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Abstract. For Wiener spaces conditional expectations and L
2-martingales

w.r.t. the natural filtration have a natural representation in terms of chaos

expansion. In this note an extension to larger classes of processes is discussed.

In particular, it is pointed out that orthogonality of the chaos expansion is

not required.

Recently, the martingale property and conditional expectations w.r.t. the nat-
ural filtration of Brownian motion for (generalized) processes have been studied
by [9], [3], [6], and [8] in the context of white noise analysis. For regular processes
these characterizations are an immediate consequence of the chaos expansion w.r.t.
multiple stochastic integrals. They have turned out to be useful for the study of
local times, see [4] and the study of a generalized Clark-Ocone formula [1], [5], and
[15]. This has motivated us to consider these features for a more general class of
processes and more general systems of functions than multiple stochastic integrals.

We shall work throughout with the space D′(R) of generalized functions as our
sample space; recall the Gelfand triple D(R) ⊂ L2(R, dt) ⊂ D′(R). One equips
D′(R) with the weak σ-algebra F(D′(R)), i.e. the σ-algebra generated by the map-
pings ω 7→ 〈ω, ϕ〉 for ϕ ∈ D(R). A probability measure P on (D′(R),F(D

′
(R)))

gives rise to a generalized coordinate process Φ by

Φ : D(R) ×D′(R) → R; (ϕ, ω) 7→ 〈ω, ϕ〉 . (1.1)

Example A.1. Let (D′(R),F(D
′
(R)), P ) be a generalized random process, with in-

dependent values at every point, more explicitly we assume that the characteristic
function

CP (ϕ) :=

∫

D′(R)

ei〈ω,ϕ〉P (dω)

fulfills the Lévy-Khinchin representation, i.e.

ln (CP (ϕ)) = i

∫

R

ϕ(s)ν1(ds) −
1

2

∫

R

ϕ2(s)ν2(ds)

+

∫

R

∫

|λ|>0

[

eiλϕ(s) − 1 − iλϕ(s)
]

ν3(dλ, ds),
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where ν1 is a signed, ν2 is a non-negative Radon-measures on R, and ν3, the Lévy-
measure, is a non-negative Radon-measure on (R \ {0}) × R such that for some
ε > 0

ν(ds) := ν2(ds) +

∫

0<|λ|<1

λ2ν3(dλ, ds) +

∫

1≤|λ|

eε|λ|ν3(dλ, ds) (1.2)

is a Radon-measure. In particular, for functions ϕ1, ϕ2 ∈ D(R) with ϕ1 · ϕ2 = 0
one has that CP (ϕ1 ·ϕ2) = CP (ϕ1)CP (ϕ2). Without loss of generality we consider
ν1 = 0.

Example B.1. Let (Ω,F(Ω), Q) be an arbitrary probability space and (Mt)t∈R+ a
càdlàg L2-martingale on this space. For Q-a.e. ω ∈ Ω one can define a generalized
function

D(R) → R

ϕ 7→ −

∫ ∞

0

.
ϕ (s)Ms(ω) ds = ϕ(0)M0(ω) +

∫ ∞

0

ϕ(s) dMs(ω),

where dMs denotes the Itô integral. The image measure of Q on (D′(R),F(D
′
(R)))

given by this mapping we denote by P . Without loss of generality we assume
M0 = 0.

Condition (R). Assume that there exists a locally convex vector space E such that
D(R) is a dense subspace of E and

ϕ 7→

∫

D′(R)

|〈ω, ϕ〉|
2
P (dω)

is continuous in E. More specially, we assume that there exists a Radon measure
σ such that ∩p≥1L

p(R, σ) is a subspace of E.

E does not necessarily fit into the chain D(R) ⊂ L2(R, dx) ⊂ D′(R). Because of
Condition (R) one can extend (1.1) in L2 (D′(R), P )-sense, i.e. for every sequence
(ϕn)n∈N in D(R) which converges to ϕ ∈ E the sequence (〈·, ϕn〉)n∈N

converges in

L2 (D′(R), P ) to the same function, which we denote by 〈·, ϕ〉. Denote by EC the
complexification of E and define for ϕ1 + iϕ2 ∈ EC the functional 〈·, ϕ1 + iϕ2〉 :=
〈·, ϕ1〉 + i 〈·, ϕ2〉 . For M ⊂ E define the σ-algebra FM ⊂ F(D′(R)) as the σ-
algebra generated by the functions ω 7→ 〈ω, ϕ〉 for ϕ ∈ M . Note that for the
E-closure M of M it is FM = FM. Denote for any interval I ⊂ R by FI the
σ-algebra generated by the subspace of all bounded measurable functions which
are 0 outside of I.

