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PRESENTATION OF MONOIDS BY GENERATORS AND
RELATIONS

NACER GHADBANE* AND DOUADI MIHOUB

ABSTRACT. Let A* be the free monoid over a finite alphabet A and R a
binary relation on A*. The congruence generated by R is defined as follows:
® Tuy < zvy, whenever z,y € A* and uRv or vRu
o w % w/, whenever ug,uy, ..., un € A* with,up = w, u; <1—?> uj41,v0 <3 <
n—1u, =w'.
A presentation (by generators and relations) of a monoid M is a pair
S = (A, R) such that M is isomorphic to the quotient of A* by the congruence
noted % generated by R, ie, M = A*/ % We consider two systems of
rewriting S1 = (A1, R1) and S2 = (A2, R2). The purpose of this study is
to determine some conditions on the relations R; and R2 that ensure the
existence of a morphism between the quotient monoids A}/ 1% and A%/ ]%
1 2

We give also a specific relation R on A* making the quotient monoid A*/ %
a group.

1. Intoduction

Let A be a set, called an alphabet in the following. Elements of A will be
called symbols. A finite word over A is just a sequence of alphabet symbols. The
set of all finite words over A is denoted with A*. The concatenation of words is
an associative operation with identity element e. Hence, A* has the structure of
a monoid, called the free monoid generated by A. A semi-Thue system (or word
rewriting system) over the alphabet A is just a set R C A* x A*. We associate with
R a binary relation — g on A*, alsocalled the, as follows: For all u,v € A*,u —g v
if and only if there exist z,y € A* and (I,r) € R suth that « = zly and v = zry.
Elements (I,7) are called rules and usually written as [ — r. Note that % is

a congruence generated by R and [w] . = {x e A*:x % w} be the equivalence
R

class with respect to %. Hence, we can defin the quotient monoid A*/ %.

A presentation of a monoid M is a pair (A, R) where A is an alphabet, R C
A* x A*, and M = A*/ %

The remainder of this paper is organized as follows. In Section 2, some math-
ematical preliminaries. In Section 3, we consider two systems of rewriting S; =
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(A1, Ry) and Sy = (Ag, R2). The purpose of this study is to determine some condi-

tions on the relations R; and Ry that ensure the existence of a morphism between

the quotient monoids A3/ R<i> and A3/ %. We give also a specific relation R on
1 2

A* making the quotient monoid A*/ % a group. The Section 4 is devoted to the

application on the notion of word problem in public key cryptography. Finally, we
draw our conclusions in Section 5.

2. Preliminaries

A monoid is a set M equipped with an associative product z,y — zy, together
with a (left and right) unit 1. In the commutative case, it is common to use the
additive notation: x + y instead of xy, and 0 instead of 1.

If X C M, we write X* for the submonoid of M generated by X, that is the set
of finite products zixs...x,, with x1,xs,...,z, € X, including the empty product
1. It is the smallest submonoid of M containing X.

Let A be a set, which we call an alphabet. A word w on the alphabet A is a
finite sequence of elements of A

w = (a1, a2, ..., Gy) a; € A.

The set of all words on the alphabet A is denoted by A*and is equipped with

the associative operation defined by the concatenation of two sequences
(al, A2y .uuy an)(bh bz, ceey bm) = (al, A2,y ..., An, bl, bg, ceey bm)

This operation is associative. This allows us to write w = ay as,... a,. The
string consisting of zero letters is called the empty word, written e. Thus, ¢,0,1,011,1111
are words over the alphabet {0,1}. Thus the set A* of words is equipped with
the structure of a monoid. the monoid A* is called the free monoid on A. The
reverse of a word w = ai as,... Gn, IS W = a, Gn_1,... a1. Note that for all
u,v € A*, uv = vu.

