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Abstract. The paper is concerned with a class of parabolic equations with

a gradient-dependent nonlinear term in a Gauss-Sobolev space setting. Un-

der a local Lipschitz continuity condition, it is shown in Theorem 4.2 that

there exists a unique strong solution of such a semilinear parabolic equa-

tion for which a certain energy inequality holds. The theorem is applied to

show the existence of the strong solutions to the Kolmogorov equation and

the Hamilton-Jacobi-Bellman equation arising from the control problem for

stochastic partial differential equations.

1. Introduction

In finite dimensions, it is well known that the solution of an Itô equation is
a diffusion process and the expectation of a smooth function of such a solution
satisfies a diffusion equation in Rd, known as the Kolmogorov equation. Therefore
it is quite natural to explore such a relationship for the stochastic partial differ-
ential equations. The early work on the connection between a diffusion process in
a Hilbert space and the infinite-dimensional parabolic and elliptic equations was
done by Daleskii [5, 6]. More refined and in-depth studies of such problems based
on Gross’ theory of the abstract Wiener space [10] were carried out by Kuo [11, 12]
and Piech [13], among others. In later years, in the development of the Malliavin
calculus, further progress had been made in the area of analysis in Wiener spaces,
in particular, the Wiener-Sobolev spaces [14].

Consider the stochastic evolution equation in a Hilbert space H:

dut = Autdt + dWt, t ≥ 0,

u0 = v ∈ H,
(1.1)

where A is an unbounded linear operator in H with a dense domain D(A) ⊂ H,
and Wt is a Wiener process in H with the covariance operator R. Then, formally,
the expectation functional Ψt of the solution of Eq.(1.1) satisfies the Kolmogorov
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equation:

∂

∂t
Ψt(v) = 1

2Tr [RD2Ψt(v)] + (Av,Ψt(v)), 0 < t < T,

Ψ0(v) = Φ(v),

(1.2)

where Tr means the trace, (·, ·) is the inner product in H, DΨ(v) denotes the
Fréchet derivative of Ψ at v ∈ H, and Φ is a given function in H. Notice that,
since A is unbounded, the term (Av,DΦ(v)) in (1.2) is undefined. As it stands,
the equation (1.2) can only be defined for v ∈ D(A), which may be a thin set
with respect to a reference measure in H. To overcome this difficulty, we pro-
posed to adopt the invariant Gaussian measure µ for the equation (1.1) as the
reference measure and to study Eq. (1.2) in a L2(H,µ)-setting [1]. Based on the
measure µ, the equation (1.2) can be defined for almost every (a.e.) v ∈ H. More-
over, by introducing appropriate L2(µ)-Sobolev spaces, the differential operator
AΦ = 1

2Tr [RD2Φ] + (A·, DΦ) in (1.2) acts like the Laplacian operator in finite
dimensions. A more comprehensive study of such spaces, called the Gauss-Sobolev
spaces, and related elliptic and parabolic equations was given in a later paper [2].

This paper is concerned with the strong solutions of a class of semilinear para-
bolic equations in a Gauss-Sobolev space setting. It is an extension of a previous
work [4] concerning the elliptic case under weaker conditions. Also the method
of proof will be different from that of the afore-mentioned paper. The semilinear
parabolic equations to be considered arise from the optimal stochastic control of
stochastic partial differential equations, known as Hamilton-Jacobi-Bellman equa-
tions. A nice exposition of this subject and other references can be found in the
book by Da Prato and Zabczyk [8].

The paper is organized as follows. In Section 2, we recall some basic results
in the Gauss-Sobolev spaces to be needed in the subsequent sections. Section 3
pertains to the strong solutions of a linear parabolic equation in Gauss-Sobolev
spaces. Some a priori estimates for the Green’s operator are given by Lemmas 3.1
and 3.1, and the existence and regularity of the solution is proved in Theorem 3.3.
The main result of the paper is presented in Section 4 (Theorem 4.2) concerning the
existence of the strong solutions to a class of parabolic equations with a gradient-
dependent nonlinear terms under a local Lipschitz condition. The proof is based
on the basic estimates for the associated Green’s operator obtained in Section 3
and the contraction mapping principle. However it is necessary to introduce an
equivalent norm to make this principle work. In Section 5, the main Theorem 4.2
is applied to prove the existence of the strong solutions to a Komogorov equation
and the Hamilton-Jacobi-Bellman equation for a stochastic control problem.

2. Preliminaries

Let H be a real separable Hilbert space with inner product (·, ·) and norm |·| and
let V ⊂ H be a Hilbert subspace with norm ‖·‖. Denote the dual space of V by V ′

and their duality pairing by 〈·, ·〉. Assume that the inclusions V ⊂ H ∼= H ′ ⊂ V ′

are dense and continuous.
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Suppose that A : V → V ′ is a continuous closed linear operator with domain
D(A) dense in H, and Wt is a H − valued Wiener process with the covariance
operator R. Consider the linear stochastic equation in a distributional sense:

dut = Aut dt + dWt, t ≥ 0,

u0 = h ∈ H.
(2.1)

Assume that the following conditions (A) hold:

(A.1) Let A : V → V ′ be a self-adjoint, coercive operator such that

〈Av, v〉 ≤ −β‖v‖2,

for some β > 0, and (−A) has positive eigenvalues 0 < γ1 ≤ γ2 ≤ · · · ≤
γn ≤ · · · , counting the finite multiplicity, with γn ↑ ∞ as n → ∞. The
corresponding orthonormal set of eigenfunctions {en} is complete.

