

j=1

1

n2

mn
j−1
∑

i=1

γn
j (Xi)(ηn

jδ)
2. (3.5)

It is clear that Lemma 3.1 remains true with f = 1, and hence, the second term
of (3.5) is bounded by Kn−(1−α). By Theorem 2.3, we get that the first term of
(3.5) is bounded by Kn−(1−α). The conclusion then follows by plugging all the
above estimates back into (3.3). ¤

Remark 3.3. For the case of π̃n
t , the jump at (j + 1)δ is

ηn
(j+1)δ

1

n

mn
j

∑

i=1

(

ξi
j+1 −

ηn
jδ

ηn
(j+1)δ

)

δXi
(j+1)δ

.

Write

ξi
j+1 −

ηn
jδ

ηn
(j+1)δ

=
(

ξi
j+1 − M̃n

j (Xi)
)

+
Mn

j (Xi) − 1

1
mn

j−1

∑mn
j−1

k=1 Mn
j (Xk)

.

Then the new N̂n,f can be written as two terms. A careful estimate of the second
term leads to the bound Kn−2α. Thus, we have

E sup
t≤T

d(Ṽ n
t , Vt)

2 ≤ K
(

n−2α ∨ n−(1−α)
)

.

The same inequality holds for V̂ n
t .

4. A central limit type theorem

In this section, we prove the exact rate of convergence by a central limit type
theorem. For α ∈ (0, 1), let

Un
t = n

1−α
2 (V n

t − Vt), t ≥ 0.

By (3.1) and Zakai equation, we have

〈Un
t , f〉 = 〈Un

0 , f〉 +

∫ t

0

〈Un
s , Lf〉 ds+

∫ t

0

〈Un
s ,∇∗fc+ hf〉 dYs

+n
1−α

2 Nn,f
t + n

1−α
2 N̂n,f

t , (4.1)
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Let Φ′ = ∪∞
k=0Φ−k be the dual of the nuclear space Φ defined on page 333 in

[20].

Theorem 4.1. There exists κ such that {Un} is tight in DΦ−κ
[0,∞).

Proof. For u ≤ ε, we have

E

(

〈

Un
t+u − Un

t , f
〉2
∣

∣

∣Ft

)

≤ E

(

4
∑

i=1

ζi,n
f (ε)

)

where ζ1,n
f (ε) =

∫ t+ε

t
〈Un

s , Lf〉2 ds, ζ2,n
f (ε) =

∫ t+ε

t
〈Un

s ,∇∗fc+ hf〉2 ds and

ζ3,n
f (ε) = n1−α

∑

t≤jδ<t+ε

1

n2

mn
j

∑

i=1

∫ ((j+1)δ)∧t

jδ

|∇∗fσ(Xi
s)|2ds(ηn

jδ)
2

ζ4,n
f (ε) = n1−α

∑

t≤jδ<t+ε

1

n2

mn
j

∑

i=1

γ2
j (Xi)f2(Xi

jδ)(η
n
jδ)

2.

Similar to the previous section, we can show that

lim
ε→0

sup
n

E

(

4
∑

i=1

ζi,n
f (ε)

)

= 0.

As in the proof of Theorem 3.2 there exists a constant K such that

E sup
t≤T

〈Un
t − Un

0 , f〉
2 ≤ K,

which implies the compact containment for {〈Un
t , f〉 : n ≥ 1, t ≥ 0}. By Remark

8.7 (p138) in Ethier and Kurtz [13], we get the tightness of 〈Un, f〉 in DR[0,∞). As
in the proof of Theorem 3.1 in Kurtz and Xiong [20], applying Mitoma’s theorem,
we get the tightness of Un in DΦ−κ

[0,∞). ¤

It is easy to show that n
1−α

2 Nn,f
t → 0. On the other hand,

〈

n(1−α)/2N̂n,f
〉

t
= n1−α

[t/δ]
∑

j=1

1

n2

mn
j−1
∑

i=1

γn
j (Xi)f2(Xi

jδ)(η
n
jδ)

2

= n1−α

[t/δ]
∑

j=1

1

n2

mn
j−1
∑

i=1

E

(

γn
j (Xi)f2(Xi

jδ)(η
n
jδ)