The length of a word u, in symbols |u|, is the number of letters in u when each
letter is counted as many times as it occurs. Again by definition, |¢] = 0. The
length function possesses some of the formal properties of logarithm:

wo| = [u] + Jo], [u'] =i Jul,

for any words u and v and integers ¢ > 0. For example |011] = 3 and |1111| = 4.
For a subset B of A, we let |w|, denote the number of letters of w which are in

B. Thus |w| = Z |w|,. A language L over A* is any subset of A*[1].

acA
Let f: S — U be a mapping of sets.

e We say that f is one-to-one if for every a,b € S where f (a) = f (b), we have
a=nh.

e We say that f is onto if for every y € U, there exists a € S such that
fla)=y.

A mapping h : A* — A* where A and A are alphabets, satisfying the condi-
tion

h(uv) = h(u)h(v), for all words v and v,
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is called a morphism, define a morphism h, it suffices to list all the words h (o),
where a ranges over all the (finitely many) letters of A. If M is a monoid, then any
mapping f : A — M extends to a unique morphism f: A* — M. For instance,
if M is the additive monoid N, and f is defined by f (o) =1 for each o € A, then
f (u) is the length |u| of the word u.

Let h : A* — A* be a morphism of monoids. if h is one-to-one and onto,
then h is an isomorphism and the monoids A* and A* are isomorphic. we denote
Hom (A*, A*) the set of morphisms from A* to A* and Isom (A*, A*) the set of
isomorphisms from A* to A*.

A binary reation on A* is a subset R C A* x A*. If (z,y) € R, we say that z
is related to y by R, denoted xRy. The inverse relation of R is the binary reation
R~ C A* x A* defined by yR™ 'z <= (x,y) € R.

The relation T4« = {(z,z),z € A*} is called the identity relation. The relation
(A*)? is called the complete relation.

Let RC A* x A* and S C A* x A* binary relations. The composition of R and
S is a binary relation S o R C A* x A* defined by

x(SoR)z<= Jy € A* such that xRy and yS=.
A binary relation R on a set A* is said to be

o reflexive if x Rx for all  in A*;
e symmetric if x Ry implies yRx;
e transitive if xRy and yRz imply zRz.

The relation R is called an equivalence relation if it is reflexive, symmetric, and
transitive. And in this case, if z Ry, we say that = and y are equivalent. The set of
all equivalence classes is denoted by A* /R and is called the quotient of A* mod R.

Let R be a relation on a set A*. The reflexive closure of R is the smallest
reflexive relation r (R) on A* that contains R; that is,

e RCr(R)

e if R’ is a reflexive relation on A* and R C R/, then r (R) C R'.

The symmetric closure of R is the smallest symmetric relation s (R) on A* that
contains R; that is,

e RC s(R)

e if R’ is a symmetric relation on A* and R C R/, then s (R) C R'.

The transitive closure of R is the smallest transitive relation ¢ (R) on A* that
contains R; that is,

e RCt(R)

e if R’ is a transitive relation on A* and R C R’, then ¢ (R) C R'.

Let R be a relation on a set A*. Then

or(R)=RUI4-,
es(R)=RUR™!
k=400
ot(R)= |J R~
k=1

A congruence on a monoid M is an equivalence relation = on M compatible
with the operation of M, i.e, for all m,m’ € M,u,v € M

m=m = umv =um'v
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If f: A* — B* is a morphism of monoids, Then Ker f is a congruence defined
by:

Yu,v € A* :uKer f o< f(u) = f (v).

Let L be a language over A, the syntactic congruence of L denoted by =y, is
defined by:

u=pv<= Ve,y€ A" :zuy € L <= zvy € L)

The quotient of A* by =y, is, by definition, the syntactic monoid of L denoted
M(L),ie., M(L)=A*/ =p.

A semi-Thue system is a pair (A, R) where A is an alphabet and R is a non-
empty finite binary on A*, we write urv — g ur’v whenever u,v € A* and (r,7’') €
R. We write u —7, v if there words g, u1, ..., u, € A* such that,

Up = u,
u; — R U+1,V0 <i<n—1
and u, = v.
If n =0, we get u = v, and if n = 1, we get u —r v. —F is the reflexive
transitive closure of —p.
The congruence generated by R is defined as follows:

e urv «—— g ur'v whenever u,v € A*, and rRr’ or 7' Rr;
*
ouv whenever u = ug «—pg U] «—R ... «——R Uy = V.

