
PRESENTATION OF MONOIDS BY GENERATORS AND
RELATIONS

NACER GHADBANE* AND DOUADI MIHOUB

Abstract. Let A� be the free monoid over a �nite alphabet A and R a
binary relation on A�. The congruence generated by R is de�ned as follows:

� xuy $
R
xvy, whenever x; y 2 A� and uRv or vRu

� w �$
R
w
0
, whenever u0; u1; :::; un 2 A� with,u0 = w; ui $

R
ui+1; 80 � i �

n� 1; un = w0.
A presentation (by generators and relations) of a monoid M is a pair

S = (A;R) such thatM is isomorphic to the quotient of A� by the congruence
noted

�$
R
generated by R , i.e, M �= A�=

�$
R
. We consider two systems of

rewriting S1 = (A1; R1) and S2 = (A2; R2). The purpose of this study is
to determine some conditions on the relations R1 and R2 that ensure the
existence of a morphism between the quotient monoids A�1=

�$
R1

and A�2=
�$
R2
.

We give also a speci�c relation R on A� making the quotient monoid A�=
�$
R

a group.

1. Intoduction

Let A be a set, called an alphabet in the following. Elements of A will be
called symbols. A �nite word over A is just a sequence of alphabet symbols. The
set of all �nite words over A is denoted with A�. The concatenation of words is
an associative operation with identity element �. Hence, A� has the structure of
a monoid, called the free monoid generated by A. A semi-Thue system (or word
rewriting system) over the alphabet A is just a set R � A��A�. We associate with
R a binary relation!R on A�, alsocalled the, as follows: For all u; v 2 A�; u!R v
if and only if there exist x; y 2 A� and (l; r) 2 R suth that u = xly and v = xry.
Elements (l; r) are called rules and usually written as l ! r. Note that �$

R
is

a congruence generated by R and [w] �$
R

=
n
x 2 A� : x �$

R
w
o
be the equivalence

class with respect to �$
R
. Hence, we can de�n the quotient monoid A�= �$

R
.

A presentation of a monoid M is a pair (A;R) where A is an alphabet, R �
A� �A�, and M �= A�=

�$
R
.

The remainder of this paper is organized as follows. In Section 2, some math-
ematical preliminaries. In Section 3, we consider two systems of rewriting S1 =
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2 NACER GHADBANE* AND DOUADI MIHOUBI

(A1; R1) and S2 = (A2; R2). The purpose of this study is to determine some condi-
tions on the relations R1 and R2 that ensure the existence of a morphism between
the quotient monoids A�1=

�$
R1

and A�2=
�$
R2

. We give also a speci�c relation R on

A� making the quotient monoid A�= �$
R
a group. The Section 4 is devoted to the

application on the notion of word problem in public key cryptography. Finally, we
draw our conclusions in Section 5.

2. Preliminaries

A monoid is a setM equipped with an associative product x; y 7�! xy, together
with a (left and right) unit 1. In the commutative case, it is common to use the
additive notation: x+ y instead of xy, and 0 instead of 1.
If X �M , we write X� for the submonoid ofM generated by X, that is the set

of �nite products x1x2:::xn with x1; x2; :::; xn 2 X, including the empty product
1. It is the smallest submonoid of M containing X.
Let A be a set, which we call an alphabet. A word w on the alphabet A is a

�nite sequence of elements of A

w = (a1; a2; :::; an) ai 2 A.
The set of all words on the alphabet A is denoted by A�and is equipped with

the associative operation de�ned by the concatenation of two sequences

(a1; a2; :::; an)(b1; b2; :::; bm) = (a1; a2; :::; an; b1; b2; :::; bm)

