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Abstract. In a recent work, Fleischmann and Mueller (2004) showed the

existence of a super-Brownian motion in R
d, d = 2, 3, with extra birth at the

origin. Their construction made use of an analytical approach based on the

fundamental solution of the heat equation with a one point potential worked

out by Albeverio et al. (1995). The present note addresses two properties of

this measure-valued process in the three-dimensional case, namely the scaling

of the process and the large scale behavior of its mean.

1. Introduction and result

A super-Brownian motion in R with a single point source δ0 was constructed in
Engländer & Fleischmann [3]. It was shown that its expected mass grows exponen-
tially in time, and is in the mass-rescaled limit distributed in space as x 7→ e−|x|.
In Engländer & Turaev [4] it is even proved that the random measures themselves
grow in law exponentially as time increases, and are otherwise in the mass-rescaled
limit spatially situated with the same shape except an overall random factor. The
probabilistic effect behind the non-trivial existence of the model is the fact that a
Brownian particle in R hits the origin with certainty and that it has there a non-
degenerate local time, serving as an additional birth rate for the random creation
of mass.

In higher dimensions, a Brownian particle fails to hit the origin, and a local time
would degenerate. Nevertheless, Fleischmann & Mueller [6] succeeded in construct-
ing a super-Brownian motion in R

d, d = 2, 3, with a single point source. They
heavily used well-known analytical facts from mathematical physics concerning
Laplace operators with one-point-potentials. Heuristically, some additional rescal-
ing enters the regularization of the delta function (serving as single point source).
Properties of this new super-Brownian motion are not known so far. The purpose
of the present note is to get some progress by studying its scaling and the large
scale behavior of its expectation in the three-dimensional case.

1.1. The heat equation with one-point-potential. The Schrödinger equa-
tion with a one-point-potential is studied in quantum theory to describe singular
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electromagnetic effects on quantum particles, see e.g. the monograph Albeverio et
al. [2, Part I]. By analytic continuation, solutions to the Schrödinger equation can
be (at least formally) obtained via solutions of the heat equation.

Formally, the heat equation with a one-point-potential is given by

∂tu = ∆u + δ
(α)
0 u =: ∆(α)u, (1.1)

where ∂t denotes the derivative with respect to time, ∆ is the d–dimensional
Laplacian, and u : (0,∞) × Ṙ

d → R+ is a time-space field, where Ṙ
d := R

d \ {0}
with the Euclidean metric is locally compact. If we denote by Bε(y) an open ball
around y ∈ R

d of radius ε > 0, then having in mind that ε−d1Bε(0) ≈ δ0 , the

operator ∆(α) := ∆ + δ
(α)
0 is heuristically the limit as ε ↓ 0 of the operator

∆(α)
ε := ∆ + h(d, α, ε) ε−d1Bε(0), (1.2)

where h(d, α, ε) is some additional rescaling factor which depends on a parameter
α at least. Restricting to d = 3, the function h can be chosen as

h(3, α, ε) := π2

4 ε − 8π2αε2, α ∈ R, ε > 0, (1.3)

(cf. [2, (H.74)]).
Physically, α in the case α < 0 is related to the scattering length slα :=

−(4πα)−1 of the free Laplace operator ∆ with respect to the interaction Lapla-
cian ∆(α). Roughly speaking, the scattering length describes the average distance
a free particle manages to go before any interaction takes place. So, if α ↓ −∞ the
scattering length slα ↓ 0 becomes smaller and we expect more interaction. For
α ≥ 0 there is no proper physical interpretation of slα as the point spectrum of
∆(α) is empty (see [2, Theorem I.1.4]).