«——7} is the reflexive symmetric transitive closure of —g. Let 7p : A* —
A*/ % be the canonical surjective monoid morphism that maps a word w € A*

to its equivalence class with respect to %. A monoid M is finitely generated if it

is ithenmorphic to a monoid of the form A*/ % In this case, we also say that M

is finitely generated by A. If in addition to A also R is finite, then M is a finitely
presented monoid. The word problem of M ~ A*/ % with respect to R is the set

{(u,v) € A* x A* : 7 (u) = wg (v)} it is undecidable in general [6, 7, 10].

The semi-Thue system (A, R) is terminating if there does not exist an infinite
chain w; —g wy —pg w3 —pg ... in A*. The set of irreducible words with respect
to Ris Irr (R) = {u€ A*,—~wv € A* : w —»g v}. (A, R) is confluent (resp. locally
confluent) if for all z,y,z € A* with « —% y and © —% z (resp. z —gr y
and ¢ —pg z) there exists w € A* with y —} w and z —} w. If (A R) is
terminating, then by Newman’s lemma (A, R) is confluent if and only if (A, R) is
locally confluent. A semi-Thue system (A, R) is canonical if (4, R) is confluent
and terminating. If (A, R) is canonical, then every word « has a unique normal
form NFg(u) € Irr(R) suth that v —% NFg(u) and moreover, the function
wr | Irr (R) (i.e., g restricted to Irr (R)) is bijective. Thus, if R is in addition
finite, then the word problem of A*/ % is decidable: g (u) = 7 (v) if and only
if NFr (u) = NFg (v)[8].

The congruence generated by R is defined as follows:

° TUY <> TVY, whenever z,y € A* and uRv or vRu
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ow % w,, whenever ug,uq,...,u, € A* withuy = w,u; < Uir1,V0 < ¢ <
n—1,u, =w'.
The equivalence class of w with respect to % denoted by [w] -

R
We get a quotient monoid A*/ % and a canonical surjection 7 : A* —

A*/ %. Moreover, if h : A* — M is a mapping such that h(z) = h(y) whenever
xRy, we get a unique morphism ) : A*/ %—> M such that homg = 1.

3. Presentations of some monoids

Definition 3.1. A presentation of a monoid M is a pair S = (4, R) such that M
is isomorphic to the quotient of A* by the congruence noted % generated by R, i.e,

M = A%/ %. The elements of A are called generators, and those of R are called

relations. If there are finitely many generators and relations, i.e. A = {a1,...,ap}
and R = {(7"1, ) IR (rq, 7’;) }, we say that the monoid M is finitely presentable,
and we write M = <a1, O fT1 =T, Ty = r’q>.

Example 3.2. Let A = {a} and R = (} (R is the empty relation), we have
({a}",-) = (N,+) with the isomorphism is defined by € — 0,a — 1. Then the
monoid presented by (a/() is isomorphic to the additive monoid (N, +).

Example 3.3. Let A = {a,b} and R = {(ab,ba)}. We have, for all w € {a,b}",
there exists a unique (m,n) € N? suth that w % b™a™ with m = |w|, and

n = |w|,. We define the mapping ¢ : N> — A*/ %,w(m,n) = [b™a"] -, where
R
[b™a"] -, denotes the equivalence class of b™a™ with respect to %. The mapping
R

is morphism because for all (m,n) € N2, (p, q) € N2, we have ¢ ((m,n) + (p,q)) =
) ((m +p,n+ q)) — [bm-i-paln+q]‘i> — [b’”b”a”aq]

= Branbras) . = e - [BPad]. = o ((m,n)

— 5]«

B Y ((p,q))

ol
kY

It is clear that 1 is onto. The mapping 1 is one-to-one because, we have for all
(m,n) € N%,(p,q) € N?,
¥ ((m,n)) =¥ ((p,q)) < [b™a"] -, = [PPa’] ., <= (m =p and n =q).
R R
Therefore the monoid presented by (a,b/ab = ba) is isomorphic to the additive
monoid (N2, +).