This operation is associative. This allows us to write w = a1 a2; ::: an. The
string consisting of zero letters is called the empty word, written �. Thus, �; 0; 1; 011; 1111
are words over the alphabet f0; 1g. Thus the set A� of words is equipped with
the structure of a monoid. the monoid A� is called the free monoid on A. The
reverse of a word w = a1 a2; ::: an, is ew = an an�1; ::: a1. Note that for all
u; v 2 A�;fuv = eveu.
The length of a word u, in symbols juj, is the number of letters in u when each

letter is counted as many times as it occurs. Again by de�nition, j�j = 0. The
length function possesses some of the formal properties of logarithm:

juvj = juj+ jvj ;
��ui�� = i juj ;

for any words u and v and integers i � 0. For example j011j = 3 and j1111j = 4.
For a subset B of A, we let jwjB denote the number of letters of w which are in

B. Thus jwj =
X
a2A
jwja. A language L over A� is any subset of A� [1].

Let f : S �! U be a mapping of sets.
�We say that f is one-to-one if for every a; b 2 S where f (a) = f (b), we have

a = b.
� We say that f is onto if for every y 2 U , there exists a 2 S such that

f (a) = y.
A mapping h : A� �! ��, where A and � are alphabets, satisfying the condi-

tion

h(uv) = h(u)h(v), for all words u and v,
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PRESENTATION OF MONOIDS 3

is called a morphism, de�ne a morphism h, it su¢ ces to list all the words h (�),
where a ranges over all the (�nitely many) letters of A. IfM is a monoid, then any
mapping f : A �!M extends to a unique morphism ef : A� �!M . For instance,
if M is the additive monoid N, and f is de�ned by f (�) = 1 for each � 2 A, thenef (u) is the length juj of the word u.
Let h : A� �! �� be a morphism of monoids. if h is one-to-one and onto,

then h is an isomorphism and the monoids A� and �� are isomorphic. we denote
Hom (A�;��) the set of morphisms from A� to �� and Isom (A�;��) the set of
isomorphisms from A� to ��.
A binary reation on A� is a subset R � A� � A�. If (x; y) 2 R, we say that x

is related to y by R, denoted xRy. The inverse relation of R is the binary reation
R�1 � A� �A� de�ned by yR�1x() (x; y) 2 R.
The relation IA� = f(x; x) ; x 2 A�g is called the identity relation. The relation

(A�)
2 is called the complete relation.

Let R � A��A� and S � A��A� binary relations. The composition of R and
S is a binary relation S �R � A� �A� de�ned by

x (S �R) z () 9y 2 A� such that xRy and ySz.
A binary relation R on a set A� is said to be

� re�exive if xRx for all x in A�;
� symmetric if xRy implies yRx;

� transitive if xRy and yRz imply xRz.
The relation R is called an equivalence relation if it is re�exive, symmetric, and

transitive. And in this case, if xRy, we say that x and y are equivalent. The set of
all equivalence classes is denoted by A�=R and is called the quotient of A� mod R.
Let R be a relation on a set A�. The re�exive closure of R is the smallest

re�exive relation r (R) on A� that contains R; that is,
� R � r (R)
� if R0 is a re�exive relation on A� and R � R0, then r (R) � R0.
The symmetric closure of R is the smallest symmetric relation s (R) on A� that

contains R; that is,
� R � s (R)
� if R0 is a symmetric relation on A� and R � R0, then s (R) � R0.
The transitive closure of R is the smallest transitive relation t (R) on A� that

contains R; that is,
� R � t (R)
� if R0 is a transitive relation on A� and R � R0, then t (R) � R0.
Let R be a relation on a set A�. Then

� r (R) = R [ IA� ;
� s (R) = R [R�1

� t (R) =
k=+1[
k=1

Rk.

A congruence on a monoid M is an equivalence relation � on M compatible
with the operation of M , i.e, for all m;m0 2 M;u; v 2M

m � m0 =) umv � um0v
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4 NACER GHADBANE* AND DOUADI MIHOUBI

If f : A� �! B� is a morphism of monoids, Then Ker f is a congruence de�ned
by:

8u; v 2 A� : uKer f v () f (u) = f (v).