The fundamental solution pα to the equation

∂tu = ∆(α)u on (0,∞) × Ṙ
d, d = 2, 3, (1.4)

which provides the basis for the analytical construction of the superprocess in [6],
has been computed in Albeverio et al. [1]. In d = 3 (the two-dimensional case is
more delicate, which is the reason we restrict to d = 3), the one-point-interaction
heat kernel pα for α ∈ R is given by

pα
t (x, y)

= pt(x, y) +
2t

|x||y|
pt

(

|x| + |y|
)

−
8παt

|x||y|

∫ ∞

0

du e−4παu pt

(

u + |x| + |y|
)

,
(1.5)

t > 0, x, y ∈ Ṙ
3, where p is the usual free heat kernel defined by,

pt(x, y) := (4πt)−d/2 exp
(

− |y − x|2/4t
)

, (1.6)

and with a slight abuse of notation,

pt(r) := (4πt)−d/2 exp(−r2/4t), t > 0, r ≥ 0. (1.7)

Also recall the scaling of the free heat kernel, i.e. for all k, t > 0 and x, y ∈ R
d,

pt(x, y) = kd/2pkt(k
1/2x, k1/2y). (1.8)

Note, that the last term in (1.5) is always finite and disappears for α = 0. More-
over, α 7→ pα is pointwise continuous and decreasing, and we have the (pointwise)
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convergences pα ↑ +∞ as α ↓ −∞ (i.e. the fundamental solution explodes which
can be interpreted as immediate interaction), whereas pα ↓ p as α ↑ +∞ leads the
free case (i.e. the interaction disappears).

Rigorously, the family {∆(α) : α ∈ R} of operators are defined as all self-

adjoint extensions on the Hilbert space L2(Ṙd,dx) of the Laplacian ∆ acting on

C∞
com(Ṙd), the space of infinitely differentiable functions on Ṙ

d = R
d \ {0} with

compact support (see e.g. [2, Chapters I.1 and I.5]). Hence, although the pα from
(1.5) differ from the free heat kernel p, they solve the heat equation

∂tp
α
t (x, y) = ∆pα

t (x, y) on (0,∞) × Ṙ
3, (1.9)

with the Laplacian ∆ acting either on the variable x or y. In particular, (t, x, y) 7→

pα
t (x, y) is jointly continuous on (0,∞)× Ṙ

3 × Ṙ
3. Let us denote by Sα the semi-

group associated with the kernel pα, i.e.

Sα
t ϕ(x) :=

∫

Ṙ3

dy ϕ(y) pα
t (x, y). (1.10)

Note that Sα is not a contraction semigroup and so there is no stochastic process
generated by this flow. The following lemma shows that in the present three-
dimensional case the kernel pα has a similar scaling behavior as the free heat
kernel p.

Lemma 1.1 (Scaling of the pα). We have, for all k, t > 0, x, y ∈ Ṙ
3, and

α ∈ R,

pα
t (x, y) = k3/2 pk−1/2α

kt (k1/2x, k1/2y). (1.11)

Proof. It follows immediately from the definition (1.5) of the pα and the scaling
(1.8) of the free heat kernel p. ¤

1.2. The flow associated with the one-point-interaction heat kernel.

This section is devoted to introducing a space of functions Φ on which the flow Sα

acts as a strongly continuous linear semigroup (see [6, Section 2] for details). Let
φ denote the weight and reference function

φ(x) := |x|−1, x ∈ Ṙ
3 = R

3 \ {0}. (1.12)

For fixed % ∈ (1, 2), let H = H% denote the space of measurable functions ϕ on Ṙ
3

for which

‖ϕ‖H :=
(

∫

Ṙ3

dxφ(x) |ϕ(x)|%
)1/%

< ∞. (1.13)

Then
(

H, ‖ · ‖H
)

is a Banach space, where as usual we do not distinguish between
equivalence classes and their representatives. Now, let Φ = Φ% denote the set of
all continuous functions ϕ : Ṙ

3 → R such that ϕ ∈ H and

0 ≤ ϕ ≤ C φ for some constant C = Cϕ > 0. (1.14)

