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Abstract. This paper deals with the derivation of exact solutions of linear

and nonlinear wave-type equations by employing the Aboodh transform cou-

pled to the Adomian decomposition method. The new method is based on
the derivation of convergent series and, with respect to the existing methods

of the pertinent literature, does not require discretization, perturbation and

linearization.

1. Introductions

Several mathematical methods have been proposed to treat wave-type equa-
tions among which is the Adomian decomposition method [1-2]. The Adomian
decomposition method is an efficient method for solving linear and nonlinear, ho-
mogeneous and nonhomogeneous, ordinary and partial, integro-differential and
fractional differential equations [10]. Kaya [3] and Kaya and Inc [4] used the Ado-
mian decomposition method to solve nonlinear wave equations, while Momani [5]
determined the analytical approximate solutions for fractional wave-like equations
with variable coefficients using the decomposition method. Ghoreishi et al [6]
solved nonlinear wave-like equations with variable coefficients using the Adomian
decomposition method, while Ramadan and Al-Luhaibi [11] determined the solu-
tion of nonlinear wave-like equations using Sumudu decomposition method. Fur-
thermore, in 2013, an integral transform called the Aboodh transform has been
proposed by K.S. Aboodh [7] in his effort to devise more methods for solving or-
dinary and partial differential equations. He also applied it to solve some partial
differential equations in [8], and further coupled the new integral transform with
the homotopy perturbation method to solve some fourth order parabolic partial
differential equations [9], and finally Nuruddeen and Nass [13] solved some linear
and nonlinear heat equations using the Aboodh decomposition method.

This paper deals with the derivation of exact solutions of linear and nonlinear
wave-type equations by employing the Aboodh transform coupled to the Adomian
decomposition method. The new method is based on the derivation of convergent
series and, with respect to the existing methods of the pertinent literature, does
not require discretization, perturbation and linearization.
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The paper is organized as follows: In Section 2, we present the concept of
the Aboodh transform and some of its properties. Section 3 presents the Aboodh
decomposition method. In Section 4, we apply the Aboodh decomposition method
to solve some wave-type equations in order to show the potential of the method
proposed in Section 2. Finally, Section 5 is devoted to the conclusion.

2. The Aboodh Transform

The Aboodh transform is a new integral transform similar to the Laplace trans-
form and other integral transforms that are defined in the time domain t ≥ 0, such
as the Sumudu transform [14], the Natural transform [15] and the Elzaki transform
[16], respectively.

An Aboodh transform is defined for functions of exponential order. We consider
functions in the set F defined by;

F = {u(t) : |u(t)| < Me−vt, if t ∈ [0,∞),M, k1, k2 > 0, k1 ≤ v ≤ k2 }.

For a given function in the set F , the constant M must be finite number and
k1, k2 may be finite or infinite with variable v define as k1 ≤ v ≤ k2.

Then, the Aboodh integral transform denoted by the operator A(.) is defined
(by [7]) by the integral equation:

A{u(t)} =
1

v

∫ ∞
0

u(t)e−vtdt, t ≥ 0, k1 ≤ v ≤ k2. (2.1)

The Aboodh transforms of some elementary functions are given in Table 1.

Table 1. The Aboodh transforms of some elementary functions

u(t) A{u(t)}
1 1

v2

tn, n = 1, 2, 3, ... n!
vn+2

e−at 1
v2+av

sin(at) a
v(v2+a2)

Furthermore, the Aboodh transform is linear, i.e., if a and b are any constants and
u(t) and w(t) are functions defined over the set F above, then

A{au(t) + bw(t)} = aA{u(t)}+ bA{w(t)}.

Also, for any given function u(t) defined over the set F, the Aboodh transform of
derivatives are given as follows

(1) A{u′(t)} = vA{u(t)} − u(0)
v ,

(2) A{u′′(t)} = v2A{u(t)} − u′(0)
v − u(0),

(3) A{un(t)} = vnA{u(t)} −
∑n−1
k=0

uk(0)
v2−n+k .
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3. The Method of the Solutions

This section deals with the presentation of the method for second order nonho-
mogeneous partial differential equation of the form

Lu(x, t) +Ru(x, t) +Nu(x, t) = h(x, t), (3.1)

with the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ [a, b], 0 < t ≤ T, (3.2)

where L is the second-order invertible derivative ∂2

∂2t , R is the remaining linear
operator of order one, Nu(x, t) includes the nonlinear terms, and h(x, t) is the
nonhomogeneous term.

