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Abstract. The problem of optimal estimation of functionals depending on

the unknown values of a mean-square continuous periodically correlated with

respect to time argument and isotropic on the unit sphere with respect to
spatial argument random field ζ(t, x) is considered. Estimates are based on

observations of the field ζ(t, x) + θ(t, x) at points (t, x) : t ≤ 0, x ∈ Sn, where

θ(t, x) is uncorrelated with ζ(t, x) mean-square continuous periodically corre-
lated with respect to time argument and isotropic on the sphere with respect

to spatial argument random field. Formulas for calculating the mean square
errors and spectral characteristics of the optimal linear estimates of function-

als are derived in the case of spectral certainty where spectral densities of the

fields are exactly known. Formulas that determine the least favourable spec-
tral densities and the minimax (robust) spectral characteristics are proposed

in the case where the spectral densities are not exactly known while a class

of admissible spectral densities is given.

1. Introduction

The Einstein Cosmological Principle: the Universe is, in the large, homogeneous
and isotropic (J. G. Bartlett [3]). Last decades indicate growing interest to the
spatio-temporal data measured on the surface of a sphere. These data includes
cosmic microwave background (CMB) anisotropies (J. G. Bartlett [3], W. Hu and
S. Dodelson [21], N. Kogo and N. Komatsu [29], T. Okamoto and W. Hu [48],
P. Adshead and W. Hu [1]), medical imaging (R. Kakarala [25]), global and land-
based temperature data (P. D. Jones [23], T. Subba Rao and G. Terdik [52]),
gravitational and geomagnetic data, climate model (G. R. North and R. F. Cahalan
[47]). Basic results and references of the theory of isotropic random fields on a
sphere can be found in books by M. I. Yadrenko [57] and A. M. Yaglom [58, 59].
For more recent applications and results see new books by C. Gaetan and X. Guyon
[16], N. Cressie and C. K. Wikle [4], D. Marinucci and G. Peccati [31] and several
papers covering a number of problems in general for spatial temporal isotropic
observations (T. Subba Rao and G. Terdik [53], G. Terdik [54]).

Periodically correlated processes and fields are not homogeneous but have nu-
merous properties similar to properties of stationary processes and homogeneous
fields. They describe appropriate models of numerous physical and man-made
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processes. A comprehensive list of the existing references up to the year 2005 on
periodically correlated processes and their applications was proposed by E. Ser-
pedin, F. Panduru, I. Sari and G. B. Giannakis [51]. See also reviews by J. Antoni
[2] and A. Napolitano [46]. For more details see a survey paper by W. A. Gardner
[18] and book by H. L. Hurd and A. Miamee [22]. Note, that in the literature
periodically correlated processes are named in multiple different ways such as cy-
clostationary, periodically nonstationary or cyclic correlated processes.

The mean square optimal estimation problems for periodically correlated with
respect to time isotropic on a sphere random fields are natural generalization of the
linear extrapolation, interpolation and filtering problems for stationary stochastic
processes and homogeneous random fields. Effective methods of solution of the
linear extrapolation, interpolation and filtering problems for stationary stochastic
processes and random fields were developed under the condition of certainty where
spectral densities of processes and fields are known exactly (see, for example,
selected works of A. N. Kolmogorov [30], survey article by T. Kailath [24], books
by Yu. A. Rozanov [50], N. Wiener [56], A. M. Yaglom [58, 59], M. I. Yadrenko
[57], articles by M. P. Moklyachuk and M. I. Yadrenko [43] - [44]).

The traditional approach to the problems of interpolation, extrapolation and
filtering of stochastic processes and random fields is based on the assumption that
the spectral densities of processes and fields are known. In practice, however,
complete information about the spectral density is impossible in most cases. To
overcome this complication one finds parametric or nonparametric estimates of
the unknown spectral densities or selects these densities by other reasoning. Then
applies the traditional estimation method provided that the estimated or selected
densities are the true ones. This procedure can result in a significant increasing
of the value of error as K. S. Vastola and H. V. Poor [55] have demonstrated with
the help of some examples. This is a reason to search estimates which are opti-
mal for all densities from a certain class of admissible spectral densities. These
estimates are called minimax since they minimize the maximal value of the error
of estimates. Such problems arise when considering problems of automatic con-
trol theory, coding and signal processing in radar and sonar, pattern recognition
problems of speech signals and images. A comprehensive survey of results up to
the year 1985 in minimax (robust) methods of data processing can be found in the
paper by S. A. Kassam and H. V. Poor [28]. J. Franke [14], J. Franke and H. V.
Poor [15] investigated the minimax extrapolation and filtering problems for sta-
tionary sequences with the help of convex optimization methods. This approach
makes it possible to find equations that determine the least favorable spectral den-
sities for different classes of densities. The paper by Ulf Grenander [20] should be
marked as the first one where the minimax approach to extrapolation problem for
the functionals from stationary processes was developed. For more details see, for
example, survey articles M. P. Moklyachuk [36], [37], [40], books by M. Mokly-
achuk [38], M. Moklyachuk and O. Masytka [42], M. Moklyachuk and I. Golichenko
[41]. In papers by I. I. Dubovets’ka, O.Yu. Masyutka and M.P. Moklyachuk [5],
I. I. Dubovets’ka and M. P. Moklyachuk [6] - [9] the minimax-robust estimation
problems (extrapolation, interpolation and filtering) are investigated for linear
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functionals which depend on unknown values of periodically correlated stochas-
tic processes. Methods of solution the minimax-robust estimation problems for
time-homogeneous isotropic random fields on a sphere were developed by M. P.
Moklyachuk [33] - [35]. In papers by I. I. Dubovets’ka, O.Yu. Masyutka and
M.P. Moklyachuk [10] - [12] results of investigation of minimax-robust estimation
problems for periodically correlated isotropic random fields are proposed.