Example A.2. In this case the second moment is just
∫

D′(R)

|〈ω, ϕ〉|
2
P (dω)

=

∫

R

ϕ2(s)ν2(ds) +

∫

R

ϕ2(s)

∫

|λ|>0

λ2 ν3(dλ, ds)

≤ c

∫

ϕ2(s)ν(ds)
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for a constant c > 0. In this case we define E as the projective limit space
∩p≥1L

p(R, ν). The process t 7→
〈

·, 11[0,t]

〉

has a càdlàg version which is a semi-
martingale and a strong Markov process, see e.g. [16].

Example B.2. In this case one may choose a measure σ closely related to the
Föllmer-Doleans measure, the quadratic variation [·, ·], and the compensator 〈·, ·〉
respectively, see e.g. [17] and [16],

∫

D′(R)

|〈ω, ϕ〉|
2
P (dω) = EP

[
∫ ∞

0

ϕ2(s) d [M ]s

]

= EP

[
∫ ∞

0

ϕ2(s) d 〈M〉s

]

=:

∫

R

ϕ2(s)σ(ds).

For E we consider L2(R, σ). Note that for 0 ≤ T ,
〈

·, 11(−∞,T ]

〉

and MT have the
same distribution and for all ϕ ∈ E it holds P -a.s. that

〈·, ϕ〉 =
〈

·, ϕ11[0,∞)

〉

.

Different σ-algebras generated by the martingale itself can be expressed in the
following way: let T1 < T2

FD((T1,T2)) = σ (Mt −Ms| t, s ∈ (T1, T2)) = σ (Mt −Ms| t, s ∈ [T1, T2)) .

Furthermore, FD((−∞,T2)) = σ (Mt| t < T2)) .

Denote by E⊗̂n
C

the n-th symmetric algebraic tensor product of E and by

Expalg (EC) the space of all sequences ϕ := (ϕn)n∈N0
with ϕn ∈ E⊗̂n

C
for which

only finite many ϕn are unequal to 0.

Condition (C). There exist linear mappings Pn : E⊗̂n
C

→ L2(D′(R), P ) such that
the set

{

Pn(ϕn)
∣

∣

∣
n ∈ N, ϕn ∈ E⊗̂n

C

}

is a total subset of L2(D′(R), P ).

One can define a linear mapping

I : Expalg (EC) → L2(D′(R), P )

(ϕn)
∞
n=1 7→

∞
∑

n=0

Pn(ϕn).

using the fact that the sum is actually finite. The image I
(

Expalg (EC)
)

we denote

by P(D′(R)) and hence we obtain a triple P(D′(R)) ⊂ L2(D′(R), P ) ⊂ P ′
P (D′(R)).

By E⊗̂n′
C

we denote the space of all linear forms on E⊗̂n
C

, rather than we try to
interpret the elements as distributions. This is due to the fact that EC is not

necessarily a subspace of L2(R, dx). For φn ∈ E⊗̂n′
C

we can construct a distribution

Qn(φn) ∈ P ′
P (D′(R)) by the following definition: for all m ∈ N and all ϕm ∈ E⊗̂m

C

〈Qn(φn), Pm(ϕm)〉L2(D′(R),P ) := δn,m φn(ϕn).
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Therefore, for any distribution Φ ∈ P ′
P (D′(R)) there exists a unique sequence

(φn)n∈N0
with φn ∈ E⊗̂n′

C
such that

Φ =

∞
∑

n=0

Qn(φn).

Explicitly, φn is determined by the equation

φn(ϕn) := 〈Φ, Pn(ϕn)〉L2(D′(R),P ) , ϕn ∈ E⊗̂n
C
.

So we can write any F ∈ L2(D′(R), P ) as F =
∑∞
n=0Qn(φn) for unique φn ∈

E⊗̂n′,n ∈ N0.