Example 3.4. Let A = {a,b} and R = {(ab,¢), (ba,¢€)}, for all w € {a,b}", there
is only three cases to be considered.
o If |w|, = |w]|,, in this case we have w % €.

o If |w|, > |wl|,, i.e, |w|, = |w|, + k,k € N— {0}, in this case we have w % ak.

o If [w|, > |w|,, i.e, |w], =|w|, +1,1 € N— {0}, in this case we have w % b
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Then 2 = {a,0)"/ &= {Id- [a] V] (D) € (= 0D} with e

R
isomorphism ¢ : Z — {a,b}" / % is defined by:

7774]
* .
—

0+ [e] - , if n >0, then n — [a"] - ,if n <0, then n — [b
R R R
Therefore the monoid presented by (a,b/ab = €,ba = €) is isomorphic to the

additive monoid (Z,+).

Proposition 3.5. Any monoid (M,-,15) has a standard presentation (A, R),
where A consists of one symbol a, for each x € M, and R is defined by R =
{(a1,,,€), (agay, azy) for all z,y € M}. In particular, any finite monoid is finitely
presented.

Proof. Let A = {az,x € M} and R = {(ai1,,,¢€), (azay, azy) for all z,y € M},
then for all w € A*, there exists {z;,...,x;} € M suth that w = a,,...a,, and

w % Ay, Tk = T - ... - T;, therefore A*/ %: {[awk];,xk € M} Then the
R
isomorphism 6 : M — A*/ % is defined by: 0 (zx) = [w] -, where 2 = ;- ... -
R
TjW = Qg,eeOg s {T45 0 25} © M.
The mapping 6 is morphism because for all (x,x;) € M?, we have
0 (zxpr)) = 0 (xm) = [w]s where z, = xp2; and w = ay,a,,, then [w]. =

; W
[aﬂﬂkaﬂﬂz]; = [a'xkhi. [%z]; = Q(Jik)e(l‘l)
R R R
It is trivial that 6 is onto. We show that 6 is one-to-one, for all (x,x;) € M2,
there exists {z;,....,x;} € M,{zs,...,a¢} C M where z, = x; - ... - z; and z; =
Tg - ... Ty, we have,
O(z) = O(m)=0(xi ... -xj) =0(xs- .. 2) = [Ag, 00, ] », = |G, .0a,] ~
R R
= |ag] -, = [ag] - = 21 = 71
R R

Example 3.6. Consider the monoid

u=fo=(3 1) mn=(1 8) == (0 1)}

provided with matrix multiplication. The Cayley table of M is defined as follows
(see Table 1):

Lo | 1 | T2
Lo | To | T1 | T2
Ty | T1 | X1 | T2
T2 | T2 | T1 | T2

The monoid M satisfies the following two properties: for all x; € M, x;-x1 = 1
and x; - x2 = To.
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Lat A = {ay,,x; € M,0<i<2}and R = {(axo,e) , (axiaxj,awﬂj) X, 5 € M}
Then for all w € A*, there exists {z;,...,z;} € M suth that w = ag,...a,; and

w <E> Az, , With 23, = x; - ... - ;. There is only three cases to be considered:
. . *
o If w = ua,,,u € A, in this case we have w < ag,.
R
. . *
o If w = ua,,,u € A*, in this case we have w 7 Gaa-

. . *
o If w=ay,...as,, in this case we have w e

R

Then A*/ %: {[e]g [ [am];} and we define the isomorphism A :
R R
M — A*/ % by:
A(zo) = [€] A (21) = [ae,] s A (22) = [as,] » . Finally M = A*/ %.

—?

R R R
The following propositions, make it possible to give conditions on relations that
ensure the existence of morphism between two monoids quotient.

Proposition 3.7. We consider two systems of rewriting S1 = (A1, Ry), So =
(Az, R3) and f : A — A% is a morphism of monoids such that for all (r,s) € Ry :

f (")]- = [f(s)] -, then there exists a unique morphism ) : A7/ 1<§>—> As/ R<i>
Ro Ro 1 2
with Y omg, = 7R, o f.