In this article we deal with the problem of mean square optimal linear estimation
of the functional

Aζ =

∫ ∞
0

∫
Sn

a(t, x)ζ(−t, x)mn(dx)dt

which depends on unknown values of a periodically correlated (cyclostationary
with period T ) with respect to time isotropic on the unit sphere Sn in Euclidean
space En random field ζ(t, x), t ≤ 0, x ∈ Sn. Estimates are based on observations
of the field ζ(t, x) + θ(t, x) at points (t, x), t ≤ 0, x ∈ Sn, where θ(t, x) is an
uncorrelated with ζ(t, x) periodically correlated with respect to time isotropic on
the sphere Sn random field. Formulas are derived for computing the value of the
mean-square error and the spectral characteristic of the optimal linear estimate
of the functional Aζ in the case of spectral certainty, where spectral densities of
the fields are known. Formulas are proposed that determine the least favourable
spectral densities and the minimax-robust spectral characteristic of the optimal
estimate of the functional Aζ for concrete classes of spectral densities in the case of
spectral uncertainty, where spectral densities are not known exactly while classes
D = Df ×Dg of admissible spectral densities are specified.

The contents of the article is the following.
In section 2 spectral properties of periodically correlated with respect to time

parameter isotropic on a sphere random fields are described.
In section 3 the Hilbert space projection method of mean square optimal linear

estimation of functionals which depend on unknown values of a periodically cor-
related (cyclostationary with period T ) with respect to time parameter isotropic
on the unit sphere Sn random field ζ(t, x), t ≤ 0, x ∈ Sn is analysed.

In section 4 the minimax-robust method of mean square optimal linear estima-
tion of functionals is described. Basic definitions and statements which determine
the least favourable spectral densities and the minimax-robust spectral character-
istics of optimal estimates of functionals are presented.

In section 5 relations are derived which determine the least favourable spectral
densities and the minimax-robust spectral characteristics for concrete classes of
spectral densities.

2. Spectral properties of periodically correlated isotropic on a sphere
random fields

Let Sn be a unit sphere in the n-dimensional Euclidean space En, let mn(dx)
be the Lebesgue measure on Sn, and let

Slm(x), l = 1, ..., h(m,n); m = 0, 1, ...
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be the orthonormal spherical harmonics of degree m, where h(m,n) is the number
of orthonormal spherical harmonics (see books by A. Erdelyi et al. [13] and C.
Müller [45] for more details).

A mean-square continuous random field ζ(t, x), t ∈ R, x ∈ Sn, ζ(t, x) ∈ H =
L2(Ω,F,P), where L2(Ω,F,P) denotes the Hilbert space of random variables ζ with
zero first moment, Eζ = 0, and finite second moment, E|ζ|2 < ∞, is called peri-
odically correlated (cyclostationary with period T ) with respect to time isotropic
on the sphere Sn if for all t, s ∈ R and x, y ∈ Sn the following property holds true

E
(
ζ(t+ T, x)ζ(s+ T, y)

)
= B (t, s, cosϑ) ,

where cosϑ = (x, y), ϑ is the angular distance between points x, y ∈ Sn.
The correlation function B (t, s, cosϑ) of the mean-square continuous random

field ζ(t, x) is continuous. It can be represented in the form of the series

B (t, s, cosϑ) =
1

ωn

∞∑
m=0

h(m,n)
C

(n−2)/2
m (cosϑ)

C
(n−2)/2
m (1)

Bζm(t, s),

where ωn = (2π)n/2Γ(n/2), Clm(z) are the Gegenbauer polynomials (see book by
M. I. Yadrenko [57]).

It follows from the Karhunen theorem that the random field ζ(t, x) itself can
be represented in the form of the mean square convergent series (see K. Karhunen
[27], I. I. Gikhman and A. V. Skorokhod [17])

ζ(t, x) =

∞∑
m=0

h(m,n)∑
l=1

Slm(x)ζlm(t), (2.1)

where

ζlm(t) =

∫
Sn

ζ(t, x)Slm(x)mn(dx).

In this representation

ζlm(t), l = 1, . . . , h(m,n); t ∈ R,m = 0, 1, . . .

are mutually uncorrelated periodically correlated stochastic processes with the
correlation functions Bζm(t, s):

E
(
ζlm(t+ T )ζvu(s+ T )

)
= δumδ

v
l B

ζ
m(t, s),

l, v = 1, . . . , h(m,n); m,u = 0, 1, . . . ; t, s ∈ R,

where δvl are the Kroneker delta-functions.
Consider two mutually uncorrelated periodically correlated with respect to time

isotropic random fields ζ(t, x) and θ(t, x). We construct the following sequences
of stochastic functions

{ζlm(j, u) = ζlm(u+ jT ), u ∈ [0, T ), j ∈ Z}, (2.2)

{θlm(j, u) = θlm(u+ jT ), u ∈ [0, T ), j ∈ Z} (2.3)
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PERIODICALLY CORRELATED ISOTROPIC RANDOM FIELDS 5

which correspond to the random fields ζ(t, x) and θ(t, x). The sequences (2.2)
and (2.3) form the L2([0, T );H)-valued stationary sequences {ζlm(j), j ∈ Z} and
{θlm(j), j ∈ Z}, respectively, with the correlation functions

Rζm(k, j) =

∫ T

0

E
[
ζlm(u+ kT )ζlm(u+ jT )

]
du

=

∫ T

0

Bζm(u+ (k − j)T, u)du = Rζm(k − j),

Rθm(k, j) =

∫ T

0

E
[
θlm(u+ kT )θlm(u+ jT )

]
du

=

∫ T

0

Bθm(u+ (k − j)T, u)du = Rθm(k − j).