Let L be a language over A, the syntactic congruence of L denoted by �L is
de�ned by:

u �L v () (8x; y 2 A� : xuy 2 L() xvy 2 L)

The quotient of A� by �L is, by de�nition, the syntactic monoid of L denoted
M(L), i.e., M(L) = A�= �L.
A semi-Thue system is a pair (A;R) where A is an alphabet and R is a non-

empty �nite binary on A�, we write urv !R ur
0v whenever u; v 2 A� and (r; r0) 2

R. We write u!�R v if there words u0; u1; :::; un 2 A� such that,
u0 = u;
ui �!R ui+1;80 � i � n� 1
and un = v.

If n = o, we get u = v, and if n = 1, we get u !R v. !�R is the re�exive
transitive closure of !R.
The congruence generated by R is de�ned as follows:

� urv  !R ur
0v whenever u; v 2 A�, and rRr0 or r0Rr;

� u �$
R
v whenever u = u0  !R u1  !R ::: !R un = v.

 !�R is the re�exive symmetric transitive closure of !R. Let �R : A� �!
A�=

�$
R
be the canonical surjective monoid morphism that maps a word w 2 A�

to its equivalence class with respect to �$
R
. A monoid M is �nitely generated if it

is ithenmorphic to a monoid of the form A�=
�$
R
. In this case, we also say that M

is �nitely generated by A. If in addition to A also R is �nite, then M is a �nitely
presented monoid. The word problem of M ' A�= �$

R
with respect to R is the set

f(u; v) 2 A� �A� : �R (u) = �R (v)g it is undecidable in general [6; 7; 10].
The semi-Thue system (A;R) is terminating if there does not exist an in�nite

chain w1 !R w2 !R w3 !R ::: in A�. The set of irreducible words with respect
to R is Irr (R) = fu 2 A�;:v 2 A� : u!R vg. (A;R) is con�uent (resp. locally
con�uent) if for all x; y; z 2 A� with x !�R y and x !�R z (resp. x !R y
and x !R z) there exists w 2 A� with y !�R w and z !�R w. If (A;R) is
terminating, then by Newman�s lemma (A;R) is con�uent if and only if (A;R) is
locally con�uent. A semi-Thue system (A;R) is canonical if (A;R) is con�uent
and terminating. If (A;R) is canonical, then every word u has a unique normal
form NFR (u) 2 Irr (R) suth that u !�R NFR (u) and moreover, the function
�R j Irr (R) (i.e., �R restricted to Irr (R)) is bijective. Thus, if R is in addition
�nite, then the word problem of A�= �$

R
is decidable: �R (u) = �R (v) if and only

if NFR (u) = NFR (v) [8].
The congruence generated by R is de�ned as follows:
� xuy $

R
xvy, whenever x; y 2 A� and uRv or vRu
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PRESENTATION OF MONOIDS 5

� w �$
R
w
0
, whenever u0; u1; :::; un 2 A� with,u0 = w; ui $

R
ui+1;80 � i �

n� 1; un = w0.
The equivalence class of w with respect to �$

R
denoted by [w] �$

R

We get a quotient monoid A�=
�$
R
and a canonical surjection �R : A� �!

A�=
�$
R
. Moreover, if h : A� �!M is a mapping such that h(x) = h(y) whenever

xRy, we get a unique morphism  : A�=
�$
R
�!M such that h � �R =  .

3. Presentations of some monoids

De�nition 3.1. A presentation of a monoid M is a pair S = (A;R) such that M
is isomorphic to the quotient of A� by the congruence noted �$

R
generated by R , i.e,

M �= A�=
�$
R
. The elements of A are called generators, and those of R are called

relations. If there are �nitely many generators and relations, i.e. A = fa1; :::; apg
and R =

�
(r1; r

0
1) ; :::;

�
rq; r

0
q

�	
, we say that the monoid M is �nitely presentable,

and we write M �=


a1; :::; an=r1 = r01; :::; rq = r0q

�
.

Example 3.2. Let A = fag and R = ; (R is the empty relation), we have�
fag� ; �

� �= (N;+) with the isomorphism is de�ned by � 7�! 0; a 7�! 1. Then the
monoid presented by ha=;i is isomorphic to the additive monoid (N;+).