(A.2) The resolvent operator Rλ(A) and covariance operator R commute, so
that Rλ(A)R = RRλ(A), where Rλ(A) = (λI − A)−1, λ ≥ 0, with I
being the identity operator in H.

(A.3) The covariance operator R : H → H is a self-adjoint operator with a finite
trace such that Tr R < ∞.

Then, by a direct calculation or applying Theorem 4.1 in [3] for invariant measures,
we can claim the following lemma.

Theorem 2.1. Under conditions (A), the stochastic equation (2.1) has a unique
invariant measure µ on H, which is a centered Gaussian measure supported in V

with covariance operator Γ = −
1

2
A−1 R.

Remark: Let etA denote the semigroup of operators generated by A. Without
condition (A.2), the covariance operator of the invariant measure µ is given by
R =

∫ ∞

0
etARetAdt, which cannot be evaluated in a closed form. Though a L2(µ)−

theory can be developed in the subsequent analysis, one needs to impose some other
conditions which are not easily verifiable. Let H = L2(H,µ) with norm defined by

‖‖Φ‖‖ = {

∫
H

|Φ(v)|2µ(dv)}1/2,

and the inner product [·, ·] given by

[Θ,Φ] =

∫
H

Θ(v)Φ(v)µ(dv), for Θ,Φ ∈ H.

Let n = (n1, n2, · · · , nk, · · · ), where nk ∈ Z
+, the set of nonnegative integers,

and let Z = {n : n = |n| =

∞∑
k=1

nk < ∞}, so that nk = 0 except for a finite number

of n′
ks. Let hm(r) be the standard one-dimensional Hermite polynomial of degree

m. For v ∈ H, define a Hermite (polynomial) functional of degree n by

Hn(v) =
∞∏

k=1

hnk
[`k(v)],
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where we set `k(v) = (v,Γ−1/2ek) and Γ−1/2 denotes a pseudo-inverse, by restrict-
ing it to the range of Γ1/2. For a smooth functional Φ on H, let DΦ and D2Φ
denote the Fréchet derivatives of the first and second orders, respectively. The
differential operator

AΦ(v) =
1

2
Tr[RD2Φ(v)] + 〈Av,DΦ(v)〉 (2.2)

is well defined for a polynomial functional Φ with DΦ(v) lies in the domain D(A)
of A. It was shown in [2] that the following holds.

Proposition 2.2. The set of all Hermite functionals {Hn : n ∈ Z} forms a
complete orthonormal system in H. Moreover we have

AHn(v) = −λnHn(v), ∀n ∈ Z,

where λn = n · γ =
∑∞

k=1 nkγk.

We now introduce the Gauss-Sobolev spaces. For Φ ∈ H, by Proposition 2.2, it
can be expressed as

Φ =
∑
n∈Z

ΦnHn,

where Φn = [Φ, Hn] and ‖‖Φ‖‖2 =
∑

n
|Φn|

2 < ∞. Let Hm denote the Gauss-
Sobolev space of order m defined as

Hm = {Φ ∈ H : ‖‖Φ‖‖m < ∞}

for any integer m, where the norm

‖‖Φ‖‖m = ‖‖(I −A)Φ)m/2‖‖ = {
∑
n

(1 + λn)m|Φn|
2}1/2, (2.3)

with I being the identity operator in H = H0. For m ≥ 1, the dual space H′
m

of Hm is given by H−m, and the duality pairing between them will be denoted
by 〈〈·, ·〉〉m with 〈〈·, ·〉〉1 = 〈〈·, ·〉〉. Clearly, the sequence of norms {‖‖Φ‖‖m} is
increasing, that is,

‖‖Φ‖‖m < ‖‖Φ‖‖m+1,

for any integer m, and, by identify H with its dual H′, we have

Hm ⊂ Hm−1 ⊂ · · · ⊂ H1 ⊂ H ⊂ H−1 ⊂ · · · ⊂ H−m+1 ⊂ H−m, for m ≥ 1,

and the inclusions are dense and continuous. Of course the spaces Hm can be
defined for any real number m, but they are needed in this paper.