To describe properties of the stationary sequences {ζlm(j), j ∈ Z} and {θlm(j), j ∈
Z} we define in the space L2([0, T );R) the following orthonormal basis{

ẽk =
1√
T
e2πi{(−1)

k[ k
2 ]}u/T , k = 1, 2, . . .

}
, 〈ẽj , ẽk〉 = δjk.

Making use of the introduced basis the stationary sequences {ζlm(j), j ∈ Z} and
{θlm(j), j ∈ Z} can be represented as follows

ζlm(j) =

∞∑
k=1

ζlmk(j)ẽk, (2.4)

ζlmk(j) = 〈ζlm(j), ẽk〉 =
1√
T

∫ T

0

ζlm(j, v)e−2πi{(−1)
k[ k

2 ]}v/T dv,

θlm(j) =

∞∑
k=1

θlmk(j)ẽk, (2.5)

θlmk(j) = 〈θlm(j), ẽk〉 =
1√
T

∫ T

0

θlm(j, v)e−2πi{(−1)
k[ k

2 ]}v/T dv.

Components of the constructed vector-valued stationary sequences {ζlm(j) =
(ζlmk(j), k = 1, 2, . . . ), j ∈ Z} and {θlm(j) = (θlmk(j), k = 1, 2, . . . ), j ∈ Z} have the
following properties [26], [32]

Eζlmk(j) = 0, ‖ζlm(j)‖2H =

∞∑
k=1

E|ζlmk(j)|2 = Rζm(0),

Eζlmk(j1)ζlmn(j2) = 〈Kζ
m(j1 − j2)ek, en〉,

Eθlmk(j) = 0, ‖θlm(j)‖2H =

∞∑
k=1

E|θlmk(j)|2 = Rθm(0),

Eθlmk(j1)θlmn(j2) = 〈Kζ
m(j1 − j2)ek, en〉,

where {ek, k = 1, 2, . . . } is a basis in the space `2. The correlation functions Kζ
m(j)

and Kθ
m(j) of the stationary sequences {ζlm(j) = (ζlmk(j), k = 1, 2, . . . ), j ∈ Z} and

{θlm(j) = (θlmk(j), k = 1, 2, . . . ), j ∈ Z} are correlation operator functions in `2.
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The vector-valued stationary sequences {ζlm(j) = (ζlmk(j), k = 1, 2, . . . ), j ∈ Z}
and {θlm(j) = (θlmk(j), k = 1, 2, . . . ), j ∈ Z} have the spectral density functions

Fm(λ) =
{
fknm (λ)

}∞
k,n=1

, Gm(λ) =
{
gknm (λ)

}∞
k,n=1

,

that are operator-valued functions of variable λ ∈ [−π, π) in the space `2 if their
correlation functions Kζ

m(j) and Kθ
m(j) can be represented in the form

〈Kζ
m(j)ek, en〉 =

1

2π

∫ π

−π
eijλ〈Fm(λ)ek, en〉dλ,

〈Kθ
m(j)ek, en〉 =

1

2π

∫ π

−π
eijλ〈Gm(λ)ek, en〉dλ,

For almost all λ ∈ [−π, π) the spectral densities Fm(λ) and Gm(λ) are kernel
operators with integrable kernel norm

∞∑
k=1

1

2π

∫ π

−π
〈Fm(λ)ek, ek〉dλ =

∞∑
k=1

〈Kζ
m(0)ek, ek〉 = ‖ζlm(j)‖2H = Rζm(0),

∞∑
k=1

1

2π

∫ π

−π
〈Gm(λ)ek, ek〉dλ =

∞∑
k=1

〈Kθ
m(0)ek, ek〉 = ‖θlm(j)‖2H = Rθm(0).

In the following sections we explore the described spectral properties of random
fields to find solution of the estimation problems.

3. Hilbert space projection method of filtering

Consider the problem of mean square optimal linear estimation of the functional

Aζ =

∫ ∞
0

∫
Sn

a(t, x)ζ(−t, x)mn(dx)dt

which depends on the unknown values of a periodically correlated with respect to
time isotropic on the unit sphere Sn in Euclidean space En random field ζ(t, x),
t ≤ 0, x ∈ Sn. Estimates are based on observations of the field ζ(t, x) + θ(t, x) at
points (t, x), t ≤ 0, x ∈ Sn, where θ(t, x) is an uncorrelated with ζ(t, x) periodically
correlated with respect to time isotropic on the sphere Sn random field.