We endow Φ with the topology inherited from H. Note that the set C+
com =

C+
com(Ṙ3) of all non-negative, continuous functions on Ṙ

3 with compact support is
contained in Φ. We remark that ϕ ∈ Φ might have a singularity at x = 0 of order
|x|−ξ with 0 < ξ < 1 . The linear semigroup Sα introduced in (1.10) is strongly
continuous on the cone Φ = Φ%, cf. Corollary 2.12 in [6].
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1.3. Super-Brownian motion with a single point source. The superprocess
X we want to study was constructed in [6] via the so-called log-Laplace approach.
Roughly speaking, the Markov process X is uniquely determined by its log-Laplace
transition functionals (s. (1.15) below), and they are described by a function v, the
so-called log-Laplace function. The point is, that v solves uniquely a non-linear
equation, the so-called log-Laplace equation (s. (1.16) below). The main work in
[6] was, to verify that the Cauchy problem for this equation is well-posed. Here
uniqueness followed from a contraction argument, existence was shown via a Pi-
card iteration, and non-negativity of v followed using an approximating linearized
equation. This then allows to construct X via a Trotter product approach to the
related log-Laplace semigroup, more precisely, via an approximating log-Laplace
equation related to separating critical continuous-state branching and mass flow
according to Sα on alternate small time intervals.

Now we come to a precise description of X. Denote by M = M(Ṙ3) the set

of all (Radon) measures µ on Ṙ
3 such that 〈µ, ϕ〉 :=

∫

Ṙ3 µ(dx)ϕ(x) < ∞ for all

ϕ ∈ Φ. Recalling that C+
com ⊂ Φ, endow M with the vague topology.

Fix a constant η > 0 (branching rate). Suppose 0 < β < 1 (branching index;
the finite variance branching case β = 1 has been excluded in [6] for d = 3 for
technical reasons). Then for each α ∈ R, there is a non-degenerate M–valued
(time-homogeneous) Markov process X = Xα such that for (deterministic) start-
ing measures µ ∈ M and for ϕ ∈ Φ,

− log Eµ exp〈Xα
t ,−ϕ〉 =

〈

µ, v(t, ·)
〉

, t > 0, (1.15)

where v =
{

v(t, x) : t ≥ 0, x ∈ Ṙ
3
}

is the unique non-negative solution of the
integral equation related to the Φ-valued evolution equation

{

∂tv = ∆(α)v − η v1+β on (0,∞),

v(0+, · ) = ϕ
(1.16)

(see [6, Theorem 4.4]). That is,

v(t, x) =

∫

Ṙ3

dy pα
t (x, y)ϕ(y) − η

∫ t

0

ds

∫

Ṙ3

dy pα
t−s(x, y) v1+β(s, y), (1.17)

t > 0, x ∈ Ṙ
3. Clearly, the first moments of Xα are determined by the Sα flow to

be

Eµ〈X
α
t , ϕ〉 = 〈µ, Sα

t ϕ〉, (1.18)

for all starting measures µ ∈ M, t ≥ 0, and ϕ ∈ Φ.

1.4. Large scale behavior of the mean. Before we can state our result, we
have to introduce some notation. The limiting measure will be expressed by means
of the kernel

ϑα
t (x, y) :=

2t

|x| |y|
pt

(

|y|
)

−
8παt

|x| |y|

∫ ∞

0

du e−4παu pt

(

u + |y|
)

, (1.19)

for α ∈ R, t > 0, and x, y ∈ Ṙ
3. Note that the integral is always finite, hence for

α = 0 the second term disappears. Moreover, the kernel ϑα is always non-negative.
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This holds trivially whenever α < 0, and to see this for α > 0, use the estimate

pt

(

u + |y|
)

≤ pt

(

|y|
)

. (1.20)

We extend the definition of ϑα by setting

ϑα
t (x, y) :≡

{

0, if α = +∞,
+∞, if α = −∞.

(1.21)

The so defined kernels ϑα turn out to be pointwise continuous in α ∈ [−∞,+∞]
(which follows from the arguments of the proof of Theorem 1.2 in Section 2.2
below).

Theorem 1.2 (Large scale behavior of the mean). For t > 0, α, λk ∈ R, and
all starting measures Xα

0 = µ ∈ M satisfying 〈µ, φ〉 < ∞, we have the convergence
in M,

lim
k↑∞

k−1/2
Eµ

[

Xλkα
kt (k1/2 dy)

]

=
〈

µ, ϑα∗

t ( · , y)
〉

dy, (1.22)

provided that α∗ := limk↑∞ k1/2λkα ∈ [−∞,+∞].