Owing to the use of the invariant measure µ, as we showed in [1], that it
was possible to develop a L2-theory of infinite-dimensional parabolic and elliptic
equations connected to stochastic PDEs similar to the finite-dimensional ones. In
particular the following properties of A are crucial in the subsequent analysis. So
far the differential operator A given by (2.2) is defined only in the linear span of
Hermite polynomial functionals. In fact it can be extended to be a self-adjoint
linear operator in H. To this end, let PN be the projection operator in H onto
its subspace spanned by Hermite polynomial functionals of degree N and define
AN = PNA. Then the following theorem holds (Theorem 3.1, [1]).
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Theorem 2.3. The sequence {AN} converges strongly to a linear symmetric op-
erator A : H2 → H, and the following integral identity holds:∫

H

(AΦ)Ψ dµ =

∫
H

(AΨ)Φ dµ = −
1

2

∫
H

(RDΦ, DΨ) dµ, for Φ,Ψ ∈ H2.

Moreover A has a self-adjoint extension in H, still denoted by A with domain
D(A) = H2.

For Φ ∈ C2
b(H) being a bounded C2-continuous functional on H, let Pt denote

the transition operator defined by

[PtΦ](v) = E{Φ(ut)|u0 = v} = Ψt(v).

Then, for v ∈ D(A), Ψt(v) satisfies the Kolmogorov equation in the classical sense:

∂

∂t
Ψt(v) = AΨt(v), t > 0,

Ψ0(v) = Φ(v).

(2.4)

In fact the transition operator Pt can be extended to be a bounded linear
operator on H and it is possible to define the equation (2.4) for µ-a.e. v ∈ H.

Theorem 2.4. Under conditions (A), the transition operator Pt is defined on H
for all t ≥ 0 and {Pt : t ≥ 0} forms a strongly continuous semigroup of linear

contraction operators on H with the infinitesimal generator Ã = A in H2.

3. Linear Equation with Basic Estimates

Consider the Cauchy problem for the linear parabolic equation:

∂

∂t
Ψt(v) = (A− α)Ψt(v) + Qt(v), µ − a.e. v ∈ H, 0 < t < T,

Ψ0(v) = Φ(v),

(3.1)

for Q ∈ L2((0, T );H) and Φ ∈ H, where the positive parameter α can always be in-
troduced by changing Ψt to eαtΨt without effecting the solution behavior in [0, T ].
We are interested in the solution Ψ of (3.1) in C([0, T ];H) ∩ L2((0, T );H1) and
its further regularity properties. To this end, let Gt denote the Green’s operator
associated with Equation (3.1) given by

Gt = e−αtPt. (3.2)

In view of Theorem 2.5, the solution of (3.1) can be expressed as

Ψt(v) = [GtΦ](v) +

∫ t

0

[Gt−sQs](v)ds. (3.3)

In what follows, we assume that conditions (A) are satisfied. Then we have the
following technical lemmas.
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Lemma 3.1. The Green’s operator Gt : H → H is linear and bounded such that,
for Φ ∈ H, we have

‖‖GtΦ‖‖ < ‖‖Φ‖‖, (3.4)

‖‖

∫ t

0

GsΦ ds‖‖2 ≤ {t‖‖Φ‖‖2}, (3.5)

and, for Φ ∈ Hm−1 with any integer m ≥ 0,

‖‖

∫ t

0

Gt−sΦ ds‖‖2
m ≤

t

2α1
‖‖Φ‖‖2

m−1, for t ∈ [0, T ], (3.6)

where α1 = (α ∧ 1) = min{α, 1}, and by convention, we set ‖‖ · ‖‖0 = ‖‖ · ‖‖.

Proof. Since Pt is a contraction, clearly the bounds (3.4) and (3.5) hold true. To

prove (3.6), we let Θt =
∫ t

0
GsΦ ds. By (2.3), we have

‖‖Θt‖‖
2
m = {

∑
n

(1 + λn)m[Θt, Hn]2}, (3.7)

where

[Θt, Hn]2 = {

∫ t

0

[Gt−sΦ, Hn] ds}2

= {

∫ t

0

e−(α+λn)(t−s)ds}2[Φ, Hn]2

≤
t

2α1(1 + λn)
[Φ, Hn]2.

(3.8)

Making use of the inequality (3.8), the equation (3.7) yields

‖‖Θt‖‖
2
m ≤

t

2α1
{
∑
n

(1 + λn)m−1[Θt, Hn]2} =
t

2α1
‖‖Φ‖‖2

m−1,

which verifies (3.6). ¤

Lemma 3.2. For Q ∈ L2((0, T );H), the following inequality holds:

‖‖

∫ t

0

Gt−sQs ds‖‖2 ≤
1

2α1

∫ t

0

‖‖Qs‖‖
2 ds. (3.9)

Moreover, for Q ∈ L2((0, T );Hm−1), we have

‖‖

∫ t

0

Gt−sQs ds‖‖2
m ≤

1

2α1

∫ t

0

‖‖Qs‖‖
2
m−1 ds. (3.10)

Proof. In terms of the Hermite functionals, we can write

Gt−sQs =
∑
n

e−βn(t−s)[Qs, Hn], with βn = α + λn, (3.11)

so that

‖‖

∫ t

0

Gt−sQs ds‖‖2 =
∑
n

{

∫ t

0

e−βn(t−s)Qn

s ds}2, (3.12)

where we let Qn

s = [Qs, Hn]. Since

{

∫ t

0

e−βn(t−s)Qn

s ds}2 ≤
1

2βn

∫ t

0

|Qn

s |
2 ds, (3.13)
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the equation (3.12) gives the inequality (3.9) as follows

‖‖

∫ t

0

Gt−sQs ds‖‖2 ≤
∑
n

1

2βn

∫ t

0

|Qn

s |
2 ds =

1

2α1

∫ t

0

‖‖Qs‖‖
2
−1ds,

where the interchange of the summation and integration can be justified due the
monotone convergence.