It follows from representation (2.1) that the functional Aζ can be represented
in the form

Aζ =

∫ ∞
0

∫
Sn

a(t, x)ζ(−t, x)mn(dx)dt =

∞∑
m=0

h(m,n)∑
l=1

∫ ∞
0

alm(t)ζlm(−t)dt =

=

∞∑
m=0

h(m,n)∑
l=1

∞∑
j=0

∫ T

0

alm(j, u)ζlm(−j,−u)du,

alm(t) =

∫
Sn

a(t, x)Slm(x)mn(dx),

alm(j, u) = alm(u+ jT ), u ∈ [0, T ),

ζlm(−j,−u) = ζlm(−u− jT ), u ∈ [0, T ).
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Taking into account decomposition (2.4) of stationary sequence {ζlm(j), j ∈ Z},
the functional Aζ can be represented in the following form

Aζ =

∞∑
m=0

h(m,n)∑
l=1

∞∑
j=0

∞∑
k=1

almk(j)ζlmk(−j) =

∞∑
m=0

h(m,n)∑
l=1

∞∑
j=0

~alm(j)>~ζlm(−j),

~ζlm(−j) = (ζlmk(−j), k = 1, 2, . . . )>,

~alm(j) = (almk(j), k = 1, 2, . . . )> =

= (alm1(j), alm3(j), alm2(j), . . . , alm(2k+1)(j), a
l
m(2k)(j), . . . )

>,

almk(j) = 〈alm(j), ẽk〉 =
1√
T

∫ T

0

alm(j, v)e−2πi{(−1)
k[ k

2 ]}v/T dv.

We will assume that coefficients {~alm(j), j = 0, 1, . . . } which form this representa-
tion satisfy the following conditions

∞∑
m=0

h(m,n)∑
l=1

∞∑
j=0

‖~alm(j)‖ <∞,
∞∑
m=0

h(m,n)∑
l=1

∞∑
j=0

(j + 1)‖~alm(j)‖2 <∞, (3.1)

‖~alm(j)‖2 =
∑∞
k=1 |almk(j)|2.

Under these condition the functional Aζ has finite second moment and operators
defined below with the help of the coefficients {~alm(j), j = 0, 1, . . . } are compact.

Denote by L2(F ) the Hilbert space of complex vector functions

h(λ) =
{
hlm(λ) : m = 0, 1, . . . ; l = 1, 2, . . . , h(m,n)

}
, hlm(λ) =

{
hlmk

}∞
k=1

,

that satisfy condition

∞∑
m=0

h(m,n)∑
l=1

∫ π

−π
(hlm(λ))>Fm(λ)hlm(λ)dλ <∞.

We denote by L−2 (F ) the subspace of L2(F ) generated by the functions

eijλδk, δk = {δnk }
∞
n=1 , k = 1, 2, . . . , j ≤ 0,

where δkk = 1, δnk = 0, k 6= n.

Every linear estimate Âζ of the functional Aζ from observations of the sequence
{ζlm(j) + θlm(j), j ∈ Z} at points j ≤ 0 is defined by the spectral characteristic
h(λ) ∈ L−2 (F +G) and is of the form

Âζ =

∞∑
m=0

h(m,n)∑
l=1

∫ π

−π
(hlm(λ))>Zl ζ+θm (dλ), (3.2)

where Zl ζ+θm (∆) = {Zl ζ+θmk (∆)}∞k=1 is the orthogonal stochastic measure of sum

of sequences ζlm(j) and θlm(j).
Suppose that spectral densities of stationary sequence {ζlm(j)}, {θlm(j)} admit

the canonical factorizations (G. Kallianpur and V. Mandrekar [26], M. P. Mokly-
achuk [32])

Fm(λ) = ϕm(λ)(ϕm(λ))∗, ϕm(λ) =

∞∑
u=0

ϕm(u)e−iuλ, (3.3)
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Gm(λ) = ψm(λ)(ψm(λ))∗, ψm(λ) =

∞∑
u=0

ψm(u)e−iuλ, (3.4)

Fm(λ) +Gm(λ) = dm(λ)(dm(λ))∗, dm(λ) =

∞∑
u=0

dm(u)e−iuλ, (3.5)

where matrices

dm(u) = {drmk(u)}r=1,M

k=1,∞, ϕm(u) = {ϕrmk(u)}r=1,M1

k=1,∞ , ψm(u) = {ψrmk(u)}r=1,M2

k=1,∞

are coefficients of the canonical factorizations, M1 is the multiplicity of ζlm(j), M2

is the multiplicity of θlm(j) and M is the multiplicity of ζlm(j) + θlm(j).

The mean square error ∆(h;F,G) of the linear estimate Âζ with the spectral

characteristic hlm(λ) =
∑∞
j=0

~hlm(j)e−ijλ can be represented in the form

∆(h;F,G) = E|Aζ − Âζ|2 =

=

∞∑
m=0

h(m,n)∑
l=1

(‖Ψl
mal

m‖2 + ‖Dm(al
m − hl

m)‖2−

−〈Ψm(al
m − hl

m),Ψmal
m〉 − 〈Ψmal

m,Ψm(al
m − hl

m)〉),
where operators Ψ, D are defined as follows

‖Ψmal
m‖2 =

∞∑
q=0

‖(Ψmal
m)q‖2, (Ψmal

m)q =

q∑
j=0

(ψm(q − j))>~alm(j),

‖Dm(al
m − hl

m)‖2 =

∞∑
q=0

‖(Dm(al
m − hl

m))q‖2,

(Dm(al
m − hl

m))q =

q∑
j=0

(dm(q − j))>(~alm(j)− ~hlm(j)),

〈Ψm(al
m − hl

m),Ψmal
m〉 =

∞∑
q=0

〈(Ψm(al
m − hl

m))q, (Ψmal
m)q〉.