Example 3.3. Let A = fa; bg and R = f(ab; ba)g. We have, for all w 2 fa; bg�,
there exists a unique (m;n) 2 N2 suth that w �$

R
bman with m = jwjb and

n = jwja. We de�ne the mapping  : N2 �! A�=
�$
R
;  (m;n) = [bman] �$

R

where

[bman] �$
R

denotes the equivalence class of bman with respect to �$
R
. The mapping  

is morphism because for all (m;n) 2 N2; (p; q) 2 N2, we have  ((m;n) + (p; q)) =
 ((m+ p; n+ q)) = [bm+pan+q] �$

R

= [bmbpanaq] �$
R

= [bmanbpaq] �$
R

= [bman] �$
R

� [bpaq] �$
R

=  ((m;n)) �  ((p; q))

It is clear that  is onto. The mapping  is one-to-one because, we have for all
(m;n) 2 N2; (p; q) 2 N2;
 ((m;n)) =  ((p; q))() [bman] �$

R

= [bpaq] �$
R

() (m = p and n = q).

Therefore the monoid presented by ha; b=ab = bai is isomorphic to the additive
monoid

�
N2;+

�
.

Example 3.4. Let A = fa; bg and R = f(ab; �) ; (ba; �)g, for all w 2 fa; bg�, there
is only three cases to be considered.

� If jwja = jwjb, in this case we have w
�$
R
�.

� If jwja > jwjb, i.e, jwja = jwjb + k; k 2 N� f0g, in this case we have w
�$
R
ak.

� If jwjb > jwja, i.e, jwjb = jwja + l; l 2 N� f0g, in this case we have w
�$
R
bl.
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6 NACER GHADBANE* AND DOUADI MIHOUBI

Then Z �= fa; bg� = �$
R
=

�
[�] �$

R

;
�
ak
�
�$
R

;
�
bl
�
�$
R

; (k; l) 2 (N� f0g)2
�
. with the

isomorphism � : Z �! fa; bg� = �$
R
is de�ned by:

0 7�! [�] �$
R

; if n > 0; then n 7�! [an] �$
R

;if n < 0; then n 7�! [b�n] �$
R

.

Therefore the monoid presented by ha; b=ab = �; ba = �i is isomorphic to the
additive monoid (Z;+).

Proposition 3.5. Any monoid (M; �; 1M ) has a standard presentation (A;R),
where A consists of one symbol ax for each x 2 M , and R is de�ned by R =
f(a1M ; �) ; (axay; axy) for all x; y 2Mg. In particular, any �nite monoid is �nitely
presented.

Proof. Let A = fax; x 2Mg and R = f(a1M ; �) ; (axay; axy) for all x; y 2Mg,
then for all w 2 A�, there exists fxi; :::; xjg � M suth that w = axi :::axj and

w
�$
R

axk , xk = xi � ::: � xj , therefore A�=
�$
R
=

�
[axk ] �$

R

; xk 2M
�
. Then the

isomorphism � : M �! A�=
�$
R
is de�ned by: � (xk) = [w] �$

R

, where xk = xi � ::: �

xj ; w = axi :::axj ; fxi; :::; xjg �M .
The mapping � is morphism because for all (xk; xl) 2M2, we have

� (xkxl) = � (xm) = [w] �$
R

where xm = xkxl and w = axkaxl , then [w] �$
R

=

[axkaxl ] �$
R

= [axk ] �$
R

[axl ] �$
R

= � (xk) � (xl).