The inequality (3.10) can be proved similarly. By making use of (3.11) and
(3.13), we can get

‖‖

∫ t

0

Gt−sQs ds‖‖2
m =

∑
n

(1 + λn)m{

∫ t

0

e−βn(t−s)Qn

s ds}2

≤
∑
n

(1 + λn)m

2(α + λn)

∫ t

0

|Qn

s |
2 ds

≤
1

2α1

∫ t

0

‖‖Qs‖‖
2
m−1 ds,

as required to be shown. ¤

In view of the above lemmas, the integral form of solution Ψt, to the Cauchy
problem (3.1), given by (3.3) belongs to C([0, T ];H) and it is known as a mild
solution. In fact it is a strong solution in the sense that, Ψ ∈ C([0, T ];H) ∩
L2((0, T );H1), and, for any Θ ∈ H1, the following equation holds:

[Ψt,Θ] = [Φ,Θ] +

∫ t

0

〈〈(A− αI)Ψs,Θ〉〉 ds +

∫ t

0

[Qs,Θ] ds, ∀ t ∈ [0, T ]. (3.14)

Theorem 3.3. Let Φ ∈ H and Q ∈ L2((0, T );H). Then Ψt given by (3.3) is the
strong solution of the Cauchy problem (3.1).

Proof. From the estimates given in Lemmas 3.1 and 3.2, it follows that Ψ ∈
C([0, T ];H) ∩ L2((0, T );H1). To show that the equation (3.14) is satisfied, we
let Ψt = Ut + Vt in (3.3), where

Ut = GtΦ, Vt =

∫ t

0

Gt−sQs ds.

It suffices to show that U and V satisfy, respectively, the following equations:

[Ut,Θ] = [Φ,Θ] +

∫ t

0

〈〈(A− αI)Us,Θ〉〉ds, (3.15)

and

[Vt,Θ] =

∫ t

0

〈〈(A− αI)Vs,Θ〉〉ds +

∫ t

0

[Qs,Θ]ds, ∀ Θ ∈ H1. (3.16)

Let PN : H → HN be the orthogonal projection from H into its subspace HN

spanned by the Hermite polynomials Hn of degree |n| ≤ N defined by

ΘN = PNΘ =
∑

|n|≤N

[Θ, Hn]Hn,
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which converges strongly in H to Θ. Since ΘN ∈ D(A), by the semigroup property
Pt (Theorem 2.4), it is easy to see that the equation (3.15) holds with Θ replaced
by ΘN . By taking the limit weakly in each term of this equation as N → ∞, we
can obtain the equation (3.15) for Θ ∈ H1.

Let Aα = (A − αI). By Theorem 2.3, Aα : H1 → H1 is self-adjoint and so is
Gt on H. To verify (3.15), we can write

〈〈AαVt,ΘN 〉〉 = [Vt,AαΘN ]

=

∫ t

0

[Qs,Gt−sAαΘN ] ds

= −

∫ t

0

∂

∂t
[Qs,Gt−sΘN ] ds

It follows from (3.15) that, by interchanging the order of integration and noting
the self-adjoint property of Gt,

∫ t

0

〈〈AαVs,ΘN 〉〉ds = −

∫ t

0

∫ s

0

∂

∂s
[Qr,Gs−rΘN ] drds

= −

∫ t

0

[Qr − Gt−rQr,ΘN ] dr

= −

∫ t

0

[Qs,ΘN ] ds + [Vt,ΘN ],

or

[Vt,ΘN ] =

∫ t

0

〈〈AαVs,ΘN 〉〉ds +

∫ t

0

[Qs,ΘN ] ds. (3.17)

Since V ∈ L2((0, T );H1) and ΘN → Θ strongly in H,

lim
N→∞

∫ t

0

〈〈AαVs,ΘN 〉〉 ds =

∫ t

0

〈〈AαVs,Θ〉〉 ds.

Therefore we can pass to a limit weakly term-wise in (3.17) to obtain the equation
(3.16). ¤

4. Semilinear Parabolic Equations

Instead of the linear case (3.1), consider the Cauchy problem for the nonlinear
parabolic equation:

∂

∂t
Ψt(v) = (A− αI)Ψt(v) + Bt(v,Ψt, DΨt) + Qt(v), 0 < t < T,

Ψ0(v) = Φ(v),

(4.1)

where, for each t ∈ [0, T ), Ψt is a real-valued function on H, and, under suitable
conditions, the nonlinear term Bt : V × R × H → R can be defined for t ∈ (0, T )
and µ-a.e. in H. Similar to the linear problem, we are interested in the strong
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solution of (4.1) satisfying the following equation:

[Ψt,Θ] = [Φ,Θ] +

∫ t

0

〈〈(A− α)Ψs,Θ〉〉 ds

+

∫ t

0

[Bs(·,Ψs, DΨs),Θ] ds +

∫ t

0

[Qs,Θ] ds, ∀ Θ ∈ H1.