The spectral characteristic h(F,G) of the optimal linear estimate Âζ of the
functional minimizes the value of the mean square error

∆(F,G) = ∆(h(F,G);F,G) =

= min
h∈L−

2 (F+G)
∆(h;F,G) = min

Âζ
E|Aζ − Âζ|2. (3.6)

In the case where the spectral densities Gm(λ) and Fm(λ)+Gm(λ) admit factor-
izations (3.4) and (3.5), the spectral characteristic h(F,G), which is a solution of
the optimization problem (3.6), and the mean square error ∆(F,G) of the optimal

estimate Âζ are determined by formulas

hlm(F,G) = Alm(λ)− (bm(λ))>Clm(G)(λ), (3.7)

∆(F,G) =

∞∑
m=0

h(m,n)∑
l=1

[
‖Ψmal

m‖2 − ‖B∗mΨ∗mΨmal
m‖2

]
, (3.8)
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where

bm(λ) = {bkmr(λ)}k=1,∞
r=1,M

, bm(λ) =

∞∑
u=0

bm(u)e−iuλ, bm(λ)dm(λ) = IM ,

Clm(G)(λ) =

∞∑
j=0

(Clm(G))je
−ijλ, Alm(λ) =

∞∑
j=0

~alm(j)e−ijλ,

(Clm(G))j = (B∗Ψ∗Ψa)j =

∞∑
q=0

bm(q)(Ψ∗mΨmal
m)j+q,

(Ψ∗mΨmal
m)q =

∞∑
u=0

ψm(u)(Ψmal
m)u+q,

‖B∗mΨ∗mΨmal
m‖2 =

∞∑
q=0

‖(B∗mΨ∗mΨmal
m)q‖2.

In the case where the spectral densities Fm(λ) and Fm(λ) +Gm(λ) admit fac-
torizations (3.3) and (3.5), the spectral characteristic h(F,G) and the mean square

error ∆(F,G) of the optimal estimate Âζ are defined by formulas

hlm(F,G) = (bm(λ))>Clm(F )(λ), (3.9)

∆(F,G) =

∞∑
m=0

h(m,n)∑
l=1

[
‖Φmal

m‖2 − ‖B∗mΦ∗mΦmal
m‖2

]
, (3.10)

Clm(F )(λ) =

∞∑
j=0

(Clm(F ))je
−ijλ,

(Clm(F ))j = (B∗mΦ∗mΦmal
m)j =

∞∑
q=0

bm(q)(Φ∗mΦmal
m)j+q,

(Φ∗mΦmal
m)q =

∞∑
u=0

ϕm(u)(Φmal
m)u+q,

(Φmal
m)q =

q∑
j=0

(ϕm(q − j))>~alm(j), ‖Φmal
m‖2 =

∞∑
q=0

‖(Φmal
m)q‖2,

‖B∗mΦ∗mΦmal
m‖2 =

∞∑
q=0

‖(B∗mΦ∗mΦmal
m)q‖2.

Let us summarize our results and present them in the form of a theorem.

Theorem 3.1. Let {ζ(t, x), t ∈ R, x ∈ Sn} and {θ(t, x), t ∈ R, x ∈ Sn} be mu-
tually uncorrelated random fields, which are periodically correlated with respect to
time argument t ∈ R and isotropic on the unit sphere Sn with respect to spatial
argument x ∈ Sn. Let the stationary sequences {ζlm(j), j ∈ Z} and {θlm(j), j ∈ Z}
constructed with the help of relations (2.2), (2.3), respectively, have spectral den-
sities Fm(λ) and Gm(λ) that admit the canonical factorizations (3.3), (3.5) (or
(3.4), (3.5)). Let coefficients {~alm(j), j = 0, 1, . . . } that determine the functional
Aζ satisfy conditions (3.1). Then the spectral characteristic h(F,G) and the mean
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10 IRYNA GOLICHENKO, OLEKSANDR MASYUTKA, AND MIKHAIL MOKLYACHUK

square error ∆(F,G) of the optimal estimate of the functional Aζ from obser-
vations of the field ζ(t, x) + θ(t, x) at points (t, x), t ≤ 0, x ∈ Sn are given by

formulas (3.9), (3.10) (or (3.7), (3.8)), respectively. The optimal estimate Âζ of
the functional Aζ is calculated by formula (3.2).

4. Minimax-robust method of filtering

Formulas (3.7) – (3.10) can be applied for calculating the spectral characteristic
and the mean square error of the optimal linear estimate of the functional Aζ in
the case where the spectral densities Fm(λ) and Gm(λ) of stationary sequences
{ζlm(j), j ∈ Z} and {θlm(j), j ∈ Z} constructed by relations (2.2), (2.3), are known.
If these spectral densities are not exactly known while a set of admissible densities
D = DF × DG is specified, then the minimax approach to estimation of the
functional is reasonable. That is we find the estimate which minimizes the mean
square error for all spectral densities from a given setD = DF×DG simultaneously.

Definition 4.1. For a given class of spectral densities D = DF ×DG the spectral
densities F 0

m(λ) ∈ DF and G0
m(λ) ∈ DG are called the least favorable in D for the

optimal estimation of functional Aζ if

∆(F 0, G0) = ∆(h(F 0, G0);F 0, G0) = max
(F,G)∈D

∆(h(F,G);F,G).