Example A.3. A natural class of polynomials for the Lévy-Khinchin processes are
given by the so-called generalized Appell-polynomials of non-Gaussian analysis,
see [2], [12], [11]. According to assumption (1.2) the Fourier transform of P is
holomorphic in a neighborhood of 0. Then one can construct the polynomials via
the following generating functional

eα,P (ϕ, ω) :=
ei〈ω,α(ϕ)〉

EP

[

ei〈·,α(ϕ)〉
] , ϕ ∈ D(R), ω ∈ D′(R),

where α : C → C is a function which is holomorphic and invertible around zero
with α(0) = 0. As eα,P (·, ω) is also a holomorphic function near 0 the polynomials
are defined by the Taylor expansion

eα,P (zϕ, ω) =
∞
∑

n=0

zn

n!
Pn(ϕ

⊗n)(ω).

Condition (C) holds, because by a direct calculation one sees that the norm
‖Pn(ϕ

⊗n)‖L2(D′(R),P ) can be expressed as a polynomial of the terms: n,m ∈ N

∫

R

|ϕ(s)|2ν2(ds) and

∫

R

ϕ(s)mϕ(s)n
∫

|λ|>0

λn+mν3(dλ, ds).

Hence this norm is continuous in E = ∩p≥1L
p(R, ν). In certain cases one can

choose α in such a way that these polynomials are orthogonal, see for example
[11]. In [14] the authors construct a complete system of orthogonal polynomials
for Lévy-processes using powers of the jump parts. Using the Lévy decompo-
sition (a Lévy process can be written as a mixture of a Brownian motion and
Poisson processes) one can construct another chaotic orthogonal decomposition of
L2 (D′(R), P ), for details see [10] and [7].

Example B.3. For ϕ ∈ D(R) define iteratively the multiple Itô-integrals

I1(ϕ, t):=

∫ t

0

ϕ(s) dMs

In(ϕ, t):=

∫ t

0

ϕ(s) I−n−1(ϕ, s) dMs,
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where I−n−1(ϕ, t) := lims↑t In−1(ϕ, s). If the compensator 〈M〉 is deterministic

then also In is a L2-martingale and

EP [In(ϕ, t)Im(ψ, t)] = δn,m
1

n!

(
∫ t

0

ϕ(s)ψ(s)σ(ds)

)n

, (1.3)

see [13]. We define Pn(ϕ
⊗n) := In(ϕ,∞). Due to (1.3) the mapping Pn can also

be extended in L2-sense to E⊗̂n
C

. Injectivity of this mapping follows from orthog-
onality. Condition (C) is called chaos representation property in this context and
does not hold automatically, i.e. Lévy processes have a deterministic compensator,
however the only Lévy processes which have the chaos representation property are
the trivial mixtures of a pure Gaussian and a pure Poissonian process, cf. [7].

If for a closed subspace M ⊂ EC the conditional expectation w.r.t. FM pre-

serves the polynomials, i.e. for every n there exists a mapping πM,n : E⊗̂n
C

→ M⊗̂n

such that for all ϕn ∈ E⊗̂n
C

EP [Pn(ϕn)| FM] = Pn(πM,n(ϕn)),

then for any function F ∈ L2(D′(R), P ) with F =
∑∞
n=0Qn(φn) it is

EP [F | FM] =
∞
∑

n=0

Qn(π
∗
M,n(φn)).

Indeed, because for any ϕn ∈ E⊗̂n
C

it is

∫

D′(R)

EP [F | FM] (ω) Pn(ϕn)(ω)P (dω)

=

∫

D′(R)

F (ω) EP [Pn(ϕn)| FM] (ω)P (dω)

=

∫

D′(R)

F (ω) Pn(πM,n(ϕn))(ω)P (dω)

= φn (πM,n(ϕn)) = π∗
M,n(φn) (ϕn)

=

〈

∞
∑

n=0

Qn(π
∗
M,n(φn)), Pn(ϕn)

〉

L2(D′(R),P )

.

Obviously, also (πM,n)
2

= πM,n.

Example A.4. Let I ⊂ R be an interval. For M := ∩p≥1L
p(I, ν) we want to

compute the conditional expectation w.r.t. FI = FM. First, we observe that we
can write any ϕ ∈ E in the form ϕ = ϕ1 +ϕ2 with ϕ1 := ϕ11I ∈ M. According to
the infinite divisibility of P

EP

[

ei〈·,α(ϕ)〉
]

= EP

[

ei〈·,α(ϕ1)〉
]

EP

[

ei〈·,α(ϕ2)〉
]
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and therefore, eα,P (ϕ, ω) = eα,P (ϕ1, ω)eα,P (ϕ2, ω). Since
{

ei〈·,ψ〉
∣

∣ψ ∈ M
}

gener-

ates the σ-algebra FI one obtains for any F = ei〈·,ψ〉

∞
∑

n=0

zn

n!
E
[

F EP

[〈

Pn(·), ϕ
⊗n

〉∣

∣FI
]]

= E

[

ei〈·,ψ〉 eα,P (ϕ, ω)
]

= E

[

ei〈·,ψ〉 eα,P (ϕ1, ω)eα,P (ϕ2, ω)
]

= E [F eα,P (ϕ1, ω)] E [eα,P (ϕ2, ω)] = E [F eα,P (ϕ1, ω)] .