It is trivial that � is onto. We show that � is one-to-one, for all (xk; xl) 2 M2,
there exists fxi; :::; xjg � M; fxs; :::; xtg � M where xk = xi � ::: � xj and xl =
xs � ::: � xt, we have,

� (xk) = � (xl) =) � (xi � ::: � xj) = � (xs � ::: � xt) =)
�
axi :::axj

�
�$
R

= [axs :::axt ] �$
R

=) [axk ] �$
R

= [axl ] �$
R

=) xk = xl:

�

Example 3.6. Consider the monoid

M =

�
x0 =

�
1 0
0 1

�
; x1 =

�
1 0
1 0

�
; x2 =

�
0 1
0 1

��
provided with matrix multiplication. The Cayley table of M is de�ned as follows
(see Table 1):

� x0 x1 x2
x0 x0 x1 x2
x1 x1 x1 x2
x2 x2 x1 x2

The monoidM satis�es the following two properties: for all xi 2M;xi �x1 = x1
and xi � x2 = x2.
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PRESENTATION OF MONOIDS 7

LatA = faxi ; xi 2M; 0 � i � 2g andR =
�
(ax0 ; �) ;

�
axiaxj ; axixj

�
; xi; xj 2M

	
.

Then for all w 2 A�, there exists fxi; :::; xjg � M suth that w = axi :::axj and

w
�$
R
axk , with xk = xi � ::: � xj . There is only three cases to be considered:

� If w = uax1 ; u 2 A�, in this case we have w
�$
R
ax1 .

� If w = uax2 ; u 2 A�, in this case we have w
�$
R
ax2 .

� If w = ax0 :::ax0 , in this case we have w
�$
R
�.

Then A�=
�$
R
=

�
[�] �$

R

; [ax1 ] �$
R

; [ax2 ] �$
R

�
and we de�ne the isomorphism � :

M �! A�=
�$
R
by:

� (x0) = [�] �$
R

; � (x1) = [ax1 ] �$
R

; � (x2) = [ax2 ] �$
R

. Finally M �= A�=
�$
R
.

The following propositions, make it possible to give conditions on relations that
ensure the existence of morphism between two monoids quotient.

Proposition 3.7. We consider two systems of rewriting S1 = (A1; R1), S2 =
(A2; R2) and f : A�1 �! A�2 is a morphism of monoids such that for all (r; s) 2 R1 :
[f (r)] �$

R2

= [f (s)] �$
R2

, then there exists a unique morphism  : A�1=
�$
R1

�! A�2=
�$
R2

with  � �R1 = �R2 � f .

Proof. We have for all (r; s) 2 R1 : [f (r)] �$
R2

= [f (s)] �$
R2

, then the morphism �R2
�f

satis�es the following property: for all (r; s) 2 R1; (�R2
� f) (r) = (�R2

� f) (s),
then there exists a unique morphism  : A�1=

�$
R1

�! A�2=
�$
R2

with  � �R1 =

�R2
� f . �

Example 3.8. Let S1 = (A1; R1) and S2 = (A2; R2) be two systems of rewriting,
where,�

A1 = fa; bg
R1 = f(ab; a) ; (ba; a)g

and
�

A2 = fc; d; eg
R2 = f(ec; c) ; (de; d)g

.

We consider the morphism f : A�1 �! A�2, with
�
f (a) = cd
f (b) = e

.

We have �R2 : A
�
2 �! A�2=

�$
R2

satis�es the following equalities: �R2 (ec) =

�R2 (c) and �R2 (de) = �R2 (d).
Now we show that for all (r; s) 2 R1; (�R2 � f) (r) = (�R2 � f) (s), we have
(�R2

� f) (ab) = �R2
(cde) = �R2

(c)�R2
(de) = �R2

(c)�R2
(d) = �R2

(cd) =
(�R2

� f) (a).
(�R2

� f) (ba) = �R2
(ecd) = �R2

(ec)�R2
(d) = �R2

(c)�R2
(d) = �R2

(cd) =
(�R2 � f) (a).
Consequently there exists a unique morphism  : A�1=

�$
R1

�! A�2=
�$
R2

with

 � �R1
= �R2

� f .
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8 NACER GHADBANE* AND DOUADI MIHOUBI

Proposition 3.9. Let S1 = (A1; R1), S2 = (A2; R2) be two systems canonicals
and f : A�1 �! A�2 is a isomorphism of monoids where for all (r; s) 2 R1 :
[f (r)] �$

R2

= [f (s)] �$
R2

and f (Irr (R1)) � Irr (R2), we have,

A�1=
�$
R1

�= A�2=
�$
R2

.