Proof. We have for all (r,s) € Ry : [f ()] -, = [f (s)] -, then the morphism 7 g, o f
Ro Ro

satisfies the following property: for all (r,s) € Ry, (mr, o f)(r) = (7R, o f) (s),
then there exists a unique morphism ¢ : A3/ R<i>—> As/ R<i> with ¢ o mg, =
1 2

7TR20f. [l

Example 3.8. Let S; = (A1, R1) and Sz = (A2, Ra) be two systems of rewriting,
where,

{ Ay ={a,b} and { As ={c,d, e}
Ry = {(ab,a), (ba,a)} Ry = {(ec,c), (de,d)} -
. . s . f(a)=cd

We consider the morphism f : A — A3, with { fb)=e -

We have 7g, : A5 — A3/ R<i> satisfies the following equalities: g, (ec) =
TR, (¢) and 7R, (de) = 7R, (d).

Now we show that for all (r,s) € Ry, (7R, o f) (r) = (7R, © f) (5), we have

(WRz o f) (ab) = TRy (Cde) = TR, (C) TRy (de) = TRy (C) TRy (d) = TRy (Cd) =
(TR, 0 f) (a).

(TR, © f) (ba) = 7R, (ecd) = g, (ec) TR, (d) = TR, (¢) TR, (d) = TR, (cd) =
(TR, © f) (a).

Consequently there exists a unique morphism o : A}/ R<i>—> A3/ ]% with
1 2

/(/)OWR1:7TR20f~
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Proposition 3.9. Let S; = (A1, R1), S2 = (Ag, Rs) be two systems canonicals
and f : AY — A} is a isomorphism of monoids where for all (r,s) € Ry :
[f ()] ., =1f ()]s and f(Irr(Ry)) C Irr (Re), we have,

Ra Ra

Proof. We have for all (r,s) € Ry : [f(r)]. = [f(s)]~, then for all (r,s) €

Rg Ro

Ry, (mRr, 0 f)(r) = (7R, o f) (8), then there exists a unique morphism ¢ : A%/ R<i>—>

A3/ R<i> with ¢ omg, = mpR, o f. Specifically the morphism v is defined by:
2

P ([m]ﬁ) = [f (x)] -,. We show that ¢ is one-to-one: Let [z] - , [y] - € AT/ Rﬁ»,

Ry Ro Ry Ry

since S1 = (A1, R1) is canonical, then there exists u,v € Irr (Ry) suth that [z] . =

[u]R; and [ac]RL = [U};%. Ry
We have v (LT];;’) =19 <[y]RH> = <[U]R<_)> =1 <[v];) = [f (u)]; —

[f (v)] =, since f(Irr(Ry)) € Irr(R2) and Sy = (A2, Rz) is canonical, we have

R2
f(u) = f(v), then u = v because f is one-to-one, which shows that [z]. =
Ry

[yl - - 0

Ry

Now we show that 1 is onto: since f is onto, then for all y € A%, there exists

Ra Ra Ry

x € A7, suth that y = f (), which allows to write [y] . = [f (z)] . = [w]H>
Finally A%/ ;ie A3/ 1?

Example 3.10. Let S; = (41, R1) and Sy = (A2, Ra) be two systems of rewriting,
where,

{ Ay = {a} and{ A3 =N= (1)
Ry = {(aa,€)} Ry ={(0+0,0),(0+1,1),(140,1),(1+1,0)} °
We consider the isomorphism of length f: A7 — N, w — |w|.
We have (wg, o f)(aa) = 7R, (2) = 7r, (0) = (7r, o f) (¢), and Irr(R;) =
{e;a}, f(Irr (R1)) = {0,1} = Irr (Rz).
Finally A%/ R{»g N/ ?

In the following proposition we give a condition on the relation of a rewrite
system to show that the congruence generated by this relation is included in the
syntactic congruence class of any word modulo congruence associated morphism
of monoids.

Proposition 3.11. Let f: A* — M be a monoids morphism and R is a binary
relation on a set A* suth that for all (r,s) € R, f(r) = f(s). Then for all w €
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A*, the congruence generated by R is included in the syntactic congruence of the
equivalence class of w modulo Ker f .i.e, %QE[M]KW =

Proof. Since for all (r,s) € R, f (r) = f (s), we have R C Ker f, then %g Ker f.