(4.2)

To impose the conditions on B, assume that the following local linear growth
and Lipschitz conditions:

(B.1) There exists a positive function ρ1 in H with ‖‖ρ1‖‖ < ∞ such that, for
v ∈ V ,

|Bt(v, r, u)|2 ≤ ρ1(v)(1 + |r|2 + |R1/2u|2), ∀ t ∈ (0, T ), r ∈ R, u ∈ H.

(B.2) There exists a positive function ρ2 in H with ‖‖ρ2‖‖ < ∞ such that, for
v ∈ V ,

|Bt(v, r, u) − Bt(v, r′, u′)|2 ≤ ρ2(v){ |r − r′|2 + |R1/2(u − u′)|2},

for any t ∈ (0, T ), v ∈ V, r, r′ ∈ R and u, u′ ∈ H.

Remark: Note that, for i = 1, 2, the condition ‖‖ρi‖‖ < ∞ allows ρi(v) to grow
like a polynomial in ‖v‖. For instance, if ρi(v) ≤ C(1 + ‖v‖2m) for some C > 0
and for any integer m ≥ 1 . Then, since µ is a centered Gaussian measure with
covariance operator Γ = (− 1

2A−1R), ‖v‖2 ≤ (1/β)〈−Av, v〉 by condition (A.1),
and Tr R < ∞ by condition (A.3), we have∫

‖v‖2µ(dv) ≤
1

β

∫
〈−Av, v〉µ(dv) =

1

2β
Tr R < ∞.

Therefore, by using standard estimates for Gaussian moments, we obtain

‖‖ρi‖‖
2 ≤ C

∫
(1 + ‖v‖2m)µ(dv) = C{1 +

(2m)!

(2β)m
(Tr R)m} < ∞

as claimed.

Lemma 4.1. Suppose the conditions (B.1) and (B.2) hold. Then, for any Θ ∈ H1,
there exists constant C1 > 0 such that

‖‖Bt(·,Θ, DΘ)‖‖2 ≤ C1(1 + ‖‖Θ‖‖2
1), (4.3)

and, for any t ∈ (0, T ), Θ,Φ ∈ H1, there is a constant C2 > 0 such that

‖‖Bt(·,Θ, DΘ) − Bt(·,Φ, DΦ)‖‖2 ≤ C2‖‖Θ − Φ‖‖2
1. (4.4)

Proof. By condition (B.1), for t ∈ (0, T ) and Θ ∈ H1, we have

‖‖Bt(·,Θ, DΘ)‖‖ ≤ ‖‖(ρ1)
1/2(1 + |Θ|2 + |R1/2DΘ|2)1/2‖‖

≤ ‖‖ρ1‖‖
1/2 {1 + ‖‖Θ‖‖2 + ‖‖R1/2DΘ‖‖2 }1/2.

Since ‖‖Θ‖‖2
1 = ‖‖Θ‖‖2 + ‖‖R1/2DΘ‖‖2, the above yields (4.3) with C1 = ‖‖ρ1‖‖.
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Similarly, the condition (B.2) implies that

‖‖Bt(·,Θ, DΘ) − Bt(·,Φ, DΦ)‖‖

= ‖‖(ρ2)
1/2(|Θ − Φ|2 + |R1/2D(Θ − Φ)|2)1/2‖‖

≤ ‖‖ρ2‖‖
1/2{ ‖‖Θ − Φ‖‖2 + ‖‖R1/2D(Θ − Φ)‖‖2 }1/2.

It follows that (4.4) holds with C2 = ‖‖ρ2‖‖. ¤

Theorem 4.2. Suppose that the conditions (A.1)-(A.3) and (B.1)-(B.2) are sat-
isfied. Then, for Φ ∈ H and Q ∈ L2((0, T );H), the Cauchy problem has a unique
strong solution Ψ ∈ C([0, T ];H)∩L2((0, T );H1). Moreover the following inequality
holds:

sup
0≤t≤T

‖‖Ψt‖‖
2 +

∫ T

0

‖‖Ψs‖‖
2
1 ≤ K(T ){1 + ‖‖Φ‖‖2 +

∫ T

0

‖‖Qs‖‖
2}, (4.5)

where K(T ) is a positive constant depending on T .

Proof. The proof is based on the contraction mapping principle in a Banach space.
To this end, let XT = C([0, T ];H) ∩ L2((0, T );H1) denote the Banach space of
real-valued functions Ψ on H with the norm ‖‖ · ‖‖T defined by

‖‖Ψ‖‖T = { sup
0≤t≤T

‖‖Ψt‖‖
2 +

∫ T

0

‖‖Ψs‖‖
2
1}

1/2.