Proof. We have for all (r; s) 2 R1 : [f (r)] �$
R2

= [f (s)] �$
R2

, then for all (r; s) 2

R1; (�R2
� f) (r) = (�R2

� f) (s), then there exists a unique morphism  : A�1=
�$
R1

�!

A�2=
�$
R2

with  � �R1
= �R2

� f . Speci�cally the morphism  is de�ned by:

 

 
[x] �$

R1

!
= [f (x)] �$

R2

. We show that  is one-to-one: Let [x] �$
R1

; [y] �$
R1

2 A�1=
�$
R1

,

since S1 = (A1; R1) is canonical, then there exists u; v 2 Irr (R1) suth that [x] �$
R1

=

[u] �$
R1

and [x] �$
R1

= [v] �$
R1

.

We have  

 
[x] �$

R1

!
=  

 
[y] �$

R1

!
()  

 
[u] �$

R1

!
=  

 
[v] �$

R1

!
() [f (u)] �$

R2

=

[f (v)] �$
R2

, since f (Irr (R1)) � Irr (R2) and S2 = (A2; R2) is canonical, we have

f (u) = f (v), then u = v because f is one-to-one, which shows that [x] �$
R1

=

[y] �$
R1

. �

Now we show that  is onto: since f is onto, then for all y 2 A�2, there exists

x 2 A�1, suth that y = f (x), which allows to write [y] �$
R2

= [f (x)] �$
R2

=  

 
[x] �$

R1

!
.

Finally A�1=
�$
R1

�= A�2=
�$
R2

.

Example 3.10. Let S1 = (A1; R1) and S2 = (A2; R2) be two systems of rewriting,
where,�

A1 = fag
R1 = f(aa; �)g

and
�

A�2 = N = h1i
R2 = f(0 + 0; 0) ; (0 + 1; 1) ; (1 + 0; 1) ; (1 + 1; 0)g

.

We consider the isomorphism of length f : A�1 �! N, w 7�! jwj.
We have (�R2 � f) (aa) = �R2 (2) = �R2 (0) = (�R2 � f) (�), and Irr (R1) =

f�; ag ; f (Irr (R1)) = f0; 1g = Irr (R2).

Finally A�1=
�$
R1

�= N= �$
R2

.

In the following proposition we give a condition on the relation of a rewrite
system to show that the congruence generated by this relation is included in the
syntactic congruence class of any word modulo congruence associated morphism
of monoids.

Proposition 3.11. Let f : A� �!M be a monoids morphism and R is a binary
relation on a set A� suth that for all (r; s) 2 R; f (r) = f (s). Then for all w 2
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A�, the congruence generated by R is included in the syntactic congruence of the
equivalence class of w modulo Ker f .i.e, �$

R
��[w]Ker f

.

Proof. Since for all (r; s) 2 R; f (r) = f (s), we have R � Ker f , then �$
R
� Ker f .

Now we show that �$
R
��[w]Ker f

, let (u; v) 2 A� � A� suth that u �$
R
v, we check

that u �[w]Ker f
v, i.e, for all (x; y) 2 A� � A� : xu y 2 [w]Ker f () xv y 2

[w]Ker f

We have xu y 2 [w]Ker f () xu y 2
[
i2I
[ci] �$

R

, because �$
R
� Ker f:() 9i0 2 I

suth that xu y 2 [ci0 ] �$
R

, then xu y
�$
R

ci0 . Furthermore u �$
R

v implies that

xu
�

y $
R
xvy. We have

8<: xu y
�$
R
ci0

xu
�

y $
R
xvy

=) xv y
�$
R
ci0 , then xv y 2 [w]Ker f .

A similar argument shows that if xv y 2 [w]Ker f then xu y 2 [w]Ker f . Finally
�$
R
��[w]Ker f

. �

Example 3.12. Let A = fa; bg, R = f(ab; ba)g and f : A� �! N; f (u) = juj.