Thus

EP

[〈

Pn(·), ϕ
⊗n

〉
∣

∣FI
]

=
〈

Pn(·), (ϕ11I)
⊗n

〉

.

Due to linearity of Pn we obtain for all ϕn ∈ E⊗̂n
C

that

EP [ 〈Pn(·), ϕn〉| FI ] =
〈

Pn(·), ϕn11
⊗n
I

〉

and for any F ∈ L2(D′(R), P ) of the form F =
∑∞
n=0Qn(φn) one can write

EP [F | FI ] =
∞
∑

n=0

Qn
(

φn(11
⊗n
I ·)

)

.

Example B.4. Let T > 0 and denote by F[0,T ] := FL2([0,T ],σ). For any ϕ ∈ L2(R, σ)
it is

EP

[

Pn(ϕ
⊗n)

∣

∣F[0,T ]

]

= EP

[
∫ ∞

0

ϕ(s) I−n−1(ϕ, s) dMs

∣

∣

∣

∣

F[0,T ]

]

=

∫ T

0

ϕ(s) I−n−1(ϕ, s) dMs

= Pn
(

(ϕ11[0,T ])
⊗n

)

.

Hence π[0,T ],n(ϕn) = ϕn11
⊗n
[0,T ]. Thus for any F ∈ L2(D′(R), P ) of the form F =

∑∞
n=0Qn(φn) one can write

EP

[

F | F[0,T ]

]

=

∞
∑

n=0

Qn

(

φn(11
⊗n
[0,T ]·)

)

.

Thus in both examples π[0,T ],n is the multiplication by 11⊗n[0,T ]. This allows us to

characterize martingales:

Proposition 1.1. Let (D′(R),F (D′(R)) , P ) be a probability space fulfilling con-
dition (R) and (C). Consider the filtration F[0,T ], T > 0. Assume that for every

T > 0 and ϕn ∈ E⊗̂n
C

it is 11[0,T ]E ⊂ E and

EP

[

Pn(ϕn)| F[0,T ]

]

= Pn(ϕn11
⊗n
[0,T ]).

Let F : D′(R) × [0,∞) → R be a (Ft)t≥0-adapted L
2-process. Denote by fn(t, ·) ∈

(

E⊗n
C

)′
the kernels of F (t, ·), i.e., F (t, ·) =

∑∞
n=0Qn(fn(t, ·)). Then (F (t, ·))t≥0

is a martingale iff for all s ≤ t one has fn(s, ·) = fn(t, 11
⊗n
[0,s]·). If F is closed by a

L2-random variable F (∞, ·) =
∑∞
n=0Qn(fn(∞, ·)) then fn(s, ·) = fn(∞, 11⊗n[0,s]·).
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Remark 1.2. Example 1 and Example 2 provide probability spaces fulfilling the
assumption of Proposition 1.1.

Proof : If F (t, ·) is a martingale then by definition for any s ≤ t is holds
∞
∑

n=0

Qn(fn(s, ·)) = F (s, ·) = EP [F (t, ·) |Fs ]

=

∞
∑

n=0

Qn(fn(t, 11
⊗n
[0,s]·)).

Due to Condition (C), fn(s, ·) = fn(t, 11
⊗n
[0,s]·). The converse follows by the same

calculation. ¤

In order to have a richer analytical structure on the space of distributions, larger
spaces of test functions, equipped with weaker topologies, have to be considered,
see [3] and [8]. The authors used that the multiplication w.r.t. 11⊗n

[0,s] is a projection

also for the scalar-products generating these topologies.
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formula for Lévy processes, with applications in finance; Bernoulli 7 (2001) 761–776.



56 TOBIAS KUNA AND LUDWIG STREIT

16. Protter, P.: Stochastic integration and differential equations. Springer Verlag, Berlin, Hei-

delberg, NewYork, 1990.
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