Definition 4.2. For a given class of spectral densities D = DF ×DG the spectral
characteristic h0(λ) of the optimal linear estimate of the functional Aζ is called
minimax-robust if the following relations hold true

h0(λ) ∈ HD =
⋂

(F,G)∈D
L−2 (F +G),

min
h∈HD

max
(F,G)∈D

∆(h;F,G) = max
(F,G)∈D

∆(h0;F,G).

Taking into account the introduced definitions and derived relations (3.3) –
(3.10) we can verify that the following lemmas hold true.

Lemma 4.3. Spectral densities F 0
m(λ) ∈ DF and G0

m(λ) ∈ DG which admit
the canonical factorizations (3.3) - (3.5) are the least favorable in the class D =
DF ×DG for the optimal linear estimation of the functional Aζ if coefficients of
factorizations define a solution of the constrained optimization problem

∆(F,G) =

∞∑
m=0

h(m,n)∑
l=1

[
‖Φmal

m‖2 − ‖B∗mΦ∗mΦmal
m‖2

]
→ sup,

Fm(λ) = ϕm(λ)(ϕm(λ))∗ ∈ DF , (4.1)

Gm(λ) = dm(λ)(dm(λ))∗ − ϕm(λ)(ϕm(λ))∗ ∈ DG,

or the constrained optimization problem

∆(F,G) =

∞∑
m=0

h(m,n)∑
l=1

[
‖Ψmal

m‖2 − ‖B∗mΨ∗mΨmal
m‖2

]
→ sup,

Gm(λ) = ψm(λ)(ψm(λ))∗ ∈ DG, (4.2)

Fm(λ) = dm(λ)(dm(λ))∗ − ψm(λ)(ψm(λ))∗ ∈ DF .
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Lemma 4.4. Let the spectral density Fm(λ) be given and admits the factorization
(3.3). Then spectral density G0

m(λ) is the least favorable in DG for the optimal
estimation of the functional Aζ if

Fm(λ) +G0
m(λ) = d0m(λ)(d0m(λ))∗,

where d0m(λ) =
∑∞
u=0 d

0
m(u)e−iuλ and coefficients {d0m(u), u = 0, 1, . . . } are deter-

mined by solution of the constrained optimization problem

∞∑
m=0

h(m,n)∑
l=1

[
‖B∗mΦ∗mΦmal

m‖2
]
→ inf,

Gm(λ) = dm(λ)(dm(λ))∗ − Fm(λ) ∈ DG.

(4.3)

Lemma 4.5. Let the spectral density Gm(λ) be given and admits the factorization
(3.4). Then the spectral density F 0

m(λ) is the least favorable in DF for optimal
estimation of the functional Aζ and admits canonical factorizations (3.3), (3.5) if

F 0
m(λ) +Gm(λ) = d0m(λ)(d0m(λ))∗,

where d0m(λ) =
∑∞
u=0 d

0
m(u)e−iuλ and coefficients {d0m(u), u = 0, 1, . . . } are deter-

mined by solution of the constrained optimization problem

∞∑
m=0

h(m,n)∑
l=1

[
‖B∗mΨ∗mΨmal

m‖2
]
→ inf,

Fm(λ) = dm(λ)(dm(λ))∗ −Gm(λ) ∈ DF .

(4.4)

For more detailed analysis of properties of the least favorable spectral densities
and the minimax-robust spectral characteristics we observe that the least favorable
spectral densities F 0

m(λ) ∈ DF , G0
m(λ) ∈ DG and the minimax spectral charac-

teristic h0 = h(F 0, G0) form a saddle point of the function ∆(h;F,G) on the set
HD ×D. The saddle point inequalities

∆(h0;F,G) ≤ ∆(h0;F 0, G0) ≤ ∆(h;F 0, G0),

∀h ∈ HD, ∀F ∈ DF , ∀g ∈ DG

hold if h0 = h(F 0, G0), h(F 0, G0) ∈ HD and (F 0, G0) is a solution of the con-
strained optimization problem

∆(h(F 0, G0);F,G)→ sup, (F,G) ∈ D, (4.5)

where the functional

∆(h(F 0, G0);F,G) =

=

∞∑
m=0

h(m,n)∑
l=1

[
1

2π

∫ π

−π
(Clm(G0)(λ)>b0m(λ)Fm(λ)

(
b0m(λ)

)∗
Clm(G0)(λ)dλ+

+
1

2π

∫ π

−π
(Clm(F 0)(λ))>b0m(λ)Gm(λ)

(
b0m(λ)

)∗
Clm(F 0)(λ)dλ

]
. (4.6)

The constrained optimization problem (4.5) is equivalent to the following un-
constrained optimization problem

∆D(F,G) = −∆(h(F 0, G0);F,G) + δ((F,G)|D)→ inf, (4.7)
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where δ((F,G)|D) is the indicator function of the set D. Solution (F 0(λ), G0(λ))
to the optimization problem (4.7) is determined by the condition 0 ∈ ∂∆D(F 0, G0)
which is necessary for the point (F 0, G0) to belong to the set of minimums of a
convex functional. Here ∂∆D(F 0, G0) is a subdifferential of the convex functional
∆D(F,G) at point (F,G) = (F 0, G0) (see R. T. Rockafellar [49], M. P. Moklyachuk
[39] for more details).

The form (4.6) of the functional ∆(h(F 0, G0);F,G) is convenient for application
the method of Lagrange multipliers for finding solution to the problem (4.7). Mak-
ing use of the method of Lagrange multipliers and the form of subdifferentials of
the indicator functions δ((F,G)|D) we describe relations that determine the least
favourable spectral densities in some special classes of spectral densities (see books
by M. Moklyachuk [38], M. Moklyachuk and O. Masytka [42], M. Moklyachuk and
I. Golichenko [41] for more details).