We have A�= �$
R
=

�
[bman] �$

R

; (m;n) 2 N� N
�
and for all w 2 A�; [w]Ker f =

fx 2 A� : jxj = jwjg. Now we show that �$
R
��[w]Ker f

, let (u; v) 2 A� � A� suth

that u �$
R

v, then there exists (p; q) 2 N � N : u
�$
R

bpaq and v
�$
R

bpaq,

there (juja = jvja = q and jujb = jvjb = p), we check that u �[w]Ker f
v, i.e, for

all (x; y) 2 A� � A� : xu y 2 [w]Ker f () xv y 2 [w]Ker f . Let (x; y) 2 A� � A�,
we have
xu y 2 [w]Ker f () jxu yj = jwj () jxv yj = jwj () xv y 2 [w]Ker f , because
(juja = jvja = q and jujb = jvjb = p).
Finally �$

R
��[w]Ker f

.

In the following proposition we give also a speci�c relation R on A� making the
quotient monoid A�= �$

R
a group.

Proposition 3.13. Let A = fa1; :::; ang and R = f(aiai; �) ; 1 � i � ng.

We have the quotient monoid A�= �$
R
is a group.

Proof. It su¢ ces to show that every element of A�= �$
R
is invertible, let w =

ai1 :::aik 2 A�, and [w] �$
R

2 A�= �$
R
.

we take
�
[w] �$

R

��1
= [ ew] �$

R

, there ew is The reverse of a word w, we have
[w] �$

R

� [ ew] �$
R

= [ ew] �$
R

� [w] �$
R

= [�] �$
R

. �
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Example 3.14. Let A = fag and R = f(aa; �)g, we have A�= �$
R
=

�
[�] �$

R

; [a] �$
R

�
,

there

[�] �$
R

= fw 2 A� : jwj � 0 [2]g and [a] �$
R

= fw 2 A� : jwj � 1 [2]g.

The Cayley table of A�= �$
R
is de�ned as follows (see Table 1)

2

[�] �$
R

[a] �$
R

[�] �$
R

[�] �$
R

[a] �$
R

[a] �$
R

[a] �$
R

[�] �$
R

We have the groups A�= �$
R
and (Z=2Z;�) are isomorphic.

4. Application on the notion of word problem in public key
cryptography

In this work, we are interested in ATS-monoid protocol (proposed by P. J.
Abisha, D. G. Thomas G. and K. Subramanian, the idea of this protocol
is to transform a system of Thue S1 = (A;R) for which the word problem is
undecidable a system of Thue S2 = (�; R�) or � � � � � for which the word
problem is decidable in linear time.

4.1. The ATS-monoid protocol. P. J. Abisha, D. G. Thomas and K. G.
Subramanian, use the theorem of R. Cori and D. Perrin. To build the ATS-
monoid protocol,the idea is transform a system of Thue S1 = (A;R) for which
the word problem is undecidable in a Thue system S2 = (�; R�) with � � ���
and R� = f(ab; ba) : (a; b) 2 �g for which the word problem is decidable in linear
time.
Public-Key (pK): A Thue system S1 = (A;R) and two words w0; w1 of A�.

(A;R;w0; w1) constitute a public-key.
Secret-key (sK): A Thue system S2 = (�; R�) where � alphabet of size

smaller than A, a morphism h from A� to ��, such that for all (r; s) 2 R:�
(h(r); h(s)) 2 f(ab; ba) ; (ba; ab)g , for a pair (a; b) 2 �, or

h(r) = h(s).
Therefore:

for all u; v 2 A�; u !�R v =) h(u) !�R�
h(v).