For Ψ ∈ XT , consider the linear Cauchy problem:

∂

∂t
Ut(v) = (A− α)Ut(v) + B(v,Ψt, DΨt) + Qt(v), 0 < t < T,

Ψ0(v) = Φ(v),

By (4.3) in Lemma 4.1, given Ψ ∈ XT , B(·,Ψ, DΨ) ∈ L2((0, T );H). By making
use of Theorem 3.3, the problem has a unique strong solution Ut given by

Ut = Ft(Ψ) = GtΦ +

∫ t

0

Gt−sBs(·,Ψs, DΨs))ds +

∫ t

0

Gt−sQsds, (4.6)

which shows that the solution operator F : XT → XT is well defined. To show
that F is a contraction mapping in XT , let Ψ, Ψ̂ ∈ XT . First, by invoking (3.9) in
Lemma 3.2, (4.4)in Lemma 4.1 and (4.6), we have

‖‖Ft(Ψ) −Ft(Ψ̂)‖‖2

= ‖‖

∫ t

0

Gt−s[Bs(·,Ψs, DΨs) − Bs(·, Ψ̂s, DΨ̂s))ds‖‖2

≤
1

2α1

∫ t

0

‖‖Bs(·,Ψs, DΨs) − Bs(·, Ψ̂s, DΨ̂s)‖‖
2 ds

≤
C2

2α1

∫ t

0

‖‖Ψs − Ψ̂s‖‖
2
1 ds.

(4.7)
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Next, by making use of (3.10), (4.4) and (4.6), we can deduce that

∫ T

0

‖‖Ft(Ψ) −Ft(Ψ̂)‖‖2
1dt

≤

∫ T

0

‖‖

∫ t

0

Gt−s[Bs(·,Ψs, DΨs) − Bs(·, Ψ̂s, DΨ̂s))ds‖‖2
1dt

≤
1

2α1

∫ T

0

∫ t

0

‖‖Bs(·,Ψs, DΨs) − Bs(·, Ψ̂s, DΨ̂s))‖‖
2 dsdt

≤
C2T

2α1

∫ T

0

‖‖Ψt − Ψ̂t‖‖
2
1 dt.

(4.8)

It follows from (4.7) and (4.8) that

‖‖Ft(Ψ) −Ft(Ψ̃)‖‖2
T ≤

C2

2α1
(1 + T )

∫ T

0

‖‖Ψt − Ψ̂t‖‖
2
1 dt,

which shows that F cannot be a contraction map in the norm ‖‖ · ‖‖T no matter
how small T is. To circumvent this difficulty, we introduce an equivalent norm
‖‖ · ‖‖λ,T defined by

‖‖Ψ‖‖λ,T = { sup
0≤t≤T

‖‖Ψt‖‖
2 + λ

∫ T

0

‖‖Ψs‖‖
2
1}

1/2,

where λ ≥ 1 is a parameter to be chosen properly. In view of (4.7) and (4.8), we
can obtain

‖‖Ft(Ψ) −Ft(Ψ̃)‖‖2
λ,T ≤

C2

2α1
(1 + λT )

∫ T

0

‖‖Ψt − Ψ̂t‖‖
2
1 dt

≤ λ
C2

2α1
(T +

1

λ
)

∫ T

0

‖‖Ψt − Ψ̂t‖‖
2
1 dt.

(4.9)

Let T be so small that (C2T/2α1) ≤ (1/4) and, in the meantime, choose λ large
enough so that (C2/2α1λ) ≤ (1/4). Then the inequality (4.9) yields

‖‖Ft(Ψ) −Ft(Ψ̃)‖‖λ,T ≤
1

2
‖‖Ψ − Ψ̂‖‖λ,T ,

which shows that F is a contraction map in the equivalent norm ‖‖ · ‖‖λ,T . The
fixed point U = Ψ is the unique strong solution of the Cauchy problem (4.1) which
can be shown to satisfy the variational equation (4.2) similar to the linear case.

To verify the energy inequality (4.5), notice that, from the equation (4.1), it
can be seen that ∂

∂tΨt ∈ H−1. Thus we have

∂

∂t
‖‖Ψt‖‖

2 = 2〈〈
∂

∂t
Ψt,Ψt〉〉,
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which is integrated to give

‖‖Ψt‖‖
2 = ‖‖Φ‖‖2 + 2

∫ t

0

〈〈
∂

∂s
Ψs,Ψs〉〉 ds

= ‖‖Φ‖‖2 + 2

∫ t

0

{〈〈(A− αI)Ψs,Ψs〉〉 + [Bs(·,Ψs, DΨs),Ψs] + [Qs,Ψs]} ds

≤ ‖‖Φ‖‖2 − 2

∫ t

0

{
1

2
[RDΨs, DΨs] + α‖‖Ψs‖‖

2} ds

+2

∫ t

0

{[B(·,Ψs, DΨs),Ψs] + [Qs,Ψs]} ds,

where use was made of Equation (4.1) and Theorem 2.3. Hence there is α2 > 0
such that