By taking the Aboodh transform of equation (3.1) with respect to t, we get

A{Lu(x, t)}+A{Ru(x, t)}+A{Nu(x, t)} = A{h(x, t)}, (3.3)

and from the differentiation property of the Aboodh transform, equation (3.3)
becomes

v2A{u(x, t)}− 1

v
ut(x, 0)−u(x, 0)+A{Ru(x, t)}+A{Nu(x, t)} = A{h(x, t)}, (3.4)

which can be simplified as

A{u(x, t)} − 1

v3
ut(x, 0)− 1

v2
u(x, 0) +

1

v2
A{Ru(x, t)}

+
1

v2
A{Nu(x, t)} =

1

v2
A{h(x, t)}.

(3.5)

The solution u(x, t) is assumed to be the sum of the following series

u(x, t) =

∞∑
m=0

um(x, t), (3.6)

and the nonlinear term Nu(x, t) to be replaced by the infinite series of the Adomian
polynomials [1-2] given by

Nu(x, t) =

∞∑
m=0

Am(u0, u1, u2, ...), m = 0, 1, 2, ..., (3.7)

where,

Am =
1

m!

dm

dλm

[
N
( ∞∑
i=0

λiui

)]
λ=0

, m = 0, 1, 2, ... (3.8)

Using equations (3.6) and (3.7) in equation equation (3.5) we obtain

A{
∞∑
m=0

um(x, t)} =
1

v2
u(x, 0) +

1

v3
ut(x, 0) +

1

v2
A{h(x, t)}

− 1

v2
A
(
R

∞∑
m=0

um(x, t) +

∞∑
m=0

Am

)
,

(3.9)
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∞∑
m=0

A{um(x, t)} =
1

v2
f(x)+

1

v3
g(x)+

1

v2
A{h(x, t)}− 1

v2

∞∑
m=0

A
(
Rum(x, t)+Am

)
.

(3.10)

Comparing both sides of equation (3.10) and then taking the inverse Aboodh
transform in each case, we thus obtain the general recursive relation u0(x, t) = f(x) + tg(x) +A−1{ 1

v2A{h(x, t)}}, m = 0

um+1(x, t) = −A−1{ 1
v2A{Rum(x, t) +Am}}, m ≥ 0.

(3.11)

4. Applications and Results

In this section we present some numerical results of our proposed method for
the wave-type equations consisting of linear, wave-type and nonlinear wave prop-
agation equations.

4.1. Example One. Consider the linear nonhomogeneous wave equation [Al-
Mazmumy & Al-Malki [12]]

utt = uxx + 2(x2 − t2), (4.1)

with the initial conditions

u(x, 0) = sinh(x), ut(x, 0) = cosh(x). (4.2)

Taking the Aboodh transform of both sides of equation (4.1), we obtain

A{utt(x, t)} = A{uxx}+A{2(x2 − t2)}. (4.3)

Using the differentiation property of the Aboodh transform, we get

v2A{u(x, t)} − u(x, 0)− 1

v
ut(x, 0) = A{uxx}+A{2(x2 − t2)}, (4.4)

which can further be expressed as

A{u(x, t)} =
1

v2
u(x, 0) +

1

v3
ut(x, 0) +

1

v2
A{uxx}+

1

v2
A{2(x2 − t2)}. (4.5)

Replacing u(x, t) by an infinite series

u(x, t) =

∞∑
m=0

um(x, t),

and then taking the inverse Aboodh transform, we thus obtain the general recursive
relation,  u0(x, t) = u(x, 0) + tut(x, 0) + x2t2 − t4

3! , m = 0

um+1(x, t) = A−1{ 1
v2A{umxx

}}, m ≥ 0.