2

∣

∣

∣

∣

F(j−1)δ

)

+n1−α

[t/δ]
∑

j=1

1

n2

mn
j−1
∑

i=1

(

γn
j (Xi)f2(Xi

jδ)(η
n
jδ)

2

−E

(

γn
j (Xi)f2(Xi

jδ)(η
n
jδ)

2

∣

∣

∣

∣

F(j−1)δ

))

. (4.2)
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By Lemma 3.1, the first term satisfies

lim
n→∞

n1−α

[t/δ]
∑

j=1

1

n2

mn
j−1
∑

i=1

√

2

π
|h(Xi

(j−1)δ) − h̄(j−1)δ|H
√
δf2(Xi

(j−1)δ)(η
n
(j−1)δ)

2

= lim
n→∞

√

2

π

[t/δ]−1
∑

j=0

〈

V n
jδ, |h− h̄jδ|Hf2

〉

δ
〈

V n
jδ, 1

〉

=

√

2

π

∫ t

0

〈

Vs, |h− πsh|Hf2
〉

〈Vs, 1〉 ds.

Note that γn
j (Xi)2 ≤ γn

j (Xi) and

dM̂n
j (t)4 = 4M̂n

j (t)4h̄tdYt + 6M̂n
j (t)4|h̄t|2dt.

Similar to Lemma 3.1, we have

E

(

γn
j (Xi)2

(

ηn
jδ/η

n
(j−1)δ

)4 ∣
∣

∣
F(j−1)δ

)

≤ K
√
δ.

Hence, the second moment of the second term on the right hand side of (4.2) is
bounded by

n2(1−α)

[t/δ]
∑

j=1

E











1

n2

mn
j−1
∑

i=1

γn
j (Xi)f2(Xi

jδ)(η
n
jδ)

2





2






≤ ‖f‖4
∞n

2(1−α)

[t/δ]
∑

j=1

E





(

mn
j−1

n2

)2
1

mn
j−1

mn
j−1
∑

i=1

γn
j (Xi)2(ηn

jδ)
4





≤ K1n
−2−α

E

(

(mn
j−1)

2(ηn
(j−1)δ)

4
)

.

Finally, we estimate E

(

(mn
j )2(ηn

jδ)
4
)

recursively as follows

E
(

(mn
j )2(ηn

jδ)
4
)

= E

(

E

(

(mn
j )2(ηn

jδ)
4

∣

∣

∣

∣

Fjδ−

))

= E






(ηn

jδ)
4
E





mn
j−1
∑

i=1

ξj
i





2
∣

∣

∣

∣

Fjδ−







≤ E



(ηn
jδ)

4mn
j−1

mn
j−1
∑

i=1

E

(

(ξj
i )

2
)





≤ E
(

(ηn
jδ)

4(mn
j−1)

2(1 +Kδ)
)

≤ (1 +Kδ)e2K2δ
E

(

(mn
j−1)

2(ηn
(j−1)δ)

4
)

.

Thus, by induction, we have

E
(

(mn
j )2(ηn

jδ)
4
)

≤ (1 +Kδ)je2K2jδn2 ≤ Kn2.
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Combining the estimates above, we get

Lemma 4.2. As n→ ∞, we have

n
1−α

2 Nn,f
t → 0 and n

1−α
2 N̂n,f

t =⇒Mf
t

which is a martingale uncorrelated to W and Y such that

〈

Mf
t

〉

t
=

√

2

π

∫ t

0

〈

Vs, |h− πsh|Hf2
〉

〈Vs, 1〉 ds.

Further, there exists a space-time white noise B(dtdx) (independent of W and Y
such that

Mf
t =

4

√

2

π

∫ t

0

∫

Rd

√

|h(x) − πsh|HV (s, x) 〈Vs, 1〉f(x)B(dsdx),

where V (s, x) is the density of the measure Vs.