thus if h(u) and h(v) are not equivalent with respect to  !�R�
, then u and v

are not equivalent with respect to  !�R.
And, we also we have two words x0; x1 of�� such that x0  !�R�

h(w0); x1  !�R�

h(w1) with h(w0) and h(w1) are not equivalent with respect to !�R�
. (�; R�; h 2 Hom (A�;��))

constitute a secret-key.
Encryption: for encrypt a bit b 2 f0; 1g, Bob chooses a word c of A� in the

equivalence class of wb with respect to  !�R, i. e, c 2 [wb] !�
R
where [wb] !�

R

denotes the equivalence class of wb with respect to  !�R and then sent to Alice.
Decryption: Upon receipt of a word c of A�, Alice calculated h(c) 2 ��,

since c  !�R wb and according to the result for all u; v 2 ��; u  !�R v =)
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h(u)  !�R�
h(v) we have h(c)  !�R�

h(wb), for example if h(c)  !�R�
x0 the

message is decrypted 0.
Example :
Public-Key (pK):
A = f�1; �2; �3; �4g ;
R = f(�2�3; �3�2) ; (�2�4; �4�2) ; (�1�3; �3�1)g ;
w0 = �1�2�4�3�1�2�3�4;
w1 = �2�4�3�4�2�1.
Secret-key (sK):
� = fa; b; cg ; � = f(a; b) ; (a; c)g and h : A� �! �� is de�ned by :

h(�1) = �; h(�2) = a; h(�3) = b; h(�4) = c.

We have R� = f(ab; ba) ; (ac; ca)g, h(w0) = x0 = acbabc and h(w1) = x1 =
acbca.
Now we verify the following conditions :
1: h(w0) et h(w0) are not equivalent with respect to  !�R�

.
2: for all (r; s) 2 R:�

(h(r); h(s)) 2 f(ab; ba) ; (ba; ab)g , for a pair (a; b) 2 �, or
h(r) = h(s).

:

For condition 1: Just use the theorem of R. Cori and D. Perrin,
we have Pfbg(h(w0)) = Pfbg(acbabc) = bb and Pfbg(h(w1)) = Pfbg(acbca) = b,
then h(w0) and h(w1) are not equivalent with respect to  !�R�

.
For condition 2: we have R = f(�2�3; �3�2) ; (�2�4; �4�2) ; (�1�3; �3�1)g then

(h(�2�3); h(�3�2)) = (ab; ba) 2 R�; (h(�2�4); h(�4�2)) = (ac; ca) 2 R�;
(h(�1�3); h(�3�1)) = (b; b) ( we have h(�1�3) = h(�3�1).
Therefore:

for all u; v 2 A�; u !�R v =) h(u) !�R�
h(v).

Encryption: for example, for encrypt the 0,Bob chooses a word c of f�1; �2; �3; �4g�
in the equivalence class of w0 with respect to  !�R, i. e, c 2 [w0] !�

R
where

[w0] !�
R
denotes the equivalence class of w0 with respect to  !�R, and then sent

to Alice.
we have w0 = �1�2�4�3�1�2�3�4  !�R �1�4�2�3�1�2�3�4  !�R �1�4�3�2�1�2�3�4.
We choose c = �1�4�3�2�1�2�3�4.
Decryption: Upon receipt of a word c of f�1; �2; �3; �4g�,

Alice calculated h(c) = h(�1�4�3�2�1�2�3�4) = cbaabc 2 fa; b; cg�, Now using
the theorem of R. Cori and D. Perrin, such that h(c) !�R�

h(w0). we have
Pfag(h(c)) = Pfag(h(w0)) = aa; Pfbg(h(c)) = Pfbg(h(w0)) = bb; Pfcg(h(c)) =
Pfcg(h(w0)) = cc:
then for all � of fa; b; cg, Pf�g(h(c)) = Pf�g(h(w0)). In addition it is veri�ed

that Pf�;�g(h(c)) = Pf�;�g(h(w0)); for all (�; �) =2 �, we have the complementary
of � is C���� = f(a; a) ; (b; a) ; (b; b) ; (b; c) ; (c; a) ; (c; b) ; (c; c)g,
then Pfb;cg(h(c)) = Pfb;cg(h(w0)) = cbbc. Finally h(c) !�R�

h(w0) = x0 and the
word is decrypted 0.
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5. Conclusion

In this paper, we determine some conditions on the two relations that ensure
the existence of a morphism between the two quotient monoids. We give also a
speci�c relation R on A� making the quotient monoid A�= �$

R
a group.
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