Note that in the special case λk = k−1/2 we have α∗ = α ∈ R, whereas the
particular case α = 0 implies α∗ = 0 giving the simplified ϑ0 in the limit term
(without the second term in (1.19)).

Remark 1.3 (Large scale total mass). Taking λk ≡ 1 and insert formally ϕ = 1 as
test function into convergence statement (1.22) yields

lim
k↑∞

k−1/2
Eµ 〈Xα

kt, 1〉 =















0 if α > 0,

2t 〈µ, φ〉

∫

Ṙ3

dy
1

|y|
pt(y) if α = 0,

∞ if α < 0.

(1.23)

A rigorous argument can be given along the same lines as the proof of Theorem 1.2
below. ♦

1.5. Discussion and open problems. Let us comment on the three cases α∗ =
+∞, α∗ ∈ R, and α∗ = −∞ in Theorem 1.2. In the first case, the limiting
mass disappears, more precisely, the scaled expression Eµ

[

Xλkα
kt (k1/2 dy)

]

is of

order o(k1/2). Roughly speaking, if α∗ = +∞, then there are no interactions in
the scaling limit (free case). In the second case, α∗ ∈ R, the former expectation
is about k1/2

〈

µ, ϑα∗

t ( · , y)
〉

dy. Note that these measures are decreasing in α∗.
Finally, if α∗ = −∞, we have immediate interaction in the large scale limit leading
to the explosion of the expected mass.

Clearly, to describe only the large scale behavior of the expected processes is
unsatisfactory. It is desirable to get insight into the processes themselves. Recall
that in the one-dimensional case the large time behavior in law of the process
itself is known from [4] (for a sharpening of some results from [4], see Engländer
& Winter [5]). However, we stress the fact, that the process in three dimensions is
expected to have quite different features. For instance, if α = 0, then according
to Remark 1.3 the total mass grows with a power order, whereas in one dimension
the growth is exponential. Moreover, in the three-dimensional case one needs
additionally to contract the normalized measures to get a limit. For the measures
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themselves, scaled as in Theorem 1.2, there might be extinction in law despite
convergence of their expectations as in (1.22).

Another open problem is the large scale behavior of EXα in the two-dimensional
case, in which the fundamental solutions pα from [1] are analytically more delicate,
see e.g. [6, formula (2.30)]. In particular, a scaling property as in Lemma 1.1 is
not available.

Remark 1.4 (Discrete version). In physics literature, Redner & Kang [7], the
following somehow related model occurs: Discrete time random walkers produce a
fixed number of additional particles if they hit the origin in Z

d. Dimension effects
occur. ♦

2. Proofs

2.1. A scaling property. Recall that we are dealing with the three-dimensional
case.

Proposition 2.1 (A scaling property). Let t, k > 0, µ ∈ M, and α, λk ∈ R.
Then

{

k−1/βXλkα
kt (k1/2 · )

∣

∣

∣
Xλkα

0 = k1/βµ(k−1/2 · )
}

L
=
{

Xk1/2λkα
t

∣

∣

∣
Xk1/2λkα

0 = µ
}

.

(2.1)

Note that besides λk ≡ 1, the cases λk = k−1/2 or even α = 0 are particularly
nice, since here the right hand side in (2.1) is independent of k (a kind of self-
similarity).

Proof. For ϕ ∈ Φ fixed,
〈

k−1/βXλkα
kt (k1/2 dy), ϕ

〉

=
〈

Xλkα
kt , k−1/βϕ(k−1/2 · )

〉

, (2.2)

hence, by (1.15) and (1.17),

− log Ek1/βµ(k−1/2 · ) exp
〈

k−1/βXλkα
kt (k1/2 dy),−ϕ

〉

= − log Ek1/βµ(k−1/2 · ) exp
〈

Xλkα
kt , −k−1/βϕ(k−1/2 · )