‖‖Ψt‖‖
2 + 2α2

∫ t

0

‖‖Ψs‖‖
2
1 ds

≤ ‖‖Φ‖‖2 + ε

∫ t

0

‖‖Bs(·,Ψs, DΨs)‖‖
2 ds

+(1 +
1

ε
)

∫ t

0

‖‖Ψs‖‖
2 ds +

∫ t

0

‖‖Qs‖‖
2 ds,

(4.10)

for any ε > 0. By invoking the inequality (4.4) and choosing ε = α2/C1, we can
deduce from (4.10) that

‖‖Ψt‖‖
2 + α2

∫ t

0

‖‖Ψs‖‖
2
1 ds

≤ ‖‖Φ‖‖2 + α2T + C3

∫ t

0

‖‖Ψs‖‖
2 ds +

∫ t

0

‖‖Qs‖‖
2 ds,

(4.11)

for some constant C3 > 0. The above implies that

sup
0≤t≤T

‖‖Ψt‖‖
2 ≤ ‖‖Φ‖‖2 + α2T + C3

∫ T

0

sup
0≤s≤t

‖‖Ψs‖‖
2 dt +

∫ T

0

‖‖Qs‖‖
2 ds,

which, with aid of the Gronwall’s inequality, yields

sup
0≤t≤T

‖‖Ψt‖‖
2 ≤ eC3T ( ‖‖Φ‖‖2 + α2T +

∫ T

0

‖‖Qs‖‖
2 ds )

≤ K1(T )(1 + ‖‖Φ‖‖2 + +

∫ T

0

‖‖Qs‖‖
2 ds),

(4.12)

for some constant K1(T ) > 0, depending on T. It also follows from (4.11) that

α2

∫ T

0

‖‖Ψt‖‖1 dt ≤ ‖‖Φ‖‖2 + α2T +
∫ T

0
‖‖Qt‖‖

2 dt

+C3

∫ T

0

sup
0≤s≤t

‖‖Ψs‖‖
2 dt.

(4.13)

By means of (4.12), we can obtain from (4.13) that
∫ T

0

‖‖Ψt‖‖1 dt ≤ K2(T )(1 + ‖‖Φ‖‖2 +

∫ T

0

‖‖Qt‖‖
2 dt), (4.14)
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for some constant K2(T ) > 0. Now the energy inequality (4.5) follows from (4.12)
and (4.14). ¤

5. Applications

5.1. Kolmogorov Equation. Consider the stochastic evolution equation in V’:

dut = Autdt + F (ut)dt + dWt, t ≥ 0,

u0 = v,
(5.1)

where A : V → V ′, F : V → H, Wt is a Wiener process in H with covariance
operator R, and v ∈ H.

We are interested in the strong solution of the Kolmogorov equation associated
with Equation (5.1):

∂

∂t
Ut(v) = AUt(v) + (F (v), DUt(v)), 0 < t < T,

U0(v) = Φ(v),

(5.2)

for µ-a.e. v ∈ H, where, as before,

AΨ(v) =
1

2
Tr[RD2Ψ(v)] + 〈Av,DΨ(v)〉.

Let Ut = eαtΨt for some α > 0. Then Ψt satisfies the linear equation:

∂

∂t
Ψt(v) = (A− αI)Ψt(v) + (F (v), DΨt(v)), 0 < t < T,

Ψ0(v) = Φ(v),

(5.3)

As mentioned before, instead of (5.2), it suffices to prove that the modified equation
(5.3) has a unique strong solution. To this end, let H0 be the completion of R1/2H
in H with respect to the norm ‖ · ‖0 defined by ‖v‖0 = |R−1/2v|. In addition to
conditions (A.1)–(A.3), we assume that (A.4) F : V → H0 such that

‖F (v)‖2
0 ≤ C(1 + ‖v‖2m),

for some constant C > 0 and for any integer m ≥ 1.

Theorem 5.1. Suppose that the conditions (A.1)–(A.4) hold true. Then, for
Φ ∈ H, the Cauchy problem for the Kolmogorov equation (5.2) has a unique strong
solution Ψ ∈ C([0, T ];H)∩L2((0, T );H1). Moreover the following inequality holds:

sup
0≤t≤T

‖‖Ψt‖‖
2 +

∫ T

0

‖‖Ψs‖‖
2
1 ds ≤ K(T ){1 + ‖‖Φ‖‖2},

where K(T ) is a positive constant depending on T .

Proof. As mentioned before, it suffices to consider equation (5.3), which is a special
case of (4.1), where

Bt(v, r, u) = B(v, u) = (F (v), u), (5.4)
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is independent of t and r with Qt = 0. To apply Theorem 4.2, we need to show
the conditions (B.1) and (B.2) are satisfied. In view of (5.4) and condition (A.4),
for v ∈ V, u ∈ H, we have

|B(v, u)|2 = |(F (v), u)|2 ≤ ‖F (v)‖2
0 |R

1/2u|2

≤ C(1 + ‖v‖2m)(1 + |R1/2u|2).