Now we show that QQEM , let (u,v) € A* x A* suth that u < v, we check
R Ker f R

that u = v, ie, for all (z,y) € A* x A* : zuy € [w]g,, j = vy €

Ker f
[w]Ker f

We have zuy € [w]y,, ; < zuy € U [ci] +,, because %Q Ker f.<=3Jip €1
ier B

suth that zuy € [c;,]~, then zuy % ¢iy- Furthermore u % v implies that

*
—
R

*
TUY < Cig

U Y i; zvy. We have = zvy % Ciy» then 2vy € [w]pe,,. ;.

Tuy % zvy
A similar argument shows that if zvy € [w]g., ; then zuy € [w]y,, ;. Finally

]

*
C= .
(E}— [w]Ker f

Example 3.12. Let A ={a,b}, R={(ab,ba)} and f: A* — N, f (u) = |u].

R

We have A*/ %: {[bma”]g ,(m,n) € N x N} and for all w € A”, [w]g,, ;=

{z € A* : |z| = |w|}. Now we show that %QE[ let (u,v) € A* x A* suth

W] ko f’
that % v, then there exists (p,q) € Nx N : «u % bPa? and v % bPal,
there (|ul, = [v|, = ¢ and [ul, = |v|, = p), we check that v =), v, ie, for
all (z,y) € A" x A" 1 zuy € [w]g,, ; < 2vy € [W]k,, ; Let (z,y) € A" x A%,
we have

zuy € [Wg,, ; <= |zuy| = |w| < [zvy| = |w| <= 2vy € [W]g,, ; because
(lul, = |vl, = ¢ and [u], = |[v[, = p).

. * _
Finally ?g:[w]Kw =
In the following proposition we give also a specific relation R on A* making the

quotient monoid A*/ % a group.

Proposition 3.13. Let A ={ay,...,a,} and R = {(a;a;,¢),1 <i<n}.

We have the quotient monoid A*/ % is a group.

Proof. Tt suffices to show that every element of A*/ % is invertible, let w =

ag,...a;, € A*, and [w]. € A*/ %.

—
R
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Example 3.14. Let A = {a} and R = {(aa,€)}, we have A*/ %: {[e]; , Mé}v
there " "
€], ={we A" : |w| =0[2]} and [a] - = {w € A" : |w| = 1[2]}.

R R

The Cayley table of A*/ % is defined as follows (see Table 1)

[e] ? [a] ?
2 €] < (€] < [a] -
[a] 2 [a] ;, [e] ‘E’

R
We have the groups A*/ % and (Z/2Z,®) are isomorphic.

4. Application on the notion of word problem in public key
cryptography

In this work, we are interested in ATS-monoid protocol (proposed by P. J.
Abisha, D. G. Thomas G. and K. Subramanian, the idea of this protocol
is to transform a system of Thue S; = (A, R) for which the word problem is
undecidable a system of Thue Sy = (A, Ry) or § C A x A for which the word
problem is decidable in linear time.

4.1. The ATS-monoid protocol. P. J. Abisha, D. G. Thomas and K. G.
Subramanian, use the theorem of R. Cori and D. Perrin. To build the ATS-
monoid protocol,the idea is transform a system of Thue S; = (A, R) for which
the word problem is undecidable in a Thue system Sy = (A, Rg) with § C Ax A
and Ry = {(ab,ba) : (a,b) € 8} for which the word problem is decidable in linear
time.

Public-Key (pK): A Thue system S; = (4, R) and two words wg, w; of A*.
(A, R, wp,w1) constitute a public-key.

Secret-key (sK): A Thue system So = (A, Rg) where A alphabet of size
smaller than A, a morphism A from A* to A* such that for all (r,s) € R:

(h(r),h(s)) € {(ab,ba), (ba,adb)}, for a pair (a,b) € 0, or
{ h(r) = h(s).
Therefore:
for all u,v € A", u «—% v => h(u) «—}%, h(v).

thus if h(u) and h(v) are not equivalent with respect to «—%, , then u and v
are not equivalent with respect to «—%.