Summarizing, we get

Theorem 4.3. Un =⇒ U which is the unique solution to

〈Ut, f〉 = 〈U0, f〉 +

∫ t

0

〈Us, Lf〉 ds+

∫ t

0

〈Us,∇∗fc+ hf〉 dYs

+
4

√

2

π

∫ t

0

∫

Rd

√

|h(x) − πsh|HV (s, x) 〈Vs, 1〉f(x)B(dsdx). (4.3)

Proof. By Theorem 4.1, we can take U being a limit point. Without loss of
generality, we assume that Un =⇒ U . By Lemma 4.2, it is easy to show that U
satisfies (4.3). To prove the uniqueness, we take another solution Ũ of (4.3) and

define Ût = Ut − Ũt. Then Ût satisfies the following homogeneous linear equation
〈

Ût, f
〉

=

∫ t

0

〈

Ûs, Lf
〉

ds+

∫ t

0

〈

Ûs,∇∗fc+ hf
〉

dYs.

Similar to Lemma 4.2 in [20] we get Û = 0. ¤

Now we give some details on how to deal with the branching particle filter V̂ n
t .

In this case, there is an extra term Sn,f
t =

∑6
i=1 J

n
i (t) where

Jn
1 (t) =

[t/δ]−1
∑

j=1

1

n

mn
j

∑

i=1

∫ (j+1)δ

jδ

Mn
j (Xi, s)h(Xi

s)(f(Xi
s) − f(Xi

jδ))dYs,

Jn
2 (t) =

[t/δ]−1
∑

j=1

1

n

mn
j

∑

i=1

∫ (j+1)δ

jδ

(Mn
j (Xi, s) − 1)Lf(Xi

s)ds,

Jn
3 (t) =

[t/δ]−1
∑

j=1

1

n

mn
j

∑

i=1

∫ (j+1)δ

jδ

(Mn
j (Xi, s) − 1)∇∗fσdBi

s,

Jn
4 (t) =

[t/δ]−1
∑

j=1

1

n

mn
j

∑

i=1

∫ (j+1)δ

jδ

(Mn
j (Xi, s) − 1)∇∗fc(Xi

s)dYs,
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Jn
5 (t) =

[t/δ]−1
∑

j=1

1

n

mn
j

∑

i=1

∫ (j+1)δ

jδ

Mn
j (Xi, s)∇∗f 〈c, h〉H (Xi

s)ds

−
∫ t

0

∫

U

〈V n
s ,∇∗f 〈c, h〉H〉 ds

and

Jn
6 (t) =

[t/δ]−1
∑

j=1

1

n

mn
j

∑

i=1

∫ (j+1)δ

jδ

Mn
j+1(X

i, s)h(Xi
s)dYsf(Xi

jδ) −
∫ t

0

〈V n
s , hf〉 dYs.

To deal with this term, we need the following

Lemma 4.4. Let

W δ
k`(t) =

∫ t

0

√
2δ−1

(

Y k
s − Y k

ηδ(s)

)

dY `(s), k, ` = 1, 2, · · ·

where Y k(t) = 〈Y (t), ek〉H and {ek} is a CONS of H. Then, as δ → 0, W δ
k` →Wk`

and Wk`, k, ` ≥ 1 are independent Brownian motions which are independent of Y .

Proof. We adapt the proof of Lemma 5.2 in Kurtz and Xiong [20]. It is clear that
W δ

k`, k, ` ≥ 1 are uncorrelated martingales and

[W δ
k`]t =

∫ t

0

2δ−1
(

Y k
s − Y k

ηδ(s)

)2

ds

= 2tδ−2

∫ δ

0

δt−1

[t/δ]−1
∑

j=0

(

Y k
s+jδ − Y k

jδ√
s

)2

sds→ t.

For g ∈ H, we have

[W δ
k , Y (g)]t =

√
2δ−1

∫ t

0

(

Y k
s − Y k

ηδ(s)

)

ds 〈g, e`〉H → 0

and the lemma follows by the martingale central limit theorem. ¤

We can define an H ⊗H-c.B.m W̃t by

W̃ ek⊗e`(t) = Wk`(t).