5. The least favorable spectral densities in the class D0 ×DU
V

Consider the problem of minimax estimation of the functional Aζ depending
on the unknown values of the random field {ζ(t, x), t ∈ R, x ∈ Sn}, which is
periodically correlated with respect to the time argument t ∈ R and isotropic on
the sphere Sn with respect to spatial argument x ∈ Sn based on observations of
the random field ζ(t, x)+θ(t, x) at points (t, x) : t ≤ 0, x ∈ Sn, under the condition
that spectral densities Fm(λ), Gm(λ) of stationary sequences {ζlm(j), j ∈ Z} and
{θlm(j), j ∈ Z} constructed with the help of relations (2.2), (2.3), respectively, are
not known exactly while the following pairs of sets of admissible spectral densities
are specified.

The first pair is

D1
0 =

{
F (λ)| 1

2πωn

∞∑
m=0

h(m,n)

∫ π

−π
TrFm(λ)dλ = p

}
,

DU
V

1
=

{
G(λ)|TrVm(λ) ≤ TrGm(λ) ≤ TrUm(λ),

1

2πωn

∞∑
m=0

h(m,n)

∫ π

−π
TrGm(λ)dλ = q

}
.

The second pair of sets of admissible spectral densities is

D2
0 =

{
F (λ)| 1

2πωn

∞∑
m=0

h(m,n)

∫ π

−π
F kkm (λ)dλ = pk, k = 1, 2, . . .

}
,

DU
V

2
=

{
G(λ)|V kkm (λ) ≤ Gkkm (λ) ≤ Ukkm (λ),

1

2πωn

∞∑
m=0

h(m,n)

∫ π

−π
Gkkm (λ)dλ = qk, k = 1, 2, . . .

}
.

The third pair of sets of admissible spectral densities is

D3
0 =

{
F (λ)| 1

2πωn

∞∑
m=0

h(m,n)

∫ π

−π
〈B,Fm(λ)〉 dλ = p

}
,
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DU
V

3
=

{
G(λ)| 〈B2, Vm(λ)〉 ≤ 〈B2, Gm(λ)〉 ≤ 〈B2, Um(λ)〉 ,

1

2πωn

∞∑
m=0

h(m,n)

∫ π

−π
〈B2, Gm(λ)〉 dλ = q

}
.

The forth pair of sets of admissible spectral densities is

D4
0 =

{
F (λ)| 1

2πωn

∞∑
m=0

h(m,n)

∫ π

−π
Fm(λ)dλ = P

}
,

DU
V

4
=

{
G(λ)|Vm(λ) ≤ Gm(λ) ≤ Um(λ),

1

2πωn

∞∑
m=0

h(m,n)

∫ π

−π
Gm(λ)dλ = Q

}
.

Here Vm(λ), Um(λ) are given matrices of spectral densities, p, q, pk, qk, k =
1, 2, . . . are given numbers, B1, B2, P,Q are given positive-definite Hermitian ma-
trices.

From the condition 0 ∈ ∂∆D(F 0, G0) we find the following equations which
determine the least favourable spectral densities for these given sets of admissible
spectral densities.

For the first pair D1
0 ×DU

V
1

we have equations

h(m,n)∑
l=1

Clm(G0)(λ)(Clm(G0)(λ))∗ = α2
md

0
m(λ)>d0m(λ), (5.1)

h(m,n)∑
l=1

Clm(F 0)(λ)(Clm(F 0)(λ))∗ = (β2
m + γm1

(λ) + γm2
(λ))d0m(λ)>d0m(λ), (5.2)

where

γm1
(λ) ≤ 0 and γm1

(λ) = 0 if TrG0
m(λ) > TrVm(λ),

γm2(λ) ≥ 0 and γm2(λ) = 0 if TrG0
m(λ) < TrUm(λ),

and α2
m, β

2
m are unknown Lagrange multipliers.

For the second pair D2
0 ×DU

V
2

we have equations

h(m,n)∑
l=1

Clm(G0)(λ)(Clm(G0)(λ))∗ = d0m(λ)>
{
α2
mkδkl

}∞
k,l=1

d0m(λ), (5.3)

h(m,n)∑
l=1

Clm(F 0)(λ)(Clm(F 0)(λ))∗ =

= d0m(λ)>
{

(β2
mk + γm1k(λ) + γm2k(λ))δlk

}∞
k,l=1

d0m(λ), (5.4)

where

γm1k(λ) ≤ 0 and γm1k(λ) = 0 if G0kk
m (λ) > V kkm (λ),

γm2k(λ) ≥ 0 and γm2k(λ) = 0 if G0kk
m (λ) < Ukkm (λ),

and α2
mk, β

2
mk are unknown Lagrange multipliers.
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For the third pair D3
0 ×DU

V
3

we have equations

h(m,n)∑
l=1

Clm(G0)(λ)(Clm(G0)(λ))∗ = α2
md

0
m(λ)>B1d0m(λ), (5.5)

h(m,n)∑
l=1

Clm(F 0)(λ)(Clm(F 0)(λ))∗ = (β2
m+γm1

(λ)+γm2
(λ))d0m(λ)>B2d0m(λ); (5.6)

where
γm1

(λ) ≤ 0 and γm1
(λ) = 0 if

〈
B2, G

0
m(λ)

〉
> 〈B2, Vm(λ)〉 ,

γm2(λ) ≥ 0 and γm2(λ) = 0 if
〈
B2, G

0
m(λ)

〉
< 〈B2, Um(λ)〉 ,

and α2
m, β

2
m are unknown Lagrange multipliers.