(4.6)

We now obtain some few terms from equation (4.6) as follows

u0(x, t) = sinh(x) + t cosh(x) + x2t2 − t4

3!
, (4.7)
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u1(x, t) = A−1{ 1

v2
A{u0xx

}},

= A−1{ 1

v2
A{sinh(x) + t cosh(x) + 2t2}},

=
t2 sinh(x)

2!
+
t3 cosh(x)

3!
+
t4

4!
,

(4.8)

u2(x, t) = A−1{ 1

v2
A{u1xx}},

= A−1{ 1

v2
A{ t

2 sinh(x)

2!
+
t3 cosh(x)

3!
}},

=
t4 sinh(x)

4!
+
t5 cosh(x)

5!
,

(4.9)

u3(x, t) = A−1{1

v
A{u2xx

}}

= A−1{1

v
A{ t

4 sinh(x)

4!
+
t5 cosh(x)

5!
}}

=
t6 sinh(x)

6!
+
t7 cosh(x)

7!
,

(4.10)

and so on. Summing these iterations yield a series solution

u(x, t) =

∞∑
m=0

um(x, t)

= x2t2 + sinh(x)

(
1 +

t2

2!
+
t4

4!
+
t6

6!
+ ...

)
+ cosh(x)

(
t+

t3

3!
+
t5

5!
+
t7

7!
+ ...

)
,

which leads to the exact solution

u(x, t) = x2t2 + sinh(x+ t). (4.11)

4.2. Example Two. Consider the wave-type equation [Momani [5]]

utt =
1

2
x2uxx, (4.12)

with the initial conditions

u(x, 0) = x, ut(x, 0) = x2. (4.13)

Proceeding as discussed, we get the recursive relation u0(x, t) = u(x, 0) + tut(x, 0) , m = 0

um+1(x, t) = A−1{ 1
v2A{

1
2x

2umxx}} , m ≥ 0.
(4.14)

Thus, we get the following iterations

u0(x, t) = x+ tx2, (4.15)
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u1(x, t) = A−1{ 1

v2
A{1

2
x2u0xx

}},

= A−1{ 1

v2
A{x2t}},

=
x2t3

3!
,

(4.16)

u2(x, t) = A−1{ 1

v2
A{1

2
x2u1xx}},

= A−1{ 1

v2
A{x

2t3

3!
}

=
x2t5

5!
,

(4.17)

u3(x, t) = A−1{ 1

v2
A{1

2
x2u2xx

}},

= A−1{ 1

v2
A{x

2t5

5!
}},

=
x2t7

7!
,

(4.18)

and so on. Accordingly, the solution in a series form is given by

u(x, t) =

∞∑
m=0

um(x, t) = x+ x2
(
t+

t3

3!
+
t5

5!
+
t7

7!
+ ...

)
,

which leads to the exact solution

u(x, t) = x+ x2 sinh(t). (4.19)

4.3. Example Three. Consider the one-dimensional nonlinear wave equation
[Kaya [3]]

ut + u2x = 0, (4.20)

with initial condition

u(x, 0) = −x2. (4.21)

As described above, we get the recursive relation u0(x, t) = u(x, 0), m = 0

um+1(x, t) = −A−1{ 1vA{Am}}, m ≥ 0,
(4.22)

where Am’s are the Adomian polynomials given in equation (3.8) with some few
terms given by

A0 = u20x ,

A1 = 2u0xu1x ,

A2 = 2u0xu2x + u21x ,

...

(4.23)
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Therefore, by replacing these Adomian polynomials into the general recursive re-
lation given in equation (4.22) we get the following iterations as

u0(x, t) = −x2, (4.24)

u1(x, t) = −A−1{1

v
A{A0}},

= −A−1{4x2

v3
},

= −4x2t,

(4.25)

u2(x, t) = −A−1{1

v
A{A1}},

= −A−1{32x2

v4
},

= −16x2t2,

(4.26)

u3(x, t) = −A−1{1

v
A{A2}},

= −A−1{1

v
A{384x2

v5
},

= −64x2t3,

(4.27)

and so on. Consequently, the solution in a series form is given by

u(x, t) =

∞∑
m=0

um(x, t) = −x2
(
1 + 4t+ 16t2 + 64t3 + ...

)
,

which leads to the exact solution

u(x, t) =
x2

4t+ 1
. (4.28)

5. Conclusion

Many methods has been developed to find the exact solutions of linear and non-
linear partial differential equations [3, 4, 5, 6]. In this article, we successfully apply
the Aboodh decomposition method to find the exact solutions of wave-type differ-
ential equations. The method was based upon employing the Aboodh transform
coupled to the Adomian decomposition method and it revealed remarkable exact
solutions without any need of discretization, perturbation or linearization. The
method can be used in solving higher order nonlinear partial differential equations
as its solution is obtained in form of rapid convergent series with easily computable
components.
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