〉

=
〈

k1/βµ(k−1/2 · ), v(kt, · )
〉

=
〈

µ, k1/βv(kt, k1/2 · )
〉

, (2.3)

where
{

v(t′, x′) : t′ ≥ 0, x′ ∈ Ṙ
3
}

is the non-negative solution of the integral
equation related to the function-valued evolution equation

{

∂tv = ∆(λkα)v − η v1+β on (0,∞),

v(0+, · ) = k−1/βϕ(k−1/2 · ).
(2.4)

More precisely,

k1/βv(kt, k1/2x) = k1/β

∫

Ṙ3

dy pλkα
kt (k1/2x, y) k−1/βϕ(k−1/2y) (2.5)

− k1/βη

∫ kt

0

ds

∫

Ṙ3

dy pλkα
kt−s(k

1/2x, y) v1+β(s, y).
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By a change of variable,

k1/βv(kt, k1/2x) =

∫

Ṙ3

dy k3/2pλkα
kt (k1/2x, k1/2y)ϕ(y) (2.6)

− k1/βη

∫ t

0

ds k

∫

Ṙ3

dy k3/2pλkα
kt−ks(k

1/2x, k1/2y) v1+β(ks, k1/2y).

Hence, by Lemma 1.1,

k1/βv(kt, k1/2x) (2.7)

=

∫

Ṙ3

dy pk1/2λkα
t (x, y)ϕ(y) − k1/βη

∫ t

0

ds k

∫

Ṙ3

dy pk1/2λkα
t−s (x, y) v1+β(ks, k1/2y).

Since 1/β +1− (1/β)(1+β) = 0 we see that k1/βv(kt, k1/2x) =: wk(t, x) satisfies
the equation

wk(t′, x′) =

∫

Ṙ3

dy pk1/2λkα
t′ (x′, y)ϕ(y) − η

∫ t′

0

ds

∫

Ṙ3

dy pk1/2λkα
t′−s (x′, y)w1+β

k (s, y),

t′ > 0, x′ ∈ Ṙ
3. By uniqueness of solutions of the log-Laplace equation (1.17) and

by (1.15), claim (2.1) follows. ¤

2.2. Proof of Theorem 1.2. Fix ϕ ∈ C+
com(Ṙ3). Using formula (1.18) for the

first moment of Xα and substitution, we obtain

k−1/2
Eµ

〈

Xλkα
kt , ϕ(k−1/2 · )

〉

= k−1/2

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy pλkα
kt (x, y)ϕ(k−1/2y)

= k−1/2

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy k3/2 pλkα
kt (x, k1/2y)ϕ(y). (2.8)

By Lemma 1.1 this is equal to

k−1/2

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy pk1/2λkα
t (k−1/2x, y)ϕ(y). (2.9)

Using formula (1.5) for the expression of pα, we get three terms, we will deal with
separately.

1◦ (First term). The first term equals,

k−1/2

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy pt(k
−1/2x, y)ϕ(y). (2.10)

This double integral is finite and vanishes as k ↑ ∞. To see this, let us restrict
the outer integral first to |x| > K where we specify K ≥ 1 later. We call this
restricted integral IK . We use ϕ ≤ Cφ (since ϕ ∈ Φ) and, with S denoting the
free heat flow,

Stφ ≤ Cφ, t ≥ 0, (2.11)

with changed constant C (see [6, Lemma 2.1]) to arrive at

IK ≤ Ck−1/2

∫

|x|>K

µ(dx)φ(k−1/2x) = C

∫

|x|>K

µ(dx)φ(x), (2.12)

the last step by the particular form of φ. The latter integral can be made arbitrarily
small (uniformly in k) by choosing K sufficiently large (by our assumption on µ).
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It remains to deal with the case |x| ≤ K for fixed K. We split the internal integral
in (2.10) as follows. First, if |k−1/2x − y| ≥ |y|/2, then

pt(k
−1/2x, y) ≤ pt

(

|y|/2
)

, (2.13)

which leads to the bound

k−1/2

∫

|x|≤K

µ(dx)

∫

Ṙ3

dy pt

(

|y|/2
)

ϕ(y) −→ 0 as k ↑ ∞ (2.14)

(the µ(dx)-integral is finite as 〈µ, φ〉 < ∞ ). On the other hand, if |k−1/2x − y| <
|y|/2, then −k−1/2|x| + |y| < |y|/2 which implies |y| < 2k−1/2|x| ≤ 2K. Hence as
pt(k

−1/2x, y) ≤ Ct−3/2 and ϕ ≤ Cφ, we get the upper estimate

Ct k−1/2

∫

|x|≤K

µ(dx)

∫

|y|< 2K

dy φ(y) −→ 0 as k ↑ ∞ (2.15)

(the dy-integral is finite, since we are in dimension three).