Note that

f(Xi
s) − f(Xi

jδ) =

∫ s

jδ

L̃f(Xi
r)dr +

∫ s

jδ

∇∗fσ(Xi
r)dB

i
r

+

∫ s

jδ

∇∗fc(Xi
r)dYr.
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Approximate X i
r, jδ ≤ r < (j + 1)δ, by X i

jδ, we have

n1/3

[t/δ]−1
∑

j=1

1

n

mn
j

∑

i=1

∫ (j+1)δ

jδ

Mn
j (Xi, s)h(Xi

s)

∫ s

jδ

∇∗fc(Xi
r)dYrdYs

≈ n1/3

[t/δ]−1
∑

j=1

1

n

mn
j

∑

i=1

∞
∑

k,`=1

〈

h(Xi
jδ), ek

〉

H

〈

∇∗fc(Xi
jδ), e`

〉

H

×
√

δ

2

(

W δ
k`((j + 1)δ) −W δ

k`(jδ)
)

→ 1√
2

∫ t

0

〈Vs, h⊗∇∗fc〉 dW̃s.

Similarly, we can prove

n1/3

[t/δ]−1
∑

j=1

1

n

mn
j

∑

i=1

∫ (j+1)δ

jδ

Mn
j (Xi, s)h(Xi

s)

∫ s

jδ

L̃f(Xi
r)drdYs → 0

and

n1/3

[t/δ]−1
∑

j=1

1

n

mn
j

∑

i=1

∫ (j+1)δ

jδ

Mn
j (Xi, s)h(Xi

s)

∫ s

jδ

∇∗fσ(Xi
r)dB

i
rdYs → 0.

Hence

n1/3Jn
1 (t) → 1√

2

∫ t

0

〈Vs, h⊗∇∗fc〉 dW̃s.

By the same arguments, we can prove that

n1/3Jn
i (t) →

{

1√
2

∫ t

0
〈Vs, h⊗∇∗fc〉 dW̃s, if i = 4, 6,

0, if i = 2, 3, 5.

¿From the discussion above, we get

Proposition 4.5.

n
1
3Sn,f

t → Sf
t =

3√
2

∫ t

0

〈Vs, h⊗∇∗fc〉 dW̃s.

Now we state the central limit theorem for α = 1
3 .

Theorem 4.6. For α = 1
3 , we have n

1
3

(

V̂ n − V
)

→ U which is the unique

solution to

〈Ut, f〉 = 〈U0, f〉 +

∫ t

0

〈Us, Lf〉 ds+

∫ t

0

〈Us,∇∗fc+ hf〉 dYs

+
3√
2

∫ t

0

〈Vs, h⊗∇∗fc〉 dW̃s

+

∫ t

0

∫

Rd

(2π−1)1/4
√

|h(x)|HV (s, x)f(x)B(dsdx).
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Remark 4.7. If α > 1
3 , then n

1−α
2 (V̂ n

t − Vt) converges to a non-trivial limit char-

acterized by an equation above without the term next to last; if α < 1
3 , then

nα(V̂ n
t − Vt) converges to a non-trivial limit characterized by an equation above

without the last term. Same result holds for Ṽ .

Finally, we convert the convergence result to that for the optimal filter.

Theorem 4.8. n
1−α

2 (πn
t −πt) converges weakly to a process ζt which is the unique

solution to the following evolution equation:

dζt = 〈ζt, Lf − (πt(∇∗fc+ hf) − πtfπth)h〉 dt
+ 〈ζt,∇∗fc+ hf − fπth− hπtf〉 dνt

− 4
√

2π−1

∫

Rd

(f − πtf)
√

|h(x) − πth|Hπ(t, x)B(dtdx)

where dνt = dYt − πt(h)dt and π(t, x) is the density of the probability measure πt.

Proof. It is easy to show that

n
1−α

2 (πn
t − πt) = (Vt1)

−1Un
t − (V n

t 1Vt1)
−1Un

t 1V n
t

which converges to ζt ≡ (Vt1)
−1
(

Ut − (Vt1)
−1Ut1Vt

)

. Let ηt = (Vt1)
−1Ut. By

Itô’s formula, we have

d 〈ηt, f〉 = 〈ηt, Lf〉 dt+ 〈ηt,∇∗fc+ hf − fπth〉 dνt

+
4
√

2π−1

∫

Rd

1

Vt1

√

|h(x) − πth|HV (t, x) 〈Vt, 1〉f(x)B(dtdx).

By applying Itô’s formula again, we get the equation for ζ. ¤
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