Thus condition (B.1) holds with ρ1(v) = C(1 + ‖v‖2m) and ‖‖ρ1‖‖ < ∞. Similarly,

|B(v, u) − B(v, u′)|2 = |(F (v), u − u′)|2 ≤ ‖F (v)‖2
0 |R

1/2(u − u′)|2

≤ C(1 + ‖v‖2m)(1 + |R1/2(u − u′)|2),

which implies condition (B.2). Therefore it follows from Theorem 4.2 that the
equation (5.3) has a unique strong solution and so is the Kolmogorov equation
(5.2) with the depicted regularity properties. ¤

Remark: The existence theorem of the strong solution to the Komogorov equa-
tion (5.2) was proved in our paper [2] by a different method under a stronger
condition than (A.4), that is, supv∈H ‖F (v)‖0 < C for µ-a.s..

5.2. Hamilton-Jacobi-Bellman Equation. Consider the optimal control prob-
lem with the state equation in a Hilbert space H:

dut = Autdt + F (ut, νt)dt + dWt, t ≥ 0,

u0 = v,
(5.5)

where the nonlinear function F (·, νt) now depends on the control νt, a Ft-adapted
process with values in a set K. The problem is to find, from the set KT of admissible
controls ν, the optimal ν∗ that minimizes the cost function:

J(t, v, ν) = E {

∫ T

t

e−αsB(us, νs) ds + Φ(uT ) |ut = v},

where B : H ×K → R
+ is the running cost function with the discount rate α > 0,

and Φ ∈ H is the terminal cost. Let Vt denote the optimal cost or the value
function given by

Vt(v) = inf
ν∈K

J(t, v, ν) = J(t, v, ν∗).

By applying that the dynamic programming principle, the function Ψt = VT−t(v)
satisfies the H-J-B (Hamilton-Jacobi-Bellman) equation [9]:

∂

∂t
Ψt(v) = (A− αI)Ψt(v) + B(v,DΨt), 0 < t < T,

Ψ0(v) = Φ(v),

(5.6)

where
B(v,DΘ) = inf

ν∈K
{(F (v, ν), DΘ) + B(v, ν)}. (5.7)
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We assume that the following conditions hold:

(C.1) There exists a positive constant b1 such that

‖F (v, ν)‖2
0 = |R−1/2F (v, ν)|2 ≤ b1(1 + ‖v‖2m),

for any v ∈ V, ν ∈ K and an integer m ≥ 1.

(C.2) There exists a positive constant b2 such that B(·, ·) : V ×K → R+ has the
following bound:

|B(v, ν)| ≤ b2(1 + ‖v‖2m),

for any v ∈ V, ν ∈ K and m ≥ 1.

Theorem 5.2. Let the conditions (A.1)–(A.3), (C.1) and (C.2) are satisfied.
Then, for Φ ∈ H, the H-J-B equation (5.6) has a unique strong solution Ψ ∈
C([0, T ];H) ∩ L2((0, T );H1). Moreover the following inequality holds:

sup
0≤t≤T

‖‖Ψt‖‖
2 +

∫ T

0

‖‖Ψs‖‖
2
1 ds ≤ K(T ){1 + ‖‖Φ‖‖2},

where K(T ) is a positive constant depending on T .

Proof. To apply Theorem 4.2, we will verify the conditions (B.1) and (B.2). By
(5.7) and the assumptions (C.1), (C.2), we can get

|B(v, u)|2 = | inf
ν∈K

{(F (v, ν), u) + B(v, ν)}|2

≤ 2{‖F (v, ν)‖2
0 |R

1/2u|2 + |B(v, ν)|}2}

≤ 2b(1 + ‖v‖2m)(1 + |R1/2u|2), v ∈ V, u ∈ H,

(5.8)

where b = (b1 ∨ b2). Hence the condition (B.1) is met with ρ1(v) = 2b(1 + ‖v‖2m).
Similarly, by (5.7) and condition (C.1), we have

|B(v, u) − B(v, u′)|2 = | inf
ν∈K

{(F (v, ν), u) + B(v, ν)}

− infν∈K{(F (v, ν), u′) + B(v, ν)}|2

≤ sup
ν∈K

|(F (v, ν), u − u′)|2

≤ sup
ν∈K

‖(F (v, ν)‖2
0 |R

1/2(u − u′)|2

≤ ρ2(v)(1 + |R1/2(u − u′)|2),

for v ∈ V, u, u′ ∈ H, which verifies condition (B.2) with ρ2(v) = b1(1 + ‖v‖2m).
Therefore Theorem 4.2 can be applied to draw the desired conclusion. ¤

Remarks: The stationary problem, when the H-J-B equation (5.6) is elliptic,
was treated in our paper [4] in a weighted Gauss-Sobolev space. The infinite-
dimensional H-J-B equation was studied earlier by Da Prato [7] in the space of
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continuous functions and further developed by himself and his collaborators. A
comprehensive discussion of this subject and more references can be found in his
joint book with Zabczyk [8].
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