2◦ (Second term). The second term reads
∫

Ṙ3

µ(dx)

∫

Ṙ3

dy
2t

|x| |y|
pt

(

k−1/2|x| + |y|
)

ϕ(y) =: IIk . (2.16)

Observe that,

pt

(

k−1/2|x| + |y|
)

↑ pt

(

|y|
)

as k ↑ ∞. (2.17)

We can apply the monotone convergence theorem to obtain the limit,

lim
k↑∞

IIk =

∫

Ṙ3

µ(dx)
2t

|x|

∫

Ṙ3

dy
1

|y|
pt(y)ϕ(y), (2.18)

where finiteness follows from 〈µ, φ〉 < ∞ and ϕ ≤ Cφ. Hence, this summand gives
the first part of the kernel ϑα∗

.

3◦ (Third term). It remains to insert the scaled third term from representation
(1.5) into (2.9) which reads as

k−1/2

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy
−8πtk1/2λkα

k−1/2|x| |y|
∫ ∞

0

du e−4πk1/2λkαu pt

(

u + k−1/2|x| + |y|
)

ϕ(y).

(2.19)

We distinguish several cases: If λkα = 0 for all sufficiently large k, then the
third term disappears and we are done. From now on assume λkα 6= 0 for all k.
Substituting u 7→ 4πk1/2|λkα|u into (2.19) yields,

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy
−2t sign(λkα)

|x| |y|
∫ ∞

0

du e−sign(ρkα) u pt

( u

4πk1/2|λkα|
+ k−1/2|x| + |y|

)

ϕ(y).

(2.20)

Now let k1/2|λkα| → ∞. We may consider a monotone subsequence of k1/2λkα.
Clearly,

pt

( u

4πk1/2|λkα|
+ k−1/2|x| + |y|

)

↑ pt

(

|y|
)

as k ↑ ∞, (2.21)
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and by monotone convergence, (2.20) converges along the subsequence to

−

∫

Ṙ3

µ(dx)
2t sign(α∗)

|x|

∫ ∞

0

du e−sign(α∗)u

∫

Ṙ3

dy
1

|y|
pt(y)ϕ(y), (2.22)

which is independent of the choice of the subsequence. Note that

sign(α∗)

∫ ∞

0

du e−sign(α∗) u =

{

1 if sign(α∗) = 1,

+∞ if sign(α∗) = −1.
(2.23)

In the first case the second and the third limiting terms cancel.
Next, let k1/2λkα → 0. Note, that

pt

( u

4πk1/2|λkα|
+ k−1/2|x| + |y|

)

≤ pt

( u

4πk1/2|λkα|

)

e−|y|2/4t . (2.24)

In this case the double integral (2.20) is in absolute value bounded by

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy
2t

|x| |y|
e−|y|2/4t ϕ(y)

∫ ∞

0

du eu pt

( u

4π k1/2|λkα|

)

, (2.25)

which tends to 0 as k ↑ ∞ as the µ(dx) and dy-integrals are finite and in the
du-integral the pt-term compensates the eu.

It remains to deal with the case k1/2λkα → α∗ ∈ Ṙ
1. Note, that we only

have to justify to change the limit and integration in (2.20), as substituting

u 7→
(

4π|α∗|
)−1

u leads to the desired expression. To justify the interchange,
we estimate as in (2.24). The resulting µ(dx) and dy-integrals are independent of
k and finite, whereas to dominate in the second integral we use k1/2|λkα| ≤ |α∗|+1
for all sufficiently large k. ¤
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