For the forth pair D4
0 ×DU

V
4

we have equations

h(m,n)∑
l=1

Clm(G0)(λ)(Clm(G0)(λ))∗ = d0m(λ)> ~αm · ~αm∗d0m(λ), (5.7)

h(m,n)∑
l=1

Clm(F 0)(λ)(Clm(F 0)(λ))∗ = d0m(λ)>(~β · ~β∗+Γm1(λ)+Γm2(λ))d0m(λ). (5.8)

where Γm1(λ),Γm2(λ) are Hermitian matrices,

Γm1
(λ) ≤ 0 and Γm1

(λ) = 0 if G0
m(λ) > Vm(λ),

Γm2
(λ) ≥ 0 and Γm2

(λ) = 0 if G0
m(λ) < Um(λ),

and ~αm, ~βm are unknown Lagrange multipliers.

Theorem 5.1. The least favorable spectral densities F 0
m(λ), G0

m(λ) in the classes
D0×DU

V for the optimal estimate of the functional Aζ are determined by relations

(5.1), (5.2) for the first pair D1
0 × DU

V
1

of sets of admissible spectral densities

( (5.3), (5.4) for the second pair D2
0 ×DU

V
2

of sets of admissible spectral densities,

(5.5), (5.6) for the third pair D3
0 × DU

V
3

of sets of admissible spectral densities,

(5.7), (5.8) for the fourth pair D4
0 ×DU

V
4

of sets of admissible spectral densities),
factorizations (3.3), (3.4), (3.5), constrained optimization problem (4.1) or (4.2),
and restrictions on densities from the corresponding classes D0×DU

V . The minimax

spectral characteristic h(F 0, G0) of the optimal estimate Âζ is calculated by (3.9)
or (3.7). The mean square error ∆(F 0, G0) is calculated by (3.10) or (3.8).

In the case where one of spectral densities Fm(λ) or Gm(λ) from the corre-
sponding classes is known we have the following corollary from the theorem.

Corollary 5.2. If the spectral density Fm(λ) ∈ D0 is known and admits the
canonical factorization (3.3), then the least favorable spectral densities G0

m(λ) in

the classes DU
V
k
, k = 1, 2, 3, 4 are determined by relations (3.4), (3.5), (4.3), equa-

tions (5.2), (5.4), (5.6), (5.8) correspondingly to k = 1, 2, 3, 4 and by restrictions

on densities from classes DU
V
k
, k = 1, 2, 3, 4. If the spectral density Gm(λ) ∈ DU

V is
known and admits the canonical factorization (3.4), then the least favorable spectral
densities F 0

m(λ) in the classes Dk
0 , k = 1, 2, 3, 4 are determined by relations (3.3),
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(3.5), (4.4), equations (5.1), (5.3), (5.5), (5.7)) correspondingly to k = 1, 2, 3, 4

and by restrictions on densities from classes DU
V
k
, k = 1, 2, 3, 4. The minimax

spectral characteristic h(F 0, G0) of the optimal estimate Âζ is calculated by (3.9)
or (3.7). The mean square error ∆(F 0, G0) is calculated by (3.10) or (3.8).

6. Conclusions

In this paper we propose formulas for calculating the mean square error and
the spectral characteristic of the optimal linear estimate of the functional

Aζ =

∫ ∞
0

∫
Sn

a(t, x)ζ(−t, x)mn(dx)dt

depending on unknown values of a mean-square continuous periodically correlated
(cyclostationary with period T ) with respect to time argument and isotropic on
the unit sphere Sn in Euclidean space En random field ζ(t, x), t ∈ R, x ∈ Sn.
Estimates are based on observations of the field ζ(t, x) + θ(t, x) at points (t, x),
t ≤ 0, x ∈ Sn, where θ(t, x) is an uncorrelated with ζ(t, x) mean-square continuous
periodically correlated with respect to time argument and isotropic on the sphere
Sn random field. The problem is investigated in the case of spectral certainty where
matrices of spectral densities of random fields are known exactly and in the case of
spectral uncertainty where matrices of spectral densities of random fields are not
known exactly while some classes of admissible spectral density matrices are given.
We derive formulas for calculating the spectral characteristic and the mean-square
error of the optimal linear estimate of the functional Aζ in the case of spectral
certainty, where spectral densities Fm(λ), Gm(λ) of the stationary sequences that
generate the random fields ζ(t, x), θ(t, x) are known exactly.

We propose a representation of the mean square error in the form of a linear
functional in the L1 × L1 space with respect to spectral densities (F,G), which
allows us to solve the corresponding constrained optimization problem and describe
the minimax (robust) estimates of the functional Aζ for concrete classes of spectral
densities under the condition that spectral densities are not known exactly while
classes D = Df ×Dg of admissible spectral densities are specified.

In the forthcoming articles we will propose solution to the interpolation and ex-
trapolation problems for functionals depending on unknown values of mean-square
continuous periodically correlated with respect to time argument and isotropic on
the unit sphere random fields in the case of spectral certainty as well as in the
case of spectral uncertainty. The minimax-robust estimation technique will be
developed for the interpolation and extrapolation problems.
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