And, we also we have two words xg, z1 of A* such that x R, h(wo), z1 TR,
h(wy) with h(wo) and h(w; ) are not equivalent with respect to «—% . (A, Rg,h € Hom (A*, A¥))
constitute a secret-key.

Encryption: for encrypt a bit b € {0, 1}, Bob chooses a word ¢ of A* in the
equivalence class of wy, with respect to «—%, 1. e, ¢ € [wb]_ﬁ? where [wp]__ .
denotes the equivalence class of w;, with respect to +—% and then sent to Alice.

Decryption: Upon receipt of a word ¢ of A*, Alice calculated h(c) € A*,
since ¢ «+—7% wp and according to the result for all u,v € ¥*,u «—% v =
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h(u) «—%, h(v) we have h(c) «—%, h(ws), for example if h(c) «—%, w0 the
message is decrypted 0.

Example :

Public-Key (pK):

A= {0'1,0'2,0'3,0'4},

R= {(0’20’3,0’30’2) s (0’20’4, 0'40'2) s (0'10'3,0'30'1)} y

Wo = 0102040301020304,

W1 = 020403040207.

Secret-key (sK):

A ={a,b,c},0 ={(a,b),(a,c)} and h : A* — A* is defined by :

h(o1) =€, h(o3) = a,h(os) = b, h(cy) = c.

We have Ry = {(ab,ba), (ac,ca)}, h(wy) = x9 = acbabc and h(w;) = 1 =
acbea.

Now we verify the following conditions :

1. h(wo) et h(wp) are not equivalent with respect to «—7, .

2. for all (r,s) € R:

{ (h(r),h(s)) € {(ab,ba), (ba,ab)}, for a pair (a,b) € 0, or
h(r) = h(s).

For condition 1. Just use the theorem of R. Cori and D. Perrin,
we have Py (h(wo)) = Pppy(acbabe) = bb and Pgyy(h(wi)) = Py (acbea) = b,
then h(wg) and h(w;) are not equivalent with respect to «—7, .

For condition 2. we have R = {(0203,0302), (0204,0402),(0103,0301)} then
(h(o203), h(o302)) = (ab,ba) € Ry, (h(c204), h(0402)) = (ac,ca) € Ry,
(h(c103), h(o301)) = (b,b) ( we have h(o103) = h(o301).

Therefore:

for all u,v € A*,u «—% v => h(u) «—}%, h(v).

Encryption: for example, for encrypt the 0, Bob chooses a word c of {o1,02,03,04}"
in the equivalence class of wy with respect to «—7%, i. e, ¢ € [wo](_% where
[w()](_>;? denotes the equivalence class of wg with respect to «+—7%, and then sent
to Alice.

we have wyg = 0102040301020304 < 0104020301020304 < 0104030201020304.

We choose ¢ = 0104030201020304.

Decryption: Upon receipt of a word ¢ of {o1,02,03,04}",

Alice calculated h(c) = h(o0104030201020304) = cbaabe € {a,b,c}”, Now using
the theorem of R. Cori and D. Perrin, such that h(c) «—7%, h(wo). we have
Pray(h(c)) = Pray(h(wo)) = aa, Ppy(h(c)) = Ppy(h(wo)) = bb, Pey(h(c)) =
Pyey (h(wo)) = ce.

then for all o of {a,b,c}, Pisy(h(c)) = Pioy(h(wo)). In addition it is verified
that Py 1 (h(c)) = Pisuy(h(wo)), for all (o, ) ¢ 6, we have the complementary
of 0 is Caxal ={(a,a),(b,a),(b,b),(b,c),(c,a),(cb),(cc)},
then P, .y (h(c)) = P,y (h(wo)) = cbbe. Finally h(c) «—%, h(wo) = ¢ and the
word is decrypted 0.
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5. Conclusion

In this paper, we determine some conditions on the two relations that ensure

the existence of a morphism between the two quotient monoids. We give also a
specific relation R on A* making the quotient monoid A*/